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Complex life cycles and complex water management
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Integrated Modeling Decision Support Framework

1. Individual elements:
Experiments, monitoring, and models (conceptual, mathematical, simulation, etc.)

2. Integrated models:
Collectively what the individual elements can tell us
Quantification of the trade-offs to inform decisions based on costs and benefits

3. The decision space:
The unconstrained range of management options

4. Adaptive management:
CV water planning and operations are different processes
Monitor fish response relative to actual operations



Highly Variable Egg to Fry Survival
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Egg Temperature Dependent Mortality Model

NMFS egg TDM Model

Critical temperature (T.t) = 12°C
Biophysical model based on mass transfer theory Martin (2018)
Mathematical model of O, supply and demand Martin (2020)

» Eggs protect developing embryos, but also limit the supply oxygen

» 0O, demand increases with egg volume, but is supplied across a
surface

» Salmon eggs are large - O, supply is precariously balanced with
demand

* Metabolic demand increases with live tissue mass

» Metabolic rate of embryos increases exponentially with temperature
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Egg TDM and CRR 3 years later
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Circles are colored by the egg TDM for that year. CRR is the cohort replacement rate for 3 year-old fish.



Egg TDM, ETF survival, and CRR
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Egg TDM, ETF survival, and CRR
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Contraction of thermal habitat

The Temperature Compliance Point has shifted upstream ~40 miles since 1996

Figure 2.1-1
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Contraction of thermal habitat

The Temperature Compliance Point has shifted upstream ~40 miles since 1996

June-Sept Mean Air Temperature (°F)
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Thermal habitat and Survival

TDM (%)
Log Cohort Replacement for 3 year-olds
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Central Valley Temperature Mapping and Prediction (CVTEMP)
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Central Valley Temperature Mapping and Prediction (CVTEMP)
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CVTEMP: reservoir conditions
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CVTEMP: river conditions
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CVTEMP: egg TDM

26-Nov-2020
Hindcast | Forec:

Egg survival probability
Survival contours

|
|
|
|
|
|
|
: Redd locations
|

|

Feb Mar Apr May Jun Jul Aug Sep Oct Nov
Date
I x I B
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Probability Temperature-Dependent Egg Survival
Operational Scenario = OCT 19 2020 INPUT 90 OUTPUT 90 25L3MTO SCEN 148 SG
Model type = USBR NO W2, Plot created 26-Nov-2020 10:28:03



Rapid Assessment Temperature Modeling Framework

For rapidly exploring the wide range of possible combinations of:

Reservoir inflow (both volume and temperature)
Reservoir thermal dynamics

Temperature Control Device (TCD) gate operations
Shasta release volumes

River temperatures
o Different temperature targets and windows
e Temperature dependent egg mortality

Simplified Models for the Rapid
Simulation of Water Temperature in a
Managed Reservoir-River System

= combinatorial explosion (many thousands of scenarios)

A fully coupled forecast simulation for a year can be completed in 10 seconds or
less

Gilbert et al. 386 pages (in review)



Release Temperature vs Release Flow

Sensitivity analyses by reach and input
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Altered Hydrograph
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Juvenile salmon outmigration

https://oceanview.pfeg.noaa.gov/CalFishTrack/

Home 2024 WY Studies ~ Archived Studies ~ Real-time Receivers Receiver Deployments Download data Data Explorer STARS simulations

= USGS

science fora changing world

CalFishTrack
e Central Valley Enhanced
Acoustic Tagging Project

. New webpage created for Georgiana Slough Fall-run study on 5/1/2024

. New webpage created for Feather River hatchery Spring-run Chinook study on 5/1/2024

. New webpage created for Sacramento River Spring Pulse Flow study on 4/25/2024

. New webpage created for Sacramento River Spring-run Chinook Surrogate study on 4/25/2024

. New webpage created for San Joaquin River hatchery steelhead study - April releases on 4/19/2024
. New webpage created for Butte Creek wild spring-run Chinook salmon study 4/11/2024

. New webpage created for Stanislaus River wild steelhead spring releases study 3/26/2024

. New webpage created for Mill and Deer Creek wild steelhead study 3/23/2024

0N O WN =

Background

There is a well documented need for improved detection and associated modeling of salmon migration and survival in the Central
Valley. We propose to address this need through an expanded acoustic receiver network and associated real-time and retrospective
modeling of the data. The proposed work includes (1) the deployment of real-time receivers that will provide timely information on
migrating salmon smolt location and timing, (2) expansion of the existing autonomous acoustic array to increase the coverage and
detection efficiency; (3) development of new metrics for the real-time data for key management relevant questions such as
entrainment estimates at critical junctions (Georgiana Slough and Delta Cross Channel); and (4) a retrospective analysis directly
geared toward improving the quality and robustness of an existing forecasting model — the NMFS enhanced particle tracking model.
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2. Integrated Models

Quantitative life-cycle models (QLCMs), a robust framework for:

» Evaluating the influence the long-term population dynamics (effects on survival propagate
throughout multiple life-stages, generations)

* Integrating existing and new information
* Measuring tradeoffs and synergies among recovery actions

 Linking outcomes to costs and to co-benefits



The WRLCM

Framework: provides mathematical relationships between abiotic drivers and biotic responses
Updated with new covariates — model parameters estimated through calibration
A stage-structured, stochastic life cycle model (network of interconnected models)

Evaluate the influence on the long-term population dynamics:

e Hydrology

e Hatchery

e Habitat restoration
e Harvest

e Reintroduction

Management relevant metrics:
» Cohort replacement rate

* Smolt production

* Adult abundance



The WRLCM
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Figure 4. Central Valley Chinook transition stages. Each number represents a transition equation through which we can
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Integrated Modeling Decision Support Framework

1. Individual elements:
Experiments, monitoring, and models (conceptual, mathematical, simulation, etc.)

2. Integrated models:
Collectively what the individual elements can tell us
Quantification of the trade-offs to inform decisions based on costs and benefits

3. The decision space:
The unconstrained range of management options

4. Adaptive management:
CV water planning and operations are different processes
Monitor fish response relative to actual operations



COEQWAL Project

COEQW6L

COLLABORATORY FOR EQUITY IN WATER ALLOCATION

“Building a resilient water future requires new water planning tools that advance sustainable, inclusive, and equitable
water stewardship.”

e Produce and analyze a library of user-informed scenarios of water system allocations
e Facilitate collaborative learning about California's water system, water allocation decision-making, and

community perceptions and values around water
e Develop an accessible data dashboard that illuminates consequences, risks, and trade-offs within and among

alternative water futures
e Demonstrate relevance of the dashboard to decision-making through "use case” applications



COEQWAL Project
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3. Decision Space

The framework assessing the impacts of the CVP operations on endangered species (...and
many other objectives)

* Independent of policy constraints
» Independent of specific fishery management goals
« Open and transparent

Model code

Results

* Accessible to the public
« Scalable and expandable



Decision Space

Improving outcome

Fish
objective

System objective Improving outcome ——»



Decision Space

Want to be up here/

(not realistic)

Any fish objective: CRR
smolt production, etc.

\ Fish

objective .

Do not want to be

/ down here

Any non-fish objective:
deliveries, hydropower
generation, etc.

»  System objective
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Decision Space

Fish
objective ®
A

System objective B
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Decision Space

Trade-off can be very sensitive to

Fish the location on the frontier
objective
J A Same cost to Objective B,

Different benefits to Objective A

System objective B



Fish
objective
A

Decision Space

Efficiency frontier
under a

warmer/drier

hydroclimate future

System objective B

The decision space may
contain multiple frontiers
depending on what is
modeled:

Many factors could change
the shape of the frontier:
Infrastructure, etc.



Decision Space

Effigienc.y The decision space may
frontier with contain multiple frontiers
reintroduction depending on what is
modeled\
M

Many factors could change
the shape of the frontier:

o Effici fronti Infrastructure, etc.
objective iciency trontier
A under a
warmer/drier

hydroclimate future

System objective B



4. Evaluation of results (adaptive management)

CV water planning and operations are different processes
Monitor fish response relative to actual operations

Ideally in real-time






