

Aeronautics Research and Technology Roundtable Updated ARTR Scope and Path Forward

Steve Clarke, Deputy Associate Administrator Aeronautics Research Mission Directorate April 26, 2022 www.nasa.gov

ARTR Focus Areas

First Instantiation

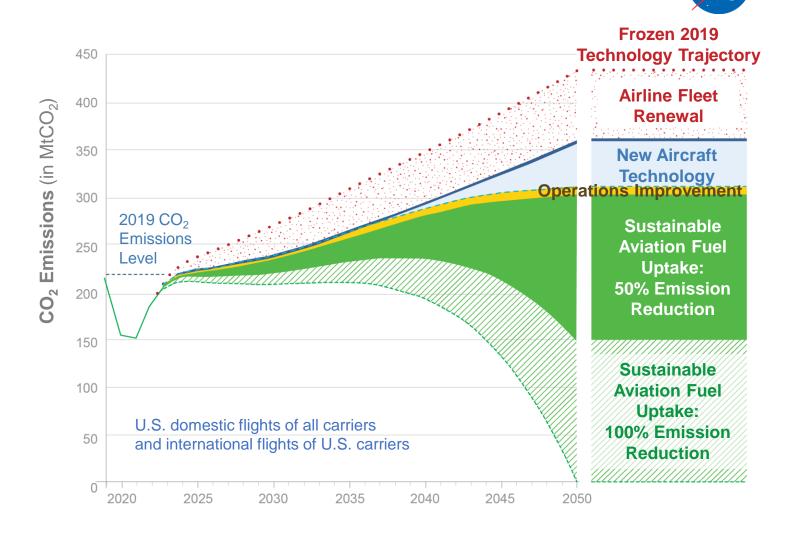
ARMD Strategic Implementation Plan

Second Instantiation

Advanced Air Mobility Mission

Proposed Third Instantiation

Sustainability


U.S. Aviation Climate Action Plan

Global Context for Sustainable Aviation

U.S. aviation goal is to achieve **net-zero greenhouse gas emissions by 2050.**

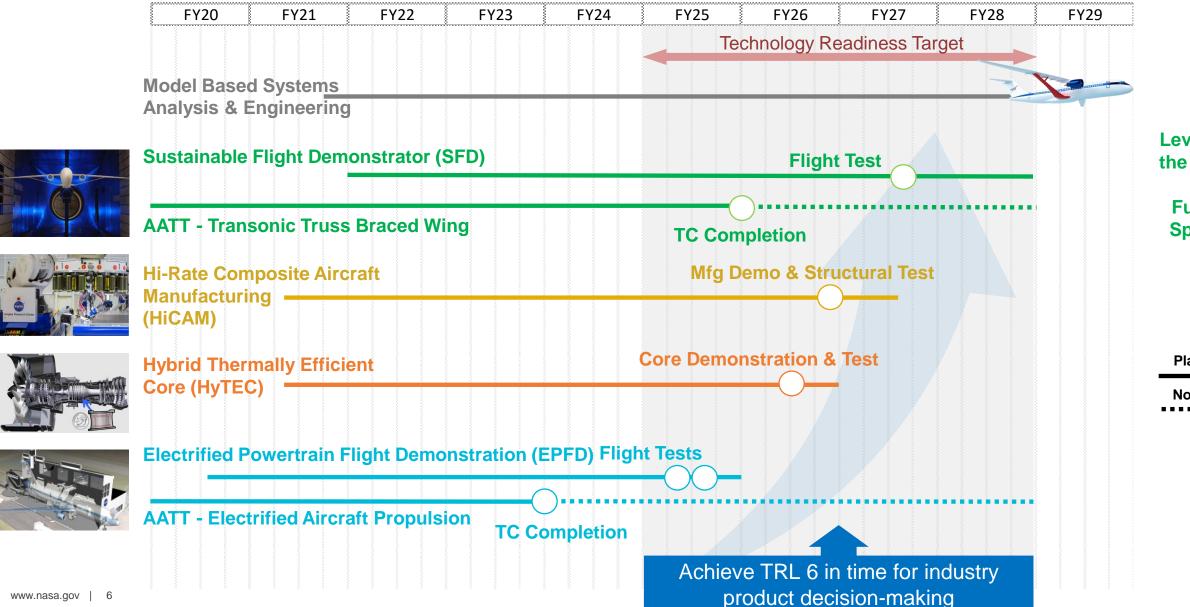
U.S. Aviation Climate Action Plan is aligned with

- U.S. economy-wide goal
- International Civil Aviation Organization
- Air Transport Action Group



Aviation Pillars for a Sustainable Future

Global Aviation Industry GOAL: net-zero carbon emissions by 2050


NASA = Primary Role

Achieve net-zero greenhouse emissions by 2050 through 25-30% energy efficiency improvements in next generation transports, 100% sustainable aviation fuel, and optimal trajectories.

Subsonic Transports: Integrated Technology Development

Leverage the Asset

Future Spirals

Planned

Notional

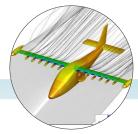
NASA's X-57 is Pathfinder for Electric Propulsion

First flight is summer 2022

Enable new configurations

Ground and flight validation of electric motors, battery, and instrumentation

LEAPTech experiment


Wind-tunnel validation

Motor nacelle design & testing

Structural testing

Computational simulations

Operational checkouts

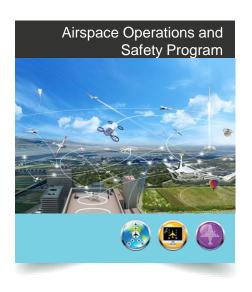
Share technical insights and lessons learned

Advanced Air Mobility Missions are Emerging

CARGO TRANSPORT

PUBLIC GOOD

CONSUMER/ **ENTERPRISE GOODS AND SERVICES**


PASSENGER TRANSPORT

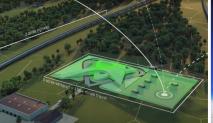
Safe, sustainable, affordable, and accessible aviation for transformational local and intraregional missions

Future Airspace and Safety: Sky for All



~ 2040: Planning to Achieve a Sky for All

Imagining tomorrow's aviation system today, leveraging FAA Info-centric NAS

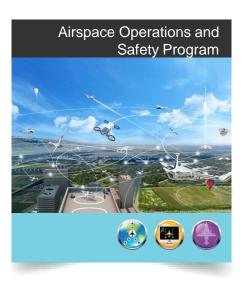


Operator Optimization

Ubiquitous and Resilient Operations

Sustainable Solutions

Seamless Skies

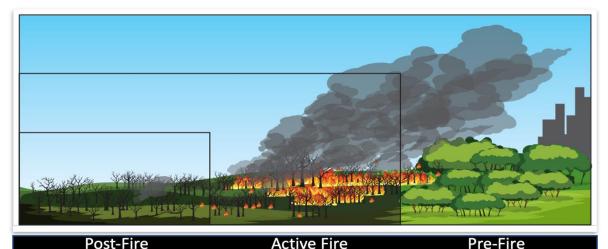

Learning-Based Systems and Communities

- NASA-led effort to gather inputs from the aerospace community and FAA
- Co-developed vision of a mid-21st century shared airspace that is agile, scalable, optimizable, increasingly diverse, and equitable
- Evolution from trajectory-based operations to collaborative and highly automated operations
- Sky for All results will inform ARMD research and development portfolio and collaboration with FAA

Advanced Concepts for Emergency Response Operations

NASA Opportunity to Address a National Crisis

NASA Research, Development, and Technology Transition Project
To advance our nation's ability to predict and manage wildfires and other national disasters
and mitigate their impacts



Objectives

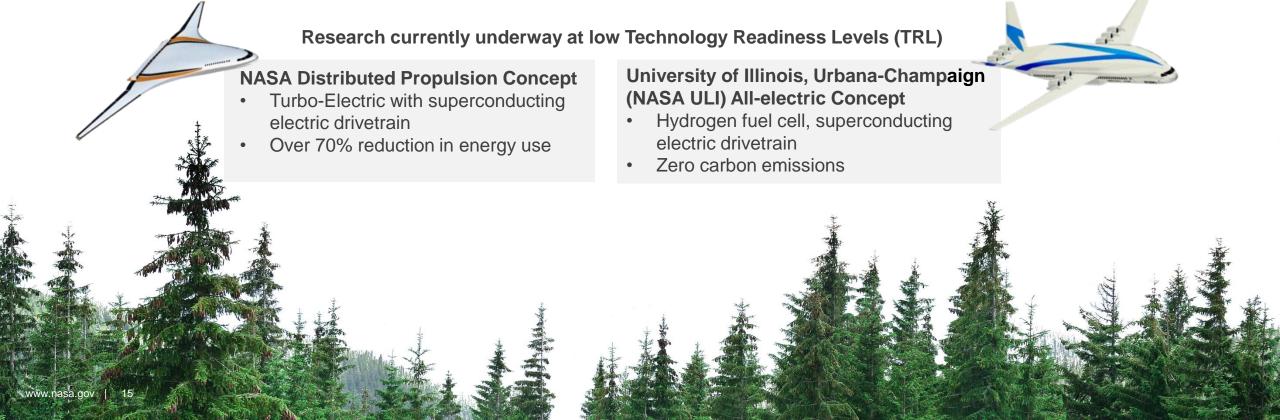
 Focusing on wildfire use case, develop and demonstrate evolving NASA technologies to reduce fire risk, improve monitoring and response to wildfires while mitigating impacts to enhance safety and prevent economic loss.

Approach

- In coordination with wildfire community, lead development of advanced airspace operations and sensing technologies, safety methods, communications and aircraft capabilities for persistent suppression operations
- Leverage and expand current R&D related to air traffic/uncrewed traffic operations, drones, and safety methods to coordinate remote sensing aircraft
- Fuse satellite/airborne observations with models to support fire research and management
- Establish Public-Private-Philanthropic Partnerships to test and implement prototype capabilities and support transition/adoption by stakeholders

The technology developed in this program will be applicable to other disasters and climate driven events, e.g., floods and hurricanes

Achieving Zero-Emissions Aviation


Net-Zero Aviation Emissions Innovation

Foster radical aviation technology advancement – new energy sources, aircraft architectures – necessary for large aircraft with extremely low or zero emissions

Low TRL concepts can be further conceptualized, researched, developed, ground and flight-tested and advanced for late 2030s / early 2040s

Recent University Leadership Initiative awards included teams working on net-zero emissions topics

Long-Term Transport Technology and Innovation

Hydrogen

100% ALTERNATIVE

Generational studies to inform future technology investments

2040 - 2050 2008-2019 2020-2029 2030 - 2039 Subsonic Fixed Wing — N+2 Studies, ERA for the 2020s Impact N+3 Advanced Concept Studies SFNP for 2030s Impact Concept Studies and Technology Development Needed for 2040s Impact **Opportunities to Define Future Aviation Systems and Concepts** Advanced Concept Studies for 2040+ EIS **Net-Zero Emissions Concepts** Promising Technologies and Architectures Support Aviation Community with

NASA-unique Contributions

Path Forward

Current

- The ARMD Portfolio is in alignment with Stakeholder needs and provides a compelling vision with positive impact.
- ARMD supports a robust Sustainable Flight National Partnership to enable highly efficient next-generation aircraft and ensure U.S. leadership in aviation
 - Demonstrate the first-ever high-power hybrid electric propulsion for large transport aircraft
 - Accelerate development of a full-scale sustainable flight demonstrator X-plane to validate integrated systems and their benefits
 - Advance small turbine cores that will increase engine thermal efficiency and reduce fuel burn
 - Improve the rate of composite manufacturing by 4 to 6 times faster than current production rates
 - Develop technologies needed to increase use of sustainable aviation fuels
 - Develop a robust model-based systems analysis and engineering framework at the aircraft system level
 - Develop the next evolution of air traffic management to safely increase operational efficiency which reduces fuel burn and emissions

Next

ARMD recommends the ARTR expand its scope to look at the larger sustainability landscape for opportunities
to enable a sustainable future.