

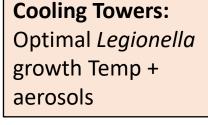
Management of Legionella in Water Systems

December 10, 2020 | 11:00 AM - 2:00 PM ET

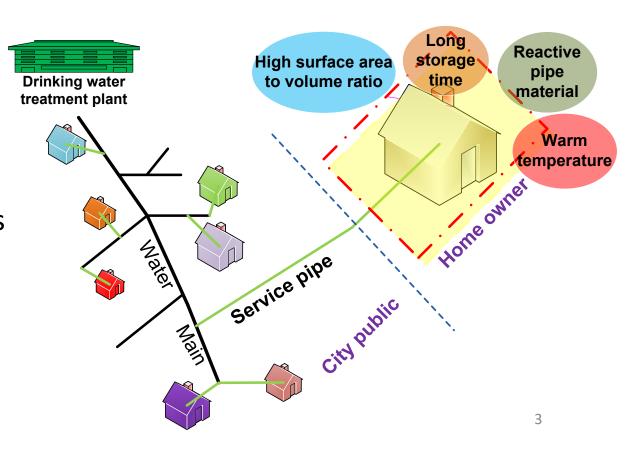
Monitoring *Legionella* in Water Systems

Amy Pruden
W. Thomas Rice Professor
Virginia Tech

Rhoads et al. *Environ. Sci. Technol.* 2017 "Distribution System Operational Deficiencies Coincide with Reported Legionnaires' Disease Clusters in Flint, MI"

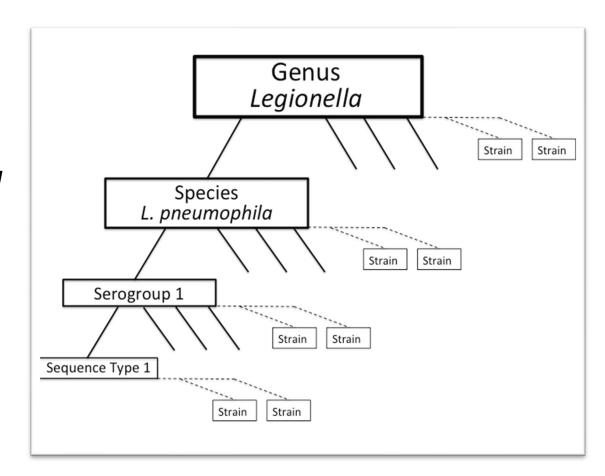

Why test Legionella in the water?

- Outbreak response- Find source of an outbreak and mitigate
- Outbreak prevention- Identify red flags, where is there vulnerability for transmission
- Mitigation assessment- Is the mitigation applied (e.g., disinfectant added, temperature elevated) resulting in reduced *Legionella* numbers?
- **Research** Expand knowledge about the conditions that lead to *Legionella* amplification, and how to control it


The Safe Drinking Water Act does not provide protection from

Legionella

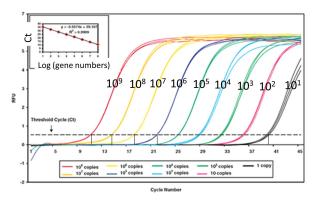
- The role of water utilities today:
 - Be responsive to SDWA
 - Provide distribution system disinfectant residual <u>to the property</u> line
 - No requirement for Legionella monitoring
- Premise plumbing distinct from water mains:
 - Surface/volume ratio- biofilms
 - Temperature
 - Water age
 - Poor persistence of disinfectant residuals
- Premise plumbing can create ideal environment for Legionella growth



What to test?

- There are 61 known species of Legionella
- Pathogenic species include: L. pneumophila, L. micdadei, L. bozemanii, L. dumoffi, L. anisa, and L. longbeachae
- *L. pneumophila* is the most dominant species isolated from patients and associated with risk
- 14 serogroups (SGs) of *Legionella*, clinical testing tends to only focus on serogroup 1, environmental more broad.
- Numerous sequence types (STs), determined through isolation and whole genome sequencing or sequencing 7 alleles

Ideal Method Attributes


- Specific- Exclusively detects Legionella target
- Sensitive- Can detect low levels
- Quantitative- Reports numbers, not just +/-
- Fast- Able to identify problem sites quickly
- High-throughput- Able to assess many sites in parallel
- Discriminant- Live, dead or VBNC
- Economical Low \$\$
- Easy to use- No specialized skill required, in-field detection
- In situ Reflective of actual situation in system when sampled
- Indicative of risk Represents an infectious and transmissible target, informative to risk assessment
 - E.g., L. pneumophila more frequently associated with disease than other species

Culture

versus

Quantitative Polymerase Chain Reaction (qPCR)

- Specific- But, requires confirmation testing
- Sensitive- 10 CFU/mL
- Quantitative- But, have to get dilution right
- Discriminant- Exclusively reports live organisms (not VBNC)
- Not fast or high throughput (3-7 days minimum for result)

Suitable application:

- Outbreak response- to identify source and compare to clinical strains
- Baseline monitoring of highest risk sites
- Assess that mitigation actually <u>killing</u> Legionella

- Specific- Can target Lp, Lspp., SG1, etc.
- Fast- Results in < 1 day
- Sensitive- Depends on volume
- Quantitative- more so than culture
- High-throughput- 90 well plates
- Does not discriminate live/dead/VBNC

Suitable application:

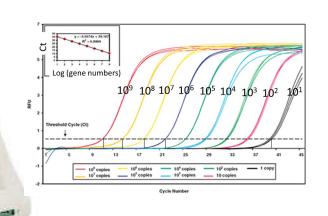
- Broad outbreak response- identify sites to focus culturing
- Establish baseline for routine monitoring, quickly identify anomalies
- Long-term assessment of mitigation, coupled with culture to verify Legionella being killed

Legionella Culture Methods

ISO/BYCE Method

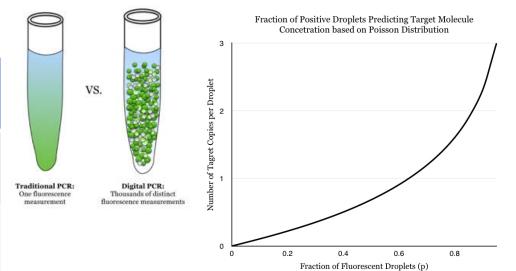
- Gold standard
- 3-7 days for result- + confirmation (by culture, MALDITOF or PCR)
- Biased towards *L. pneumophila*, but captures other *Legionella* too
- Provides an isolate that can be further characterized and genetically compared to clinical isolates in outbreak investigation

e.g., commercial option: Legiolert


- Easy to use- no need to send to outside lab
- Higher throughput than traditional culture
- Targets *L. pneumophila* only
- Results in 7 days
- Reports MPN/L
- Wells can be analyzed further...

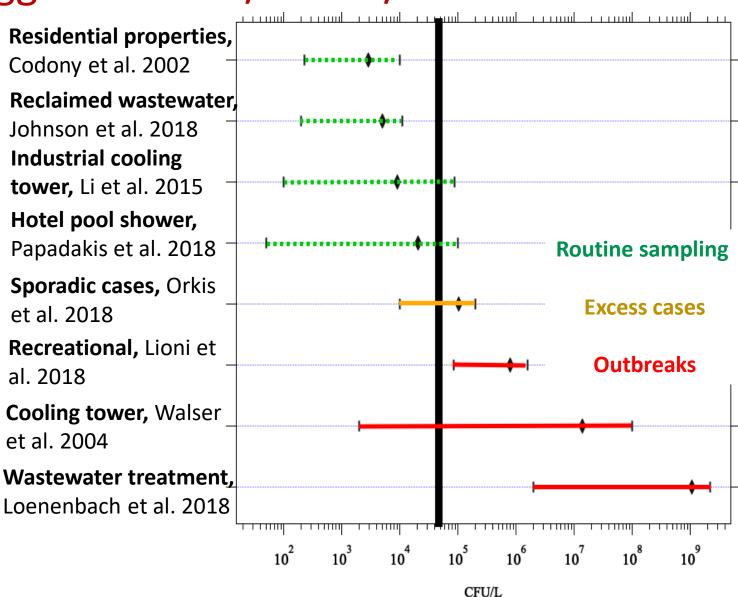
Legionella qPCR methods

Example Chapter 3 Box 3-4: Methods. New York used PCR for rapid screening of cooling towers, followed by culture.

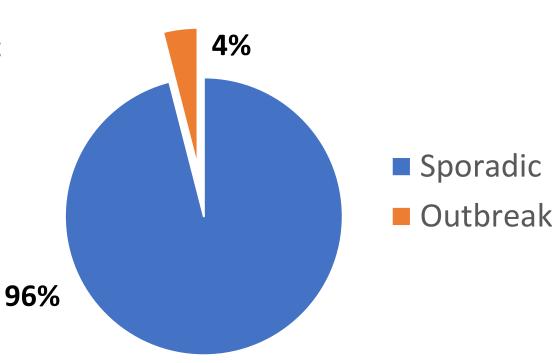

qPCR Examples

WRF project 4721 PI Raskin

Targeted organisms	Targeted gene	Amplicon size (bp)	Reference
Legionella spp.	23S rRNA	92	Nazarian et al. 2008
L. pneumophila	mip	78	Nazarian et al. 2008
L. pneumophila SG 1	wzm	75	Merault et al. 2011


Traditional lab-based qPCR

Droplet Digital qPCR


What Level Should Trigger Concern/Action/Remediation?

- 50,000 CFU/L was identified as corresponding to <u>imminent</u> <u>outbreak</u> based on published studies
- Suitable "Action level," likely lower than 50,000 CFU/L, but greater than zero.
- EU Directive (Oct. 2020) 1,000
 CFU/L
- Might also vary from building to building:
 - Lower levels for at risk individuals/facilities
 - Value to assessing baseline and noting anomalies

Most LD is Sporadic, not Outbreak

- Most of what we know is from outbreaks, but most disease is sporadic
- Could a national survey of distribution systems and premise plumbing help us better understand sporadic sources?
- Could better inform long-term monitoring and regulatory requirements

Legionellosis

Hicks, L., L. E. Garrison, G. E. Nelson, and L. M. Hampton, 2011. Legionellosis—United States, 2000–2009. *Morb. Mortal. Wkly. Rep.* 60(32):1083-1086.

Distribution System Monitoring?

- Widespread distribution system monitoring will be costly and likely yield little Legionella detection
- Required reporting, elevated vigilance and monitoring around "events" could help focus Legionella monitoring:
 - Lapse in corrosion control
 - Storms
 - Watermain breaks
 - Construction
- Could also identify high risk portions of the distribution system with high water age / worst case scenario buildings
 - Analogous to Pb-Cu Rule?
 - Potentially gain insight into sporadic disease?

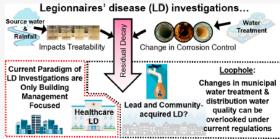
WRF project 4911 PI Burkharia

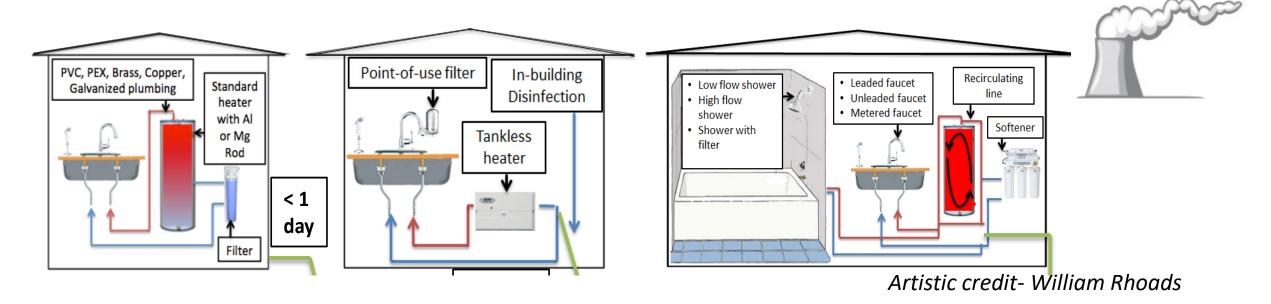
pubs.acs.org/journal/estlcu

Letter

Did Municipal Water Distribution System Deficiencies Contribute to a Legionnaires' Disease Outbreak in Quincy, IL?

William J. Rhoads,* Tim Keane, M. Storme Spencer, Amy Pruden, and Marc A. Edwards


ACCESS I



Supporting Information

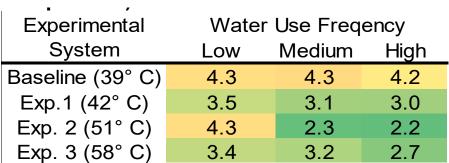
ABSTRACT: Fifty-eight people were sickened and 12 died from a Legionnaires' disease (LD) outbreak in Quincy, IL, in 2015. The initial outbreak investigation identified deficiencies at the Illinois Veteran's Home (IVHQ), but these did not account for four community-acquired cases that occurred concurrently with no IVHQ exposure. We broaden the investigation to evaluate seven lines of evidence and assess whether municipal drinking water supply deficiencies potentially contributed to a community-wide outbreak. Notably, 3–6 months prior to the outbreak, the primary disinfectant was changed and corrosion control was interrupted, causing a sustained decrease in disinfectant residuals throughout Quincy's distribution system. We hypothesize this created more

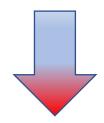
Premise Plumbing & Cooling Tower Monitoring

- Premise plumbing has multiple niches where Legionella can grow
- Sampling strategy must capture <u>representative</u> areas of risk
- Establish baseline, determine if levels rise above baseline- anomaly?
- Comparison to 1,000 CFU/L, a quantitative microbial risk assessment (QMRA)-derived goal equating to 10⁻⁶ DALY seen in Chapter 5 for faucets

Verifying Mitigation is Effective

qPCR Example


A *L. pneumophila* concentration (log gene copies/mL)


Control System	Water Use Freqency			
(39° C)	Low	Medium	High	
5 months	4.2	4.2	4.1	
8 months	4.2	3.4	3.9	
13 months	4.3	4.7	4.3	
15 months	5.1	4.8	4.3	

39°C-Legionella proliferates

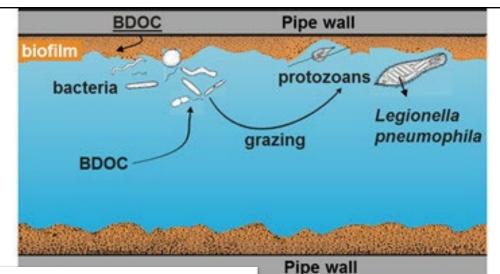


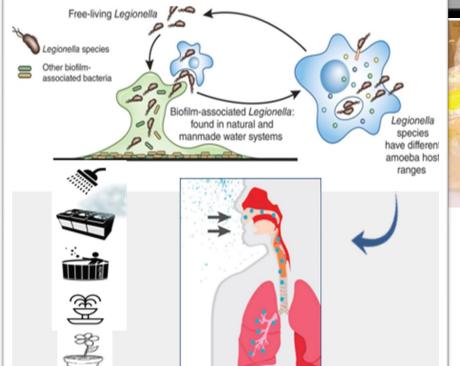
William Rhoads

Increasing T 39°C - 58°C-Legionella killed

Rhoads et al. Water Heater Temperature Set Point and Water Use Patterns Influence Legionella and associated Microorganisms at the Tap. *Microbiome* 2015

Biofilm versus Water

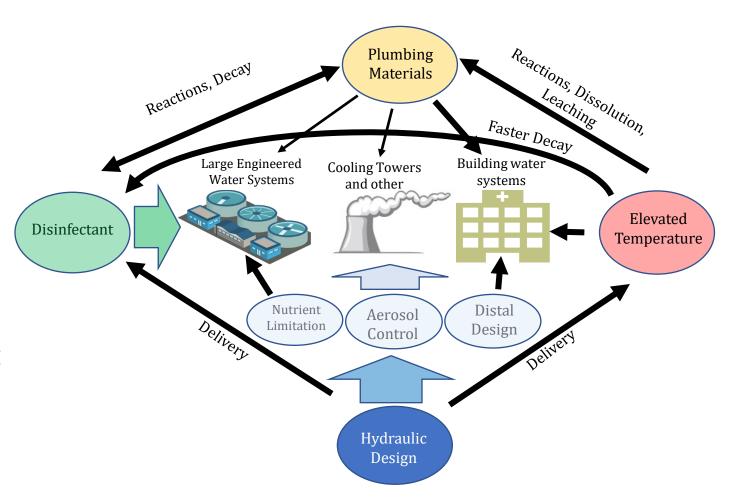

 Legionella proliferates in biofilms, participating as part of a complex ecology of organisms


Growth in and release from free-

living amoebae

Sampling not easy!

- Difficult to access
- Difficult to quantify
- Water more appropriate for routine sampling, biofilm for outbreak investigation or research



Some Relevant Recommendations from the Report

- 1. Expand the Centers for Medicare & Medicaid Services memo to require monitoring for Legionella in environmental water samples for all hospitals (Chap. 5)
- 2. Register and monitor cooling towers (Chap. 5)
- 3. Determining the most common sources of **sporadic disease** will require well-funded, population-based studies in multiple jurisdictions (Chap. 3)
- **4. Regional Centers of Excellence** could serve as a backbone to strengthen the capacity of state health departments to detect and investigate cases of LD (Chap. 3)
- **5. Systematic comparison** of culture methods for *L. pneumophila* (and other pathogenic legionellae) ddPCR, qPCR, viability-qPCR, and reverse transcriptase qPCR (Chap. 3)
- **6. Quantitative microbial risk assessment** can help determine standards/targets for routine monitoring, mitigation, and regulation. How to incorporate qPCR-based measurements (Chap. 3)

Putting it all in context

- Legionella numbers will be most informative in the context of everything else happening in the system
 - What factors can be contributing to growth of Legionella?
 - What kinds of disruptions to system operation could be at play?

Summary-

- Environmental monitoring of Legionella is key to identifying problems, verifying system controls/mitigations are working, and preventing the spread of LD
- We need a framework- to support environmental monitoring of Legionella....
 - What to monitor?
 - Where to monitor?
 - Frequency of monitoring?
 - Action levels?
 - How to implement?