Impact of Water Project Infrastructure and Operations on Salmon and Salmon Habitats Steve Lindley, 8/12/2024 steve.lindley@noaa.gov

Habitat	Life Stage and Process	Requirements	Impact of Project Infrastructure	Impact of Project Operations	Other Stressors
Headwaters	Adults spawning Eggs	Cold water, suitable substrate Cold water, suitable	Inaccessible Inaccessible	NA NA	
	incubation Juveniles rearing	substrate Cold water, suitable substrate, food, refugia	Inaccessible	NA	
Mainstem	Adults migration	Cool water, attraction flows	Diversion into managed floodplains without upstream exit	Warm water and low flows delay migration, increases pre-spawn mortality.	River sport fisheries
	Adults spawning	Cold water, suitable substrate	Disrupt sediment supply	Warm temperatures delay spawning; increasingly restrict spawning to small area below dam	
	Eggs incubation	Cold water, suitable substrate	Encourage spawning in deep areas	Warm water kills eggs (1,2); flow fluctuations strand nests; flow effects on O2 supply (11,12)	Thiamine deficiency in parents (10)
	Juveniles rearing	Cool water, food, refugia	Channelization and bank armoring reduces refugia	11,7,7,7	Disease (C. shasta) (9). Aggravated by hatchery practices that are intended to mitigate
	Smolts migration	Cool water, pulse flows, turbidity	Dams reduce sediment supply, increase water clarity and therefore predation risk	Flattening of hydrograph removes migration cues (3); lower velocities increase travel time and predation (4,5); lower velocities and exports increase entrainment into export facilities; lower velocities increase temperatures and reduce survival (13)	Disease (C. shasta).
Floodplains	Juveniles rearing	Cool water, food	Bank armoring and levees limit access to and from floodplain	Reduce frequency and duration of floodplain activation	Toxics (Hg, pesticides)
Estuary	Adults migration	Cool water, attraction flows	Looped channels and tidal flows increase travel time through Delta		
	Juveniles rearing	Cool water, food, refugia	Transformed nature of tidal channels from mostly small blind channels to large, deep and looped channels; greatly reduced food production; conditions support non-native salmon predators and SAV (6)		Non-native predators (15), increased water clarity due to invasive clam and SAV (16,17)
	Smolts migration	Cool water, turbidity	Looped channels and tidal flows increase travel time through Delta and exposure to predators; SAV increases water clarity	the prevalance (and upstream extent) of tidal flows in channels resulting	Non-native predators (15), increased water clarity due to invasive clam and SAV (16,17)

References

- 1. Martin, B. T., A. Pike, S. N. John, N. Hamda, J. Roberts, S. T. Lindley, and E. M. Danner. 2017. Phenomenological vs. biophysical models of thermal stress in aquatic eggs. Ecology Letters 20:50–59.
- 2. Martin, B. T., P. N. Dudley, N. S. Kashef, D. M. Stafford, W. J. Reeder, D. Tonina, A. M. Del Rio, J. Scott Foott, and E. M. Danner. 2020. The biophysical basis of thermal tolerance in fish eggs. Proceedings of the Royal Society B: Biological Sciences 287:20201550.
- 3. del Rosario, R. B., Y. J. Redler, K. Newman, P. L. Brandes, T. Sommer, K. Reece, and R. Vincik. 2013. Migration Patterns of Juvenile Winter-run-sized Chinook Salmon (Oncorhynchus tshawytscha) through the Sacramento–San Joaquin Delta. San Francisco Estuary and Watershed Science 11.
- 4. Michel, C. J., J. J. Notch, F. Cordoleani, A. J. Ammann, and E. M. Danner. 2021. Nonlinear survival of imperiled fish informs managed flows in a highly modified river. Ecosphere 12:e03498.
- 5. Michel, C. J. 2019. Decoupling outmigration from marine survival indicates outsized influence of streamflow on cohort success for California's Chinook salmon populations. Canadian Journal of Fisheries and Aquatic Sciences 76:1398–1410.
- 6. San Francisco Estuary Institute. 2014. A Delta Transformed: Ecological Functions, Spatial Metrics, and Landscape Change in the Sacramento-San Joaquin Delta. 155 p.
- 7. Perry, R. W., A. C. Pope, J. G. Romine, P. L. Brandes, J. R. Burau, A. R. Blake, A. J. Ammann, and C. J. Michel. 2018. Flow-mediated effects on travel time, routing, and survival of juvenile Chinook salmon in a spatially complex, tidally forced river delta. Canadian Journal of Fisheries and Aquatic Sciences 75:1886–1901.
- 8. Michel, C. J., M. E. Daniels, and E. M. Danner. 2023. Discharge-Mediated Temperature Management in a Large, Regulated River, With Implications for Management of Endangered Fish. Water Resources Research 59:e2023WR035077.
- 9. Abdelrazek, S. M. R., R. E. Connon, C. Sanchez, B. Atencio, F. Mauduit, B. Lehman, S. L. Hallett, S. D. Atkinson, J. S. Foott, and M. E. Daniels. 2023. Responses to pathogen exposure in sentinel juvenile fall-run Chinook salmon in the Sacramento River, CA. Conservation Physiology 11:coad066.
- 10. Mantua, N., Johnson, R., Field, J., Lindley, S., Williams, T., Todgham, A., Fangue, N., Jeffres, C., Bell, H., Cocherell, D. and Rinchard, J., 2021. Mechanisms, impacts, and mitigation for thiamine deficiency and early life stage mortality in California's Central Valley Chinook Salmon. North Pacific Anadromous Fish Commission, Technical Report, 17, pp.92-93.
- 11. Bhattarai, B. et al. Effect of surface hydraulics and salmon redd size on redd-induced hyporheic exchange. Water Resour. Res. (2023) doi:10.1029/2022wr033977.
- 12. Bhattarai, B. et al. The Role of Riverine Bed Roughness, Egg Pocket Location, and Egg Pocket Permeability on Salmonid Redd-Induced Hyporheic Flows. Water Resour. Res. 59, (2023).
- 13. Michel, C. J., Daniels, M. E. & Danner, E. M. Discharge-Mediated Temperature Management in a Large, Regulated River, With Implications for Management of Endangered Fish. Water Resour. Res. 59, (2023).
- 14. Lehman, B. M; Johnson, R. C; Adkison, M.; Burgess, O. T; Connon, R. E; Fangue, N. A, et al. (2020). Disease in Central Valley Salmon: Status and Lessons from Other Systems. San Francisco Estuary and Watershed Science, 18(3). doi:https://doi.org/10.15447//sfews.2020v18iss3art2
- 15. Nobriga, M. L., Michel, C. J., Johnson, R. C., & Wikert, J. D. (2021). Coldwater fish in a warm water world: Implications for predation of salmon smolts during estuary transit. Ecology and Evolution, 11, 10381–10395. https://doi.org/10.1002/ece3.7840
- 16. Hestir EL, Schoellhamer DH, Greenberg J, Morgan-King T, Ustin SL. The effect of submerged aquatic vegetation expansion on a declining turbidity trend in the Sacramento-San Joaquin River Delta. Estuaries and Coasts. 2016 Jul;39:1100-12.
- 17. Jassby, A.D. 2008. Phytoplankton in the upper San Francisco estuary: recent biomass trends, their causes, and their trophic significance. San Francisco Estuary and Watershed Science 6.