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1. California has an EXTREMELY Variable Precipitation Regime

COEFFICIENT OF VARIATION OF WATER-YR PRECIPITATION
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1b. ... and its getting even MORE EXTREME.

CHANGE IN COEFFICIENT OF VARIATION OF WY PRECIPITATION
COEFFICIENT OF VARIATION OF WATER-YR PRECIPITATION 1981-2020 MINUS 1941-1980
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1981-2020
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1c. California’s floods and droughts are BOTH driven

by its largest storms

Water-Year Precipitation, Delta Catchment

other wet‘days
45% of variance undve

Q1
o

4% of variance w/5-yr mavg

" L)

2 -=® By

e 'S

=15 2a® -
4 [

g

g

i=}

01 0 20

a) Water-Year Precipitation, Delta Catchment
[with contributions from days <95%-ile, >95%-ile

N
o

[ Total wy precip

E

=

= 30 \ —
= o -
=

z 20— —
=T I
& - —
E 10 Wettest 5% of wef days f\/VV\A\N\J\ B

SN I AT IS N T AN ) S T |
1900 1920 1940 1960 1980 2000 2020

0

Dettinger & Cayan, SFEWS, 2014,
Dettinger, SFEWS, 2016



1d. Climate change will bring enhancements of our largest
storms, while weakening “other storms” & adding dry days

Water Vapor Transports (warmest colors)

during 3 weeks in winter 2010

Landfalling atmospheric rivers

- Big AR storms get bigger;

other storms get fewer & farther

between.
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(b) AR-related precipitation (mm), California, 1951-2100
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1e. California’s future floods & droughts will also be even wilder

Change in Mean Total Precipitation,

as percent of historical mean precip

Contributions to total water-yr precip

from extreme storms vs “norma
in a 10-model ensemble of climate projections
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20 of 20 projections yield smaller “other storm” contributions
16 of 20 projections yield larger extreme-storm contributions



2. California droughts have been intensifying over the
past few decades

San Joaquin Drainage Climate Division
PDSI Drought Months
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2b. ...largely because California’s evaporative
demand is increasing as temperatures rise

San Joaquin Drainage Climate Division
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2c. More broadly, California’s (& much of the Nation’s)
evaporative demand has increased over the past 40 yrs

San Joaquin Drainage Climate Division
PDSI Drought Months . o
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2d. ..

.and more warmth & ETo are on their way
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3a. California’s water resources will have to rely more on
captu ring extremes (water from floods, storage space from drought)

Current:

Drought{== Noermal —) Flood

Future:

Drought Normal Flood

Dettinger, DWR Planning4Change, 2019
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3a. California will increasingly need to manage its floods to get
thru its droughts, and vice versa

s

Drought « norma == Flood

.

* Floods will be constitute greater fraction of the water availability; HOW
ARE WE GOING TO KEEP THAT WATER IN THE MIX?

* CAN DROUGHT BE BETTER MANAGED TO CREATE SPACE FOR CAPTURING
FLOODS TO COME OR REDUCING LONG-TERM DEMANDS?

Dettinger, DWR Planning4Change, 2019



3b. Increased variability will be ever more challenging in a
system pushed toward its limits

Current regulations have significant “climate basis,”
but climate variability/seasonality may change

Eight-Stations Precipitation Index

E.g., in WY 2013 & 2022, most T rrrr o)
precipitation arrived in autumn followed . = s
by really dry winters...& yet regulatory gw— -
decisions mostly reflected “really wet sl |
year to date” to a dangerous extent ol |

Should regulatory framework be more flexible (perhaps
even forecast-informed) t0 accommodate a California with
INCREASING WITHIN-YEAR & YEAR-TO-YEAR
VARIABILITY?




3c. Climate-change impacts on CVP are not written in stone

Climate-change projections used for Assumes that land-
. cover/land-use/

most planning (e.qg., caladapt) assume land upstream-water
. . t ]

cover & land use (the physical-hydrologic " nchanged

\ / unchanged

setting) remains unchanged, with water—

availability changes dictated only by Modeting
large-scale climate esenias
nveyance
California leads the world wrt GHG mitigation Operatiogs
& adaptations for projected water-supply e e
changes adaptations/
decisions

Should California ALSO ACTIVELY STRIVE TO
STABILIZE HYDROLOGIC CONDITIONS in its

watersheds?
See Dettinger et al., SFEWS, 2023 ‘ e’ '
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-- California’s precipitation & hydrology is getting
more extreme (& will continue to do so)

-- Evaporative demands are increasing (& will
continue to do so)

RESPONSES
-- Management of water resources will increasingly
be about SALVAGING/USING the extremes

-- More flexible (& perhaps even forecast-informed?)
regulatory/allocation decisions will be needed to
address more S2A-variable hydroclimate

-- Options exist for REDUCING hydrologic impacts by
aggressive on-the-ground action in the watersheds &+
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Comments or questions?

mddettinger@gmail.com



2e. FWIW, this summer & last summer are pretty good
examples of how near-future of intense-r demands may feel

California-state average July Evaporative Demands (as ETo)
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Projected (in 2011 & 2024) water temperatures at Rio Vista in the Delta

Estuaries and Coasts
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Fig. 11 Projected wearly cycle of water temperatures at Sacramento
River at Rio Vista (station 15) averaged from 2097 to 2099. The mean
of the measured water temperatures at the same location from 1997 to
1999 is included for comparison
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Fig. 13 Long-term shift in water temperatures on the Sacramento
River at Rio Vista (station 15) under GFDL A2 forcing. Using
projected temperatures, each day is grouped as it impacts the Delta
smelt: spring spawning (daily average temperatures from 15°C to 20°
C in light gray), stress (daily average temperatures from 20°C to 25°C
in dark gray), and lethal (daily maximum temperatures >25°C in
black)
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Cold-Water Drought in Lake Shasta
Here is how water temperatures & volumes in Lake Shasta

have evolved (with depth) over the past several yrs.
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Projected annual air temperatures & precipitation

Temperature Change

A Assuming Lower Future Greenhouse-Gas Concentrations (RCP4.5 scenario)
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east of Sacramento
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B Assuming Higher Future Greenhouse-Gas Concentrations (RCP8.5 scenario)
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Figure 2 Projected annual changes in air temperature, relative to 1961-1990 averages, in 10 selected global climate models (bright curves,
5-year moving averaged) and in 31 models (grey, unsmoothed), under low (A) and high (B) future greenhouse-gas emissions. (Source: CDWR

Climate Change Technical Advisory Group 2015).

Sierra Nevada
east of Sacramento
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Precipitation Change

A Assuming Lower Future Greenhouse-Gas Concentrations (RCP4.5 scenario)
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Figure 3 Projected annual changes in precipitation, relative to 19611990 averages, in 10 selected global climate models (bright curves,

5-year moving averaged) and in 31 models (grey, unsmoothed), under low (A) and high (B) future greenhouse-gas emissions. (Source: COWR
Climate Change Technical Advisory Group 2015).

Dettinger et al, SFEWS, 2016



OBSERVED(?!) lack of cold years

How long since
last cold water year?

B 47 yrs (1975)
[ 36-40yrs
[] 81-35yrs
[] 26-30yrs
[7] 21yrs

[T 8yrs

B 3ys

Do you really remember what a cold year is like?
Its been more than 25 yrs since a state in the West (and most of the East Coast) has
experienced a water year as cold as one of its 20t Century coolest 25%!

Updated: Thru wy2022



Observed emissions (X) continue to track the top-end of all scenarios (e)
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Note to NASEM: This slide is modified from one obtained from Prof. E. Eltahir, MIT, who | suspect got the original from someone else. | (Dettinger) added the symbols on the far right (outside the graph) based
on the inset graphic time series of emissions since 1990. | would NOT recommend relying on these figures without checking them yourselves.



What would California water resources mgmt reliant on extremes
look like?

FIRO: Flood-MAR:
Forecast-informed Rerouting flood waters to recharge
Reservoir Operations overdrafted aquifers for later use
] A What is
e ; N 7= " Flood-MAR?
: | ™™ | [ K7 )l |Canwesave | mg
 Danael &' ' 7| someofthis | £ _ _
: - - h l tar '«3  Using high flows from,
o000 I I\ L] 1IN t  orin anticipation of,
: Hekasdsg=tabar it 111 N - ™3 rainfall or snowmelt,
o FEREEEEEEREEREER N 1.°  for managed aquifer
= EEEREEEEER SN recharge on
144 | . L] L™ agricultural lands and
® ail | : working landscapes
55333285 ssccosnssoscesecasa
Date

Lake Mendocino FIRO FVA 2020

5(8 M=) CALIFORNIA DEPARTMENT OF WATER RESOURCES Groundwater
y Pumpage
(16.4 MAF/yr)

Storage
(>235 MAF)

Seasonal

Snowpack
(~ 17 MAF/yr)

https://water.ca.gov/programs/all-programs/flood-mar



2. ...and this is almost UNIQUELY a California o
“thing” ;;:' f.

Percentage of Water-Year Precip Variance explained by~

Precip from wettest 7 days/yr
1° -
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Dettinger, SFEWS, 2016 Variance Explained, in Percent




SAN FRANCISCO ESTUARY & WATERSHED SCIENCE

Table 1. Climate Change Challenges and Strategic Responses Science Strategies in the Face

of Climate Change (2008)

Challenges

1.

Human-induced climate changes have
already begun, and are expected to
continue

Strategic Responses

Require long-term monitoring commitments from restoration
and resource-management activities

Increase climate-science literacy and education
Prioritize ecosystem adaptability in restoration efforts
Evaluate opportunities for operational responses

2. Changes will be multi-variate » Support multi-disciplinary science
+ Encourage multi-variate climate monitoring and modeling
3. Change will be geographically » Ensure consistency of observational and analytical methods
pervasive across the region
* Focus on geographic connections
+ Expect California to be highly sensitive
4. Change will be rapid + |dentify maximum rates of adaptability
» Undertake manipulative experiments
« Consider artificial refugia and seed banking
5. Projections are, and will remain, + Address more certain projections directly and less certain
uncertain changes by increasing flexibility
+ Pursue risk-based decision-making
* Support competing hypotheses
+ Explore contradictions
» Develop and maintain multiple models of important subsystems
* Reduce reliance on statistical models
» Adopt standard terminologies for uncertainty
6. Effects will interact * Integrate models
» Coordinate across scientific disciplines
» Focus on extreme events
+ Consider energy and greenhouse consequences
7. Surprises are likely + Emphasize prediction nonetheless

Balance predictive vs. tracking strategies
Increase management flexibility

Expand diversity of response options

Dettinger & Culberson, SFEWS, 2008
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