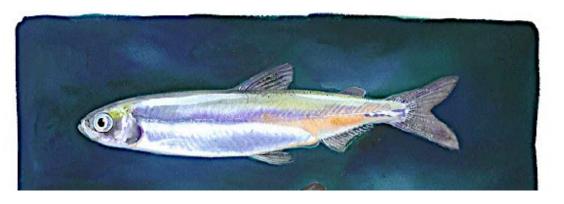


Presentation to the NASEM Committee to Review Long-Term Operations of the Central Valley Project and the State Water Project Gary Bobker, Senior Policy Director, Friends of the River

Meeting 4
Davis, California
12 August 2024

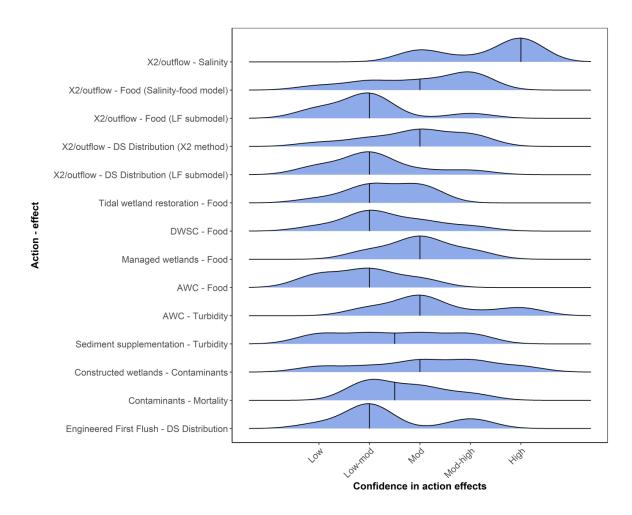
Table of contents

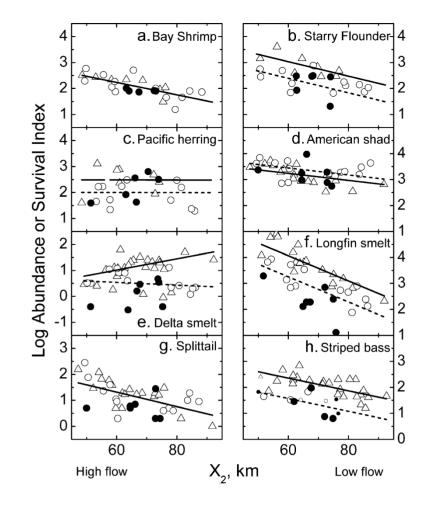
• Delta smelt: invest in actions to address multiple stressors, instead of cherry picking


 Ecosystem: potential for positive population growth relies on significant improvements in flow conditions

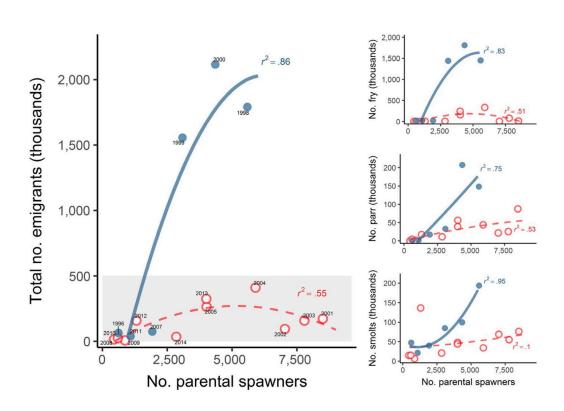
 Drought cycles: baseline assumptions about drought protections are misleading, because the rules are routinely waived

Delta smelt: address multiple stressors/avoid cherry picking

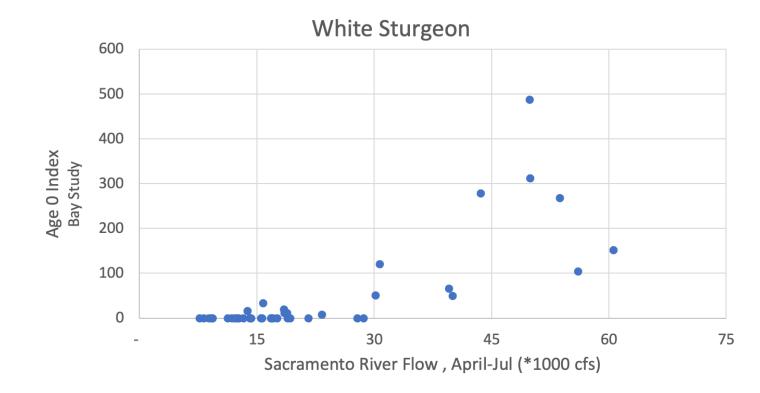

- CSAMP Delta Smelt Structured Decision Making process (final report due 8.31.24) used multiple Delta Smelt life cycle models to test competing hypotheses
- finds that recovery is possible through combinations of actions (i.e., portfolios) with additive and synergistic effects. Portfolios that concurrently target multiple population drivers in multiple regions can achieve higher population growth than single actions
- identifies 7 management actions for next steps:
 - i) pilot managed wetlands projects for food in Suisun Marsh
 - ii) pilot invasive aquatic weed control studies
 - iii) physical point source contaminants reduction at Ulatis Creek
 - iv) modeling of outflow actions, esp summer outflow enhancement
 - v) sediment supplementation feasability studies
 - vi) engineered first flush framework and experimentation; and
 - vii) tidal habitat restoration food subsidy research


Delta smelt: address multiple stressors/avoid cherry picking

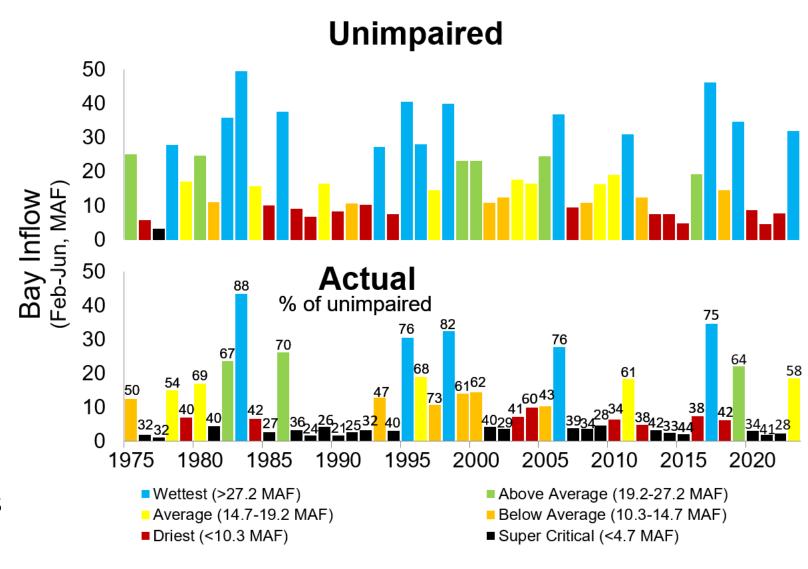
- Tidal marsh (food): high positive pop growth assuming =/>30k acres
- Summer outflow: positive pop growth
- Fall outflow: positive pop growth when X2 < 80 km W/AN yrs
- Fall outflow: faster pop decline than historical when X2 > 80km W/AN yrs
- Positive growth rate, greater uncertainty re food subsidy vs positive growth rate, higher certainty for outflow enhancement



 Flow is a driver of biological response. Many Bay-Delta species exhibit strong, persistent and significant flow-abundance relationships. For some, flow and abundance increase in a relatively continuous curve (from Kimmerer 2009)



 For other species, like Chinook salmon (in this example, Stanislaus R fall run), the potential for positive pop growth increases dramatically when flow thresholds are exceeded (>987 cfs Jan-June avg), with much greater abundance in wetter years, underlining the function of flow as a driver of biological response (from Sturrock et al 2019)



 Another example of flow as a driver of biological response is white sturgeon (state candidate and proposed federal ESAlisting) - recruitment is low or zero when spring-summer Sacramento River flows are < 30k cfs (from Baykeeper et al 2023)

The problem: positive pop growth is not currently possible except in wettest years because the Bay-Delta ecosystem experiences extreme drought conditions (the driest 2%) almost half the time as a result of unsustainable diversion levels in almost all years (figure from TBI 2023)

Drought cycles: baseline assumptions about drought protections are misleading, because the rules are routinely waived

- The existing baseline for managing drought cycles is insufficient:
 - Current critically dry year flows universally acknowledged to be inadequate
 - Little or no critical year flow enhancement in proposed VAs
 - No assurance that potential Voluntary Drought Toolkit actions will be implemented
 - No assurance that "meet and confer" adaptive management regimes will result in real world actions

Drought cycles: baseline assumptions about drought protections are misleading, because the rules are routinely waived

But it's even worse than it looks because:

- -Temporary urgency change petitions filed by USBR and DWR were approved and baseline protections waived in 6 out of 10 previous years (2014, 2015, 2016, 2021, 2022 and 2023); in some of those years:
- ->95% mortality for winter- and spring-run Chinook salmon eggs and larvae
- -Record or near-record low abundance numbers for Delta smelt and longfin
- -Increased occurrence of Harmful Algal Blooms
- -Increased non-native species abundance
- -Increased likelihood of new non-native species invasions

Takeaways

- No one action pathway is likely in and of itself to reverse the decline and promote the recovery of Delta smelt: implement a strategy to address multiple stressors (including increasing habitat targets and improving both summer and fall outflows).
- Recovery of listed species and protection of the broader ecosystem is impossible without positive population growth. Positive population growth is impossible without improved flow conditions in most years, but flows in almost all years are increasingly constrained by diversion levels. Support higher flows and more natural flow patterns at levels based on meeting thresholds for positive population growth in most years and other ecological factors.
- Protections in drier years and drought cycles are critical to preventing extinction, but are grossly inadequate. Plus, the rules are routinely waived in drier years, and that needs to be taken into account when considering ESA requirements. Specify drought year management decision pathways and resources and ensure that federal default requirements are in place in case baseline is waived by state.

Sources

The Bay Institute. 2023. Bay impacts, operations modeling, water supply. Presentation by Greg Reis, Staff Hydrologist, at State Water Resources Control Board Hearing on 9.2023 Draft Phase 2 Bay-Delta WQCP Update Staff Report/SED. December 1, 2023.

Compass Resource Management. 2024. CSAMP Delta Smelt Structured Decision Making - Round 1 Evaluation Report. Draft version 3.0. June 6, 2024.

Kimmerer, W.J., et al. 2009. Is the response of estuarine nekton to freshwater flow in the San Francisco Estuary explained by variation in habitat volume? Estuaries and Coasts DOI 10.1007/s12237-008-9124-x

San Francisco Baykeeper et al. 2023. Petition to list the San Francisco Estuary White Sturgeon (Acipenser transmontanus) population as a threatened distinct population segment under the Endangered Species Act with critical habitat.

Sturrock, A., et al. 2019. Unnatural selection of salmon life histories in a modified riverscape. Global Change Biology doi:10.1111/gcb.14896