General Atomics Electromagnetic Systems

Business Segments

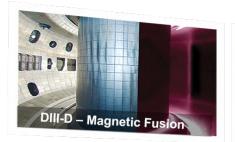
ASI

Leading designer and manufacturer of proven, reliable Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and related mission systems, including the Predator® RPA series and the Lynx® Multimode Radar.

EMS

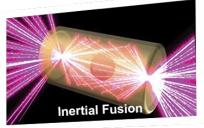
Develops technologies for the Dept. of Defense, the Dept. of Energy, and commercial customers.

GA is a world leader in the application of electromagnetic technologies to aircraft launch and recovery, projectile launch, pulse power systems, lasers and advanced sensors.


ENERGY

Develops sustainable and alternative energy solutions and materials.

Operates the DIII-D National Fusion Facility.


General Atomics Advanced Technologies

Energy, Space, Airborne UAS, and Marine Systems

General Atomics is Building on Past Experience to Design Safe and Unique Reactors for Today's Space Missions

General Atomics Builds on Past Experience to Develop Safe, Unique, Reactors for Tomorrow's Needs

1955-1965: SNAP-10A **UZrH** fuel

1955-1973: **PROJECT ROVER** 6 tons of UC fuel kernels

1970s - 1990s: SP-100, TFE In-Core Thermionic Reactor

2003-2005: **Project Prometheus Nuclear Electric Propulsion**

2019-present

Space

On **Earth**

1970

1980

1979-1989 Ft. St. Vrain

1990

2000

2010

2020

2020-present **Fast Modular** Reactor

Power for a distributed energy grid

Nuclear electric propulsion

> Fission surface power

1960

1997-2010 GT-Modular

STIGUR Meeting Specific Comments

 GA-EMS designs mission-specific technology solutions. One size may not necessarily fit all missions.

NASA Nuclear Thermal Propulsion (NTP):

- On contract for reactor and fuel design for mission to Mars needs
- Made and successfully tested fuel to survive hydrogen temperature conditions equivalent to high lsp needs (work also performed during the DRACO Phase 1 program for DARPA)

Fission Surface Power (FSP) and Nuclear Electric Propulsion (NEP):

- Near-term mission success on lunar surface necessitates high TRL solutions
- Detailed trade studies show that liquid metal cooled reactor with Stirling power converters would yield lowest reactor mass when high-assay low enriched uranium (HALEU) is used, especially for low power applications of less than ~100 kWe
- Reactor with Brayton power conversion designs are more suitable for higher power
- Low mass heat pipe reactor solutions are more suitable for highly enriched nuclear fuels and low power applications