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Purpose: Provide context/basic background. There is a lot to see/understand in a short period of time

Agenda

The San Francisco Estuary (SFE) is a food limited system

Making the connection between places that produce food and those the accumulate it

Background on low frequency variations in the tides and implications

Transport — what is it, why is it important and how is it achieved



California WaterBlog February 13, 2018

Advice on Voluntary Settlements for California’s Bay-Delta Water Quality Control Plan Part 1:
Addressing a Manageable Suite of Ecosystem Problems

by Jeffrey Mount, PPIC Water Policy Center and others (see below)

Advice focused on three fundamental ecological problems:
*The Delta has become a low-productivity estuary. ¢

«Ecosystem conditions favor non-native plants and animals over many native species.
*Water quality is declining.

Three Tools were suggested to Address These Problems

Managing freshwater flows.
Managing tides.
Managing landscapes.

 C—

These three tools must be applied in concert.. Applying any one of these
tools without the others substantially reduces the likelihood of success.

Group included (in alphabetical order): Jon Burau (US Geological Survey [USGS]), Jim Cloern (USGS), John Durand (UC Davis), Greg

Gartrell (consulting engineer), Brian Gray (PPIC), Ellen Hanak (PPIC), Carson Jeffres (UC Davis), Wim Kimmerer (SFSU), Jay Lund
(UC Davis), Jeffrey Mount (PPIC), and Peter Moyle (UC Dauvis).


https://californiawaterblog.com/2018/02/13/advice-on-voluntary-settlements-for-californias-bay-delta-water-quality-control-plan-part-1-addressing-a-manageable-suite-of-ecosystem-problems/
https://californiawaterblog.com/2018/02/13/advice-on-voluntary-settlements-for-californias-bay-delta-water-quality-control-plan-part-1-addressing-a-manageable-suite-of-ecosystem-problems/
https://californiawaterblog.com/
http://www.ppic.org/water/

Food (organic carbon) is limiting native fish populations
Northern San Francisco Bay and the Delta are low productivity systems

Primary Production
(grams carbon per square meter per day)
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The vast majority of aquatic “habitat” in the Delta
1s poor, mostly comprised of low-productivity
open-water conveyance canals and flooded “Islands”.

The Delta has “lost virtually all of its high-productivity marshes
while lower-productivity open-water habitats have increased”
PPIC blog posted Aug 2, 2021. Bardeen and Cloern, 2021:

“Why 1is the Delta Starving?” .
From Cloern et al. 1994 4 5



Connecting “Magical Places” that produce food and accumulate it
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Local export

Creates stratification that can initiate : :
hvtonlankton blooms (2) Standing wave behavior creates

phytop Turbidity Maxima Zone (TMZ)
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(1) “Goldilocks” residence time zone

“Wetlands are magical places where land and water meet.”

PPIC blog posted Aug 2, 2021 Bardeen and Cloern, 2021: “Why is the Delta Starving?” .



Manage the Tides? What?

We can’t change the astronomical relationships
between earth, sun and moon, but...



The Astronomical Origins of the Tides, in the SFE, unlike east coast estuaries, has a strong declinational aspect
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We can “manage the tides” to improve ecosystem services and water supply reliability in two ways:

(1) Modify transport processes within landscapes that are controlled by the tides (On Tour - Franks Tract?)
(Focus of this talk)

(2) Synchronize management actions with low frequency (>24hrs) variability in the tides.
Low frequency variability: fortnightly (14 day), monthly, seasonal, 18.6-year timescales. (Focus of this talk)

This is a big deal because we are finding ecosystem services fundamentally operates at all these timescales

Which gives us management actions at a wider variety timescales that can target
specific ecosystem services

Spoiler alert: the spring/neap (14-day) cycle does not dominate SFE tides, nor is it the only show in town.



The Tides in the SFE cycle between semidiurnal and mixed tides
at fortnightly, monthly, seasonal and 18.6 year cycles
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How did we not know the spring/neap
cycle wasn’t dominating low frequency variability
SFE tides?

(1) Our forefathers apparently adopted it
from work done in east coast estuaries

(2) Traditional tidal analysis methods alone didn’t
reveal it (Fourier and Harmonic Analysis).



World Map of the tides
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Traditional Methods for determining the spectral content of the Tides

Water Level Spectrum, Golden Gate 1893 - 2023
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Examples of Harmonic Analysis Results for West and East Coast Estuaries

Water Level, 9414290 San Francisco, CA
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Modulation frequency and amplitude

Sum of two sinusoids creates the tidal envelopes
Constructive and destructive interference

With different periods With similar periods
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Modulation frequencies (synodic periods) and amplitudes

East Coast Estuaries

Water Level, 9414290 San Francisco, CA Water Level, 8651370 Duck, NC
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We discovered this when started to investigate the
importance of the tidal envelopes (modulation
frequencies) as a driver of transport processes and
ecosystem services
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Spring/neap (fortnightly, 14 day) (old) conceptual model of low frequency variability

(1) Fortnightly period variability was (nearly) the only low frequency mode considered

(2) Neap tides - Gravitational Circulation, which drives stratification and

accumulation of detritus occurs during neap tides (weaker vertical mixing),
phytoplankton

(3) Spring tides - Horizontal Dispersion, which drives salinity intrusion, shallow-
water exchange, horizontal transports between habitats, etc.



Mixed tide (diurnal inequality) model of low frequency variability

(1) Multiple periods of low frequency variability
(Fortnightly, monthly, seasonal, 18.y year cycle)

(2) Mixed Tides - Gravitational Circulation, which drives stratification and
accumulation of detritus occurs during neap tides (weaker vertical mixing),
phytoplankton

(3) Semidiurnal Tides - Horizontal Dispersion, which drives salinity intrusion,
shallow-water exchange, horizontal transports between habitats, etc.



EBB-FLOOD AMPLITUDE METRIC
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WEAK TIDES, STRATIFICATION, DAYLIGHT AND INCREASED CHL-A
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The diurnal inequality is a
seqguence of:
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Tidal Marshes also dump all their

phytoplankton and detrital biomass/ |
i i April 2§04

during the diurnal Inequality

That is locally maximally tidally
exchanged and dispersively mixed
in adjacent channels

BHH) —

f

-1000

il

LW

La-kpr zL'r zl-'&pr

Salinity @ Martinez iz oyl
.

:: ~Slackaﬁ.er

0 4 13 w7 10 FELEET 1 B &
| Py NL | Jurje | iy
SRICRA, NTO RIVER AT MALLARD ISLAMD { MALL)

1o, Water Level @ Chipps

ae Double- pumpﬂond :
"yl i

il

Dt from 8471

Marsh
Eerm Hu:

§-My

2004 DE21 URroigh 0685 ) 7004
Hux ofperiad © ?J’II,IBIH I'lllJEI !EJII'I :l'pu'| d

I = RIVER SIACE - fEEI'ISFSZ!I

4 0
.n:ll.i:ln.:u naan,

21 Do ; LIS day s
,IE,B.'.!H lltl'llJ, -Z.IJIJ

|||||

BAARTIRHED & BRZ )
= h—ﬂ-mﬂﬂ.’?ﬁi}t ke 1 10 0 wlays
A ETE Lin mF perka o 1700 j:ln-ﬂl:'hun L

3 23- B
| AugLest

~Slack after
Double-purmp flood

I ’Fl

-":.:;.. ~Slackafrer1srﬂaud-

-e.\|.1-.k after weak E|:l|:l.
n

vt '. ?I

I

| ~Slack aﬂfr max Ebb

T 1m0 21 ZI-.II -l-J:A.||

i

.
(4]
HLE ]
e
[
[ER-] L I
um]-{Slack after weak Ebb I
| | FREIEEELY |
0 Slack after max Ebb |
P Il-ll' I
[ S R W ) S - e e b
I Deatm / Tires I
D OETT=0M ML S - s/ 1213y | I
1



Magnitude

Weak Ebb-Flood Spectrum - Golden Gate 1898-2023 |
Moons Declination Cycle |

Fortnightly 1 = ——— 5 NMonthly
(13.66d, K1-O1+ M2-K2) «— (27.55d, M2-N2 + M2-L2) Seasonal e 18.6y
Fortnightly 2 I L (182.62d K1-P1 + 52-K2) .'I
(14.77d, M2-52 + O1-P1) ’ .'I i‘—‘m .
."Illl | b e -
| ..f" "-I f N\“M\/ !
A ||I II"III |
) Y !
W T
e VA
" th H\ I‘ KRN
i i [ | f |
| ‘ AR T
(| | I
ﬂ |
{01 1 1 . I T A
10d 100d 1y 18.6y
Signal Period



The diurnal inequality is a
seqguence of:
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Schematic of double pump floods, big ebb tidal excursions increases dispersive transports
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Reminder:

GC is transporting

detritus and organisms
from San Pablo Bay

With the up-estuary
bottom current while

tidal exchange in happening
In this animation

Carquinez Strait Dye Release

PI: JonR. Burau
Animation: Sean 1. Burau
Model: TRIM2D (Casulli and Cheng)




Suisun Cutoff Dye Release

PI: JonR. Burau
Animation: Sean 1. Burau
Model: TRIM2D (Casulli and Cheng)




Peaks in the diurnal inequality are also periods of maximal salinity intrusion

Because both of the salinity intrusion mechanisms
Peak during the diurnal inequality

(1)Gravitational circulation (likely the weaker mechanism)
(2)Landward dispersive mixing during the double pump floods



The tides (including the low-frequency modes) can be
accurately hindcast and forecast

We can use these predictions to guide retrospective analysis and the timing of
(1) monitoring,

(2) research and

(3) WATER PROJECT OPERATIONS



Transport Processes



Understanding Transport Processes

Can be our guide to modifying landscapes
to enhance ecosystem services
and water supply reliability



Transport = Transport in the Delta

The movement of stuff in the
water from place to place

andscape

Stuff = water quality constituents

= organisms Horizontal Dispersion
Vertical Net Flows
Mixing
The key is.. Gravitational

Circulation

Modifying these two

Transport mechanisms Net Advection
And

Through synchronization

With water project operations




Conceptual Model I: bzt
River Model of the Delta '
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We now know the tides vary between a strongly mixed tide to semidiurnal
tides over fortnightly (14 day), monthly, seasonal and 18.6 year cycles
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The spring/neap cycle does not dominate tides in the SFE

DISCHARGE, CFS
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DISCHARGE. CF

The Tidal currents (discharges) dominate over the

Net currents (discharges) throughout the Delta, most of the time



JRB: Insert Delta Regions here



The Hydrodynamics in the delta are complex

The delta is |
Strongly tidally |
forced e

Courtesy of RMA



Because the tidal currents
are strong, the delta is
incredibly dynamic - water,
constituents, and organisms
are almost always in motion

AND...

They move long distances..
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Relative to the Scale of the 'g, i
landscape "

Courtesy of RMA



Radio-Tagged Salmon Released in Georgiana Slough @ Ryde Hotel
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Release of Particles in Mokelumne River (2D Numerical Model)

Courtesy of Steve Andrews, RMA



Particle entrainment in Franks using 2D hydrodynamic model

A 3D model with particles with behavior (IBM) would likely have:
(1) Greater entrainment in Franks with No Barrier
(2) Less entrainment in Old River (OSJ) with Barrier In

No Barrier Barrier |n
38% Enter Franks 25% Enter Franks

Old River

Fish i
isherman’s 0sJ

Cut
—— "= oid
/ River

False R.



Franks Tract — Massive dispersive mixing




Franks Tract Nozzle — Flood/Ebb asymmetry adds to dispersion
Jet in potential flow out




Shear flow dispersion (weak) and tidal straining (strong in wide channels)

I Cross
Section Plan View
A
@ Slack Water
Differential tidal excursions Boundary Layer Shear 3 Max d?e
: \ | eXCLrsion
| y S = :
B | \\ \
|
4 Flood : & >

Shear at change in depth

N

Dye Release Location -

c
Slack Water

A

Differenftial tidal excursions k

r= F =

Shear at change in depth \* Boundary Layer Shear



Thanks for your attention!

Bring layers!
Go light on the coffee — minimal access to bathrooms

See ya tomorrow on the water!
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