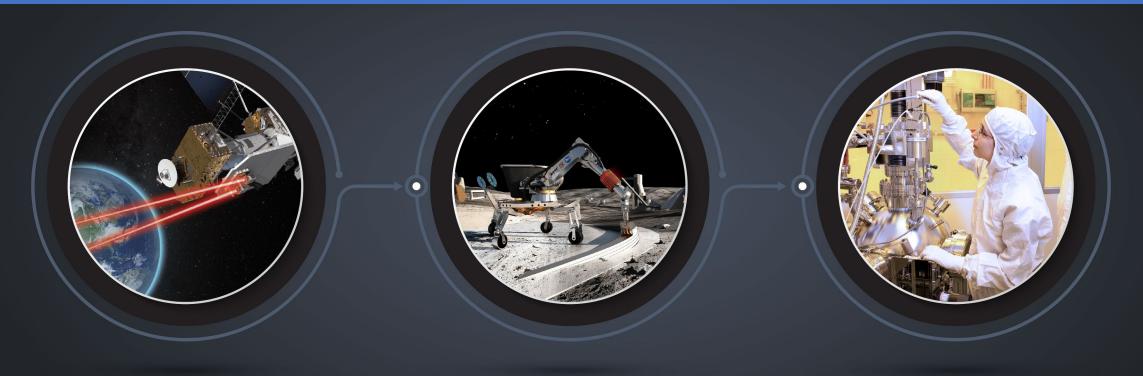


NASA Space Technology Update

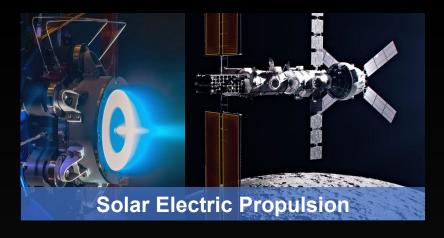

Dr. Prasun Desai

Deputy Associate Administrator, NASA Space Technology Mission Directorate

October 2024

NATIONAL TECH BASE FOR CIVIL SPACE

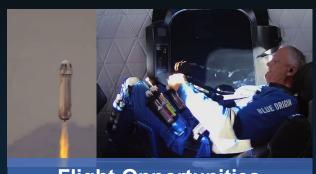
Space Tech leads the development, demonstration, and infusion of transformational space technologies that solve critical stakeholder needs


ADVANCE US space technology innovation and competitiveness in a global context

ENCOURAGE technologydriven economic growth withan emphasis on theexpanding space economy

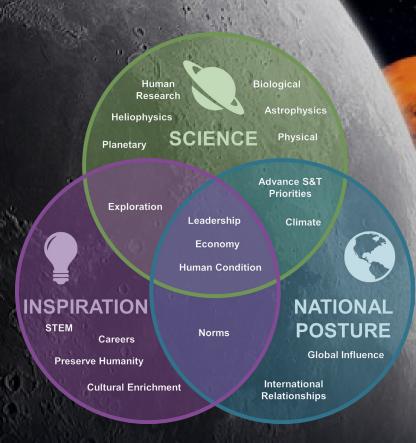
INSPIRE and develop a diverse and powerful US aerospace technology community

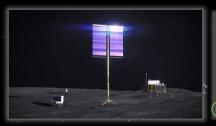
Recent Tech Highlights



Flight Opportunities

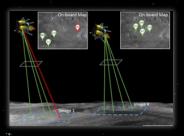
Moon-to-Mars Blueprint Objectives


Moon to Mars Blueprint Objectives



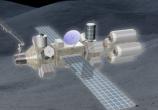
Enabling Key Moon-to-Mars Lunar Infrastructure Objectives

LI-1^L: Develop an incremental lunar power generation and distribution system that is evolvable to support continuous robotic/human operation and is capable of scaling to global power utilization and industrial power levels.


LI-2^L: Develop a lunar surface, orbital, and Moonto-Earth communications architecture capable of scaling to support long term science, exploration, and industrial needs.

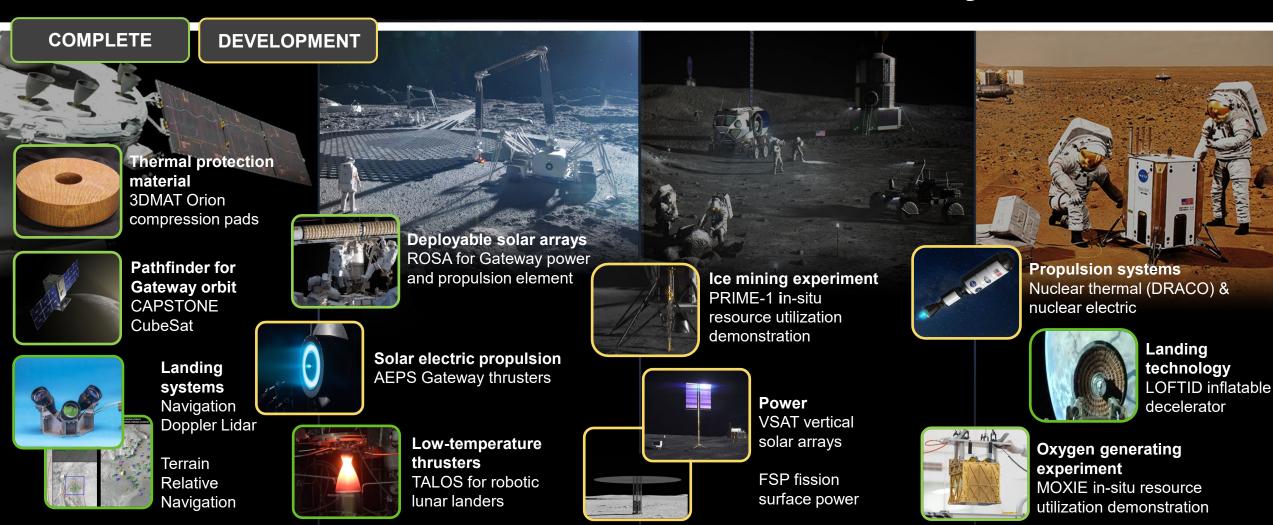
LI-3^L: Develop a lunar position, navigation and timing architecture capable of scaling to support long term science, exploration, and industrial needs.

Demonstrate : autonomous construction capabilities in support of continuous human lunar presence and a robust lunar economy.


LI-5^L: Demonstrate precision landing capabilities in support of continuous human lunar presence and a robust lunar economy.

LI-6^L: Demonstrate local, regional, and global surface transportation and mobility capabilities in support of continuous human lunar presence and a robust lunar economy.

Demonstrate industrial scale ISRU capabilities in support of continuous human lunar presence and a robust lunar economy.



LI-8^L: Demonstrate technologies supporting cislunar orbital/surface depots. manufacturing maximizing the use of in-situ resources, and support systems needed for continuous human/robotic presence.

LI-9^L: Develop environmental monitoring, situational awareness, and early warning capabilities to support a resilient, continuous human/robotic lunar presence.

STMD Contributions to Artemis & Beyond

HUMAN LUNAR RETURN FOUNDATIONAL EXPLORATION

SUSTAINED LUNAR EVOLUTION

HUMANS TO MARS

SPACE TECHNOLOGY PORTFOLIO

As currently organized:

EARLY STAGE INNOVATION AND PARTNERSHIPS

- Early Stage Innovation
 - Space Tech Research Grants
 - Center Innovation Fund
 - Early Career Initiative
 - Prizes, Challenges & Crowdsourcing
 - NASA Innovation Advanced Concepts
- Technology Transfer

SBIR/STTR PROGRAMS

- Small Business
 Innovation Research
- Small Business
 Technology Transfer

TECHNOLOGY MATURATION

- Game Changing Development
- Lunar Surface Innovation Initiative

TECHNOLOGY DEMONSTRATION

- Technology Demonstration Missions
- Small Spacecraft Technology
- Flight Opportunities

HIGH

MID
Technology Readiness Level

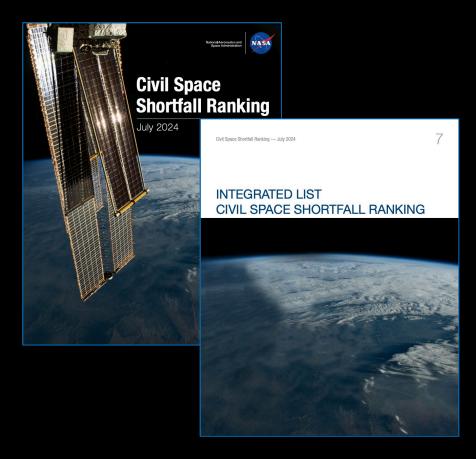
LOW

Tech Base Functional Domains

 Advanced Propulsion Flight Vehicle Systems (including Ascent Systems) Nuclear Propulsion Cryogenic Fluid Management
 Deceleration Systems Guidance & Nav Systems Entry Modeling & Instrumentation
 Surface Power Dust Mitigation & Environments In Situ Resource Utilization Surface Mobility & Transportation Surface Structures & Construction Surface Habitation Systems Logistics
 Observation Systems In-Space Sustainability Small Spacecraft & Distributed Systems
 Avionics & Sensors Advanced Materials, Structures & Manufacturing Robotics & Autonomy Advanced Power & Thermal
CATALYSTS • NIAC/CIF/ECI • PCC • SBIR/STTR • TP/ACO

STMD Restructuring Update

- Restructuring from a TRL-based structure to a capability-focused management approach
- Domains will be responsible for maturing space capabilities across the full technology readiness spectrum
- New structure will:
 - ✓ Better prioritize development efforts to address common stakeholder needs
 - ✓ Avoid programmatic scope expansion beyond assigned TRL range
 - ✓ More efficiently transition technologies along the maturation scale
 - ✓ Increase accountability for performance within a capability roadmap
- STMD will continue to manage cross-cutting programs for the agency and invest in disruptive, early-stage ideas
- FY2025 will be a transition year



STMD FY 2025 PBR Summary (\$M)	FY 2024 Op Plan	FY 2025 PBR		
	1,100.0	1,181.8		
SBIR and STTR	217.8	241.8		
Early Stage Innovation and Partnerships	116.9	140.1		
Agency Technology and Innovation	-	-		
Technology Transfer	21.0	23.1		
Early Stage Innovation	95.9	117.0		
Early Stage Innovation and Commerce	2.7	5.3		
Early Career Initiative (ECI) and Center Innovations Fund (CIF)	23.6	28.4		
Prizes, Challenges and Crowdsourcing	9.8	12.0		
NASA Innovative Advanced Concepts (NIAC)	7.2	9.6		
Space Technology Research Grants (STRG)	52.8	61.6		
Technology Maturation / Game Changing Development (GCD)		340.8		
Space Transportation	16.4	30.3		
Entry, Descent and Landing	35.4	19.7		
Sustainable Exploration	117.4	189.9		
Transformative Missions and Discoveries	36.3	37.7		
Industry & Commerce Innovative Opportunity, Space Tech Management and Integration	47.3	63.2		
Technology Demonstration	512.6	459.1		
Flight Opportunities and Small Spacecraft Technology	68.1	72.7		
Technology Demonstration Missions (TDM)	327.5	386.4		
On-Orbit Servicing and Manufacturing Demonstration-1 (OSAM-1)	206.9	11.0		
Solar Electric Propulsion (SEP)	8.5	13.0		
Cryogenic Fluid Management (CFM)	75.9	82.7		
Fission Surface Power	16.0	113.8		
Space Nuclear Propulsion (NTP and NEP)	117.0	110.0		
MOXIE, LOFTID, DSOC, OSAM-2, LCRD, TDM Selected ACO/TP, TDM Mgt & Integration	20.2	55.9		

Civil Space Shortfall Ranking

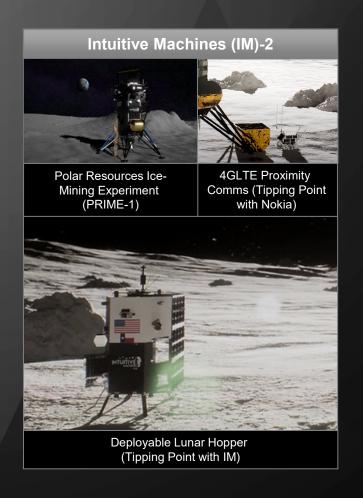
Shortfall: *Identified, problem-focused technology area requiring further developments to meet future exploration, science, and other mission needs*

- Documented 187 shortfalls within 20 capability areas
- Collected stakeholder feedback (1,231 responses) on the importance of each shortfall
- Processed the data to assemble an integrated, ranked civil space problem list
- Integrated list is one of several factors guiding STMD projects and investments
- The results will also inform the development of technology roadmaps
- Using lessons learned to refine the approach and schedule for future years

View the results: nasa.gov/civilspaceshortfalls

Integrated Top 30 Shortfalls Compared to Stakeholder Group Rank

Higher Ranking Shortfalls > Lower Ranking Shortfalls

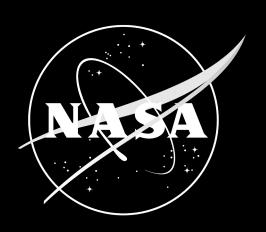

1 30 60 90 120 150 180

Not Ranked (NR)

				Stakeholder Group Rank								
	Average Score		Category	Academia	Small Industry	Large Industry	OGA	Other	NASA Centers	ESDMD	SMD	Other MDs
1	8.103	1618: Survive and operate through the lunar night	Thermal Management Systems	4	2	2	2	9	6	4	9	1
2	7.612	1596: High Power Energy Generation on Moon and Mars Surfaces	Power	13	1	1	40	20	4	21	NR	16
3	7.435	1554: High Performance Onboard Computing to Enable Increasingly Complex Operations	Avionics	80	28	21	27	13	3	34	1	56
4	7.383	1557: Position, Navigation, and Timing (PNT) for In-Orbit and Surface Applications	Communication and Navigation	9	11	15	29	67	10	28	NR	3
5	7.247	1545: Robotic Actuation, Subsystem Components, and System Architectures for Long-Duration and Extreme Environment Operation	Autonomous Systems and Robotics	34	27	28	63	10	40	13	9	49
6	7.208	1552: Extreme Environment Avionics	Avionics	176	49	6	38	23	54	6	9	62
7	7.196	1519: Environmental Monitoring for Habitation	Advanced Habitation Systems	20	101	72	75	61	49	17	19	13
8	7.168	709: Nuclear Electric Propulsion for Human Exploration	Propulsion: Nuclear	43	131	23	4	52	32	7	NR	7
9	7.114	1304: Robust, High-Progress-Rate, and Long-Distance Autonomous Surface Mobility	Autonomous Systems & Robotics	27	42	30	121	91	34	25	25	66
10	7.095	1520: Fire Safety for Habitation	Advanced Habitation Systems	23	24	78	12	12	12	29	55	14
11	7.052	1531: Autonomous Guidance and Navigation for Deep Space Missions	Autonomous Systems & Robotics	47	67	24	3	89	42	64	23	15
12	7.045	1591: Power Management Systems for Long Duration Lunar and Martian Missions	Power	40	12	10	52	24	68	35	NR	27
13	7.034	702: Nuclear Thermal Propulsion for Human Exploration	Propulsion: Nuclear	36	114	36	14	78	62	7	NR	11
14	7.031	1559: Deep Space Autonomous Navigation	Communication and Navigation	62	129	27	5	120	38	64	23	10
15	6.968	1527: Radiation Countermeasures (Crew and Habitat)	Advanced Habitation Systems	5	23	22	6	2	5	63	NR	6
16	6.948	1526: Radiation Monitoring and Modeling (Crew and Habitat)	Advanced Habitation Systems	6	53	41	81	1	13	27	38	35
17	6.946	879: In-space and On-surface, Long-duration Storage of Cryogenic Propellant	Cryogenic Fluid Management	21	37	3	95	22	1	59	NR	2
18	6.843	1548: Sensing for Autonomous Robotic Operations in Challenging Environmental Conditions	Autonomous Systems & Robotics	42	17	26	90	16	44	14	26	57
19	6.804	1558: High-Rate Communications Across The Lunar Surface	Communication and Navigation	25	73	29	77	162	20	5	NR	51
20	6.792	1626: Advanced Sensor Components: Imaging	Sensors and Instruments	18	75	12	45	160	22	NR	18	68
21	6.784	792: In-space and On-surface Transfer of Cryogenic Fluids	Cryogenic Fluid Management	17	29	4	51	26	2	62	NR	29
22	6.720	1569: High-Mass Mars Entry and Descent Systems	Entry Descent and Landing	152	156	48	117	5	33	16	NR	12
23	6.711	1525: Food and Nutrition for Mars and Sustained Lunar	Advanced Habitation Systems	8	32	116	41	45	30	11	NR	58
24	6.695	1571: Navigation Sensors for Precision Landing	Entry Descent and Landing	14	62	37	23	4	31	45	28	9
25	6.689	1573: Terrain Mapping Capabilities for Precision Landing and Hazard Avoidance	Entry Descent and Landing	30	31	9	12	8	11	45	28	53
26	6.662	1562: Advanced Algorithms and Computing for Precision Landing	Entry Descent and Landing	54	65	45	23	3	25	45	28	8
27	6.593	1597: Power for Non-Solar-Illuminated Small Systems	Power	85	26	5	39	125	47	93	12	20
28	6.592	1568: Entry Modeling and Simulation for EDL Missions	Entry Descent and Landing	101	115	76	60	15	50	45	5	45
29	6.584	1516: Water and Dormancy Management for Habitation	Advanced Habitation Systems	49	98	127	158	53	69	26	51	22
30	6.569	1524: Crew Medical Care for Mars and Sustained Lunar	Advanced Habitation Systems	12	64	94	1	11	21	58	NR	17
	0.000	.52 5.51. Modical data for mare and Subtained Edital	, tatanod ridetation cycloms	- 12	Ji	. .	•		_			

Near-term Lunar Technology Demos

NASA's Commercial Lunar Payload Services (CLPS) provides opportunities to mature key capabilities required for NASA and industry



Learn more about NASA lunar tech and science flying on CLPS missions:

https://science.nasa.gov/lunar-science/clps-deliveries/

www.nasa.gov/spacetech