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Our work on reliability and security

Began with a workshop In 2001 on resilience, just before the 9/11 attacks
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Figure 1: Cumulative Probability of Transmission- and Generation-Related Failures (Points are data as compiled by NERC for the period
1984-2000. The dashed line is an exponential (Weibull) distribution fit to the failures below 800 MW loss. The solid line is a power law fit to
the NERC data over 500 MW loss.)
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- Four years ago, we began a project with NERC
that uses a generator-by-generator record of
outages, partial outages, and failures to start

GADS: “Generating Avallability Data System”

e 8,500 generating units in all 8 NERC regions

 Covers 85% of installed capacity in the U.S. and Canada

e 4 year study period (2012-2015) for our initial work

o 2012- March 2018 for our later work on natural gas interruptions

In parallel, we worked with PJM,
analyzing the same sort of data covering 23 years
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We will discuss 4 things today

. Generation reserves are computed based on the assumption that generators fail
iIndependently of each other. NERC data show that, even over 4 years, many
generators fail simultaneously (correlated failures).

. The 23 years of PJM data is long enough to rigorously quantify the temperature
dependence of the forced outage rate for each type of generator.

. Using these data, we compute how much reserve generation is needed to meet
mandated reliability requirements in PJM, given that correlated failures occuir.

. Since natural gas generation has increased from 9% to 35% market share in the
past 30 years, we take a careful look at why gas plants fail at low temperatures,
and a preliminary look at what mitigation may be feasible.
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This sort of work has an 85 year history

e “Service Reliability Measured by Probabillities of Outage”, S.A. Smith, Jr.,

Electrical World, Vol. 103, March 10, 1934, pp. 371-374.

* “The use of theory of probability to determine spare capacity”, P.E. Benner,

General Electric Review, Vol. 37, No. 7, 1934, pp. 345-348.

History of the

Application of the Probability Methods (APM)
and
Reliability, Risk and Probability Methods (RRPA)

Subcommittees

Prepared by members of the RRPA Subcommittee

August 2015

Work on IEEE 762
began in 1968,

44 years before
mandatory NERC
GADS reporting!
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- What is new Is the availability of detailed
data on generator-by-generator failures

Unfortunately, the natural gas system has not evolved to the point where
such data are available for pipelines. But we've used GADS and EIA data

to find some quite interesting results for the gas system’s effect on power
generators.

Carnegie Mellon




-_ Introduction to the Generating Availability Data
‘SinnottMurphy System (GADS)

« Generator-level database recording anything affecting ability of a
generator to produce electricity

* We focus on “unscheduled” events, not out-of-the-money (RS) or
scheduled maintenance

« NERC GADS (2012-present):

» 8,500 generators (~85% of capacity in North America)

« 220 MW mandatory reporting threshold for conventional generators;
no wind or solar

Carnegie Mellon |



. Introduction to the Generating Availability Data
System (GADS)

« Generator-level database recording anything affecting ability of a
generator to produce electricity

* We focus on “unscheduled” events, not out-of-the-money (RS) or
scheduled maintenance

« NERC GADS (2012-present):

» 8,500 generators (~85% of capacity in North America)
« 220 MW mandatory reporting threshold for conventional generators;
no wind or solar

« PIJM GADS (1995-present):

» 1,850 generators (~95% of capacity serving PJM)

. AIII conventional generators participating in PJM markets; no wind or
solar




1. Examination of resource adequacy modeling assumptions

Research guestions:
1. Do correlated failures exist?
2. Is generator availability seasonal?

Data: NERC GADS (2012-2015)

Methods:
1. Block subsampling
2. Autocorrelation functions




Applied Energy 212 (2018) 1360-1376

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Resource adequacy risks to the bulk power system in North America M

Check for
| updates

Sinnott Murphy®, Jay Apt™™*, John Moura®, Fallaw Sowell”

# Department of Engineering & Public Policy, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
b Tepper School of Business, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
© North American Electric Reliability Corporation, 3353 Peachtree Road Suite 600, Atlanta, GA 30326, USA

HIGHLIGHTS

® Correlated failures of NERC electric power generators occurred in 2012-2015.
® Correlated failures happen in most NERC regions even when major storms are removed.
® Correlated outages should be considered in defining resource adequacy requirements.
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Use block subsampling to test the RAM assumptions
(in simple terms, randomly sample the time series for each
generator, to destroy any correlations among generators)

Block subsampling:

| 1. Subsample “blocks” of
observations from each
generator’s time series

Sum over generators to obtain
one system-level time series

—_

Repeat many times
A
N

Block subsampling allows us to
create a counterfactual
universe where the RAM
assumptions hold by design

One generator’s observed series

i

2016

'm

L

2012

2013

2014 2015 2016
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Use block subsampling to test the RAM assumptions
(in simple terms, randomly sample the time series for each
generator, to destroy any correlations)

RFC (2012-2015)

Block subsampling:

| 1. Subsample “blocks” of
observations from each
generator’s time series

Sum over generators to obtain
one system-level time series

—_

Repeat many times
A
N

Block subsampling allows us to creat
a counterfactual universe where the
iIndependent failure assumption holds
by design
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- Use block subsampling to test the RAM assumptions
(in simple terms, randomly sample the time series for each
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Summary so far

« Correlated generator failures exist in most NERC regions, even with just
four years of data
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. Modeling correlated generator failures and recoveries

Research guestions: Can we model the correlated
failures to improve prediction of system-level failure
dynamics?

Data: PJM GADS (1995-2018)

Methods:

1. Logistic regression

2. Monte Carlo
simulation

«LAaArnegie



Carnegie Mellon Electricity Industry Center Working Paper CEIC-18-02 www.cmit.edu/electricity

A time-dependent model of generator failures and
recoveries captures correlated events and
quantifies temperature dependence

Sinnott Murphy', Fallaw Sowell* and Jay Apt'*’

'Department of Engineering & Public Policy, Carnegie Mellon University, Pittsburgh,
PA, USA.

“Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA.

Revised and resubmitted after review at Applied Energy
(Working paper available on the CEIC website)
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If generator transition probabilities are
not constant, what affects them?

>
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Summary so far

« Correlated generator failures exist in most NERC regions, even with just
four years of data.

o 23 years of data in PJM shows many correlated failures are explained by
extreme temperatures.

* Incorporating temp-dependent correlated failures does a good job
predicting forced outages in PJM.
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3. Incorporating temperature dependence into resource adequacy

Luke Lavin

Research guestion:

1. Does temperature dependence represent resource
adequacy risk for PJM?

Data: Forced outage rates CC (16% of capacity)

calculated from PJM GADS

Methods: Modify open-source
resource adequacy model to
allow temperature-dependent
forced outage rates
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Overview o

" resource adequacy modeling

(RAM) in PJM

* RAM determines how much capacity is required to
meet the forecast peak load of a power system

e Ove
1.

2.

25

rview of the “supply” side of the equation in PJM:

Obtain five years of performance history for each generator
in the power system via GADS

Use to calculate temperature-invariant forced outage rate
for each generator (defines probability distribution)



26

Overview of resource adequacy modeling
(RAM) in PIM

* RAM determines how much capacity is required to
meet the forecast peak load of a power system

e Overview of the “supply” side of the equation in PIM:

1. Obtain five years of performance history for each generator
in the power system via GADS

2. Use to calculate temperature-invariant forced outage rate
for each generator (defines probability distribution)

3. Combine generator distributions to obtain system
distribution

Reminder — this approach assumes:
1. Generator failures independent
2. Constant generator availability
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Simple example
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two-state homogeneous Markov models
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Forced outage rate (FOR):

The fraction of the time the generator was
unavailable due to an unscheduled event
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System state Probability  Available
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Simple example

n
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Nameplate (MW)

Generators are treated as independent

two-state homogeneous Markov models

Up (V) Down (D)

oo

Gen 3

T
o |

28

Forced outage rate (FOR):
The fraction of the time the generator was
unavailable due to an unscheduled event

Generator FOR Nameplate
Gen 1 0.10 100

Gen 2 0.20 50

Gen 3 0.05 80

3 generators

Probability density
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The fraction of the time the generator was
unavailable due to an unscheduled event

Forced outage rate (FOR):
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The fraction of the time the generator was
unavailable due to an unscheduled event
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Effect of temperature-dependent forced
outage rates for PIM
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Effect of temperature-dependent forced

outage rates for PIM
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Introduction to the RECAP model

* A planning model built by Energy+Environmental
Economics (E3) in collaboration with CAISO

e Long-term; no unit commitment or economic dispatch

e Very similar to PJM’s tool: RECAP computes capacity
requirements for achieving a user-selected reliability
target

 We modify RECAP to allow g:fgg oo - 20
transition probabilities to = -loc 106 = e
depend on temperature

-5C 15C m 35C

Probability density
1e-04
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RECAP parameterization

Included Not included

Conventional generation Zonal disaggregation
Wind + solar generation Emergency imports
Scheduled outages

Summer ambient deratings

Load forecast

Reasonably well calibrated:

e PJM: 16.2% reserve margin needed to achieve the
reliability target for delivery year 2018/2019

e RECAP: 15.9% reserve margin needed
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Resource adequacy risk from temperature
dependence in PIM
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Summary of generator results

e Correlated generator failures exist in most NERC
regions, even with just four years of data
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Summary of generator results

e Correlated generator failures exist in most NERC
regions, even with just four years of data

e 23 years of data in PJM shows many correlated
failures are explained by extreme temperatures
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* Temperature dependence has substantial resource
adequacy modeling implications
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- Pipeline failure reporting isn’t nearly as good as

Gerad Freeman generator failure reporting

« NERC'’s 2013 Special Reliability Report Phase Il identified a lack of
“compiled statistical data on gas system outages” that would be like GADS.

 FERC: interstate pipelines; PHMSA: safety; State PUCs: intrastate

* No central reliability organization.

« FERC Form 588 (emergency transaction report) has essentially no data on
pipeline failures.

 PHMSA reporting threshold: death, hospitalization, $50,000 property
damage, gas loss of 23 million cubic feet, or “significant in the judgement of
the operator’. Many events, including Aliso Canyon, are missing.

 While Maine requires reports of gas interruptions to power plants of >30
minutes, other states’ reporting requirements are generally loose.

See: Gerad Freeman, Jay Apt, and Michael Dworkin. “The Natural Gas Grid Needs

. . =
Better Monitoring.” Issues in Science and Technology 34, no. 4 (Summer 2018). Cﬂl‘llﬁgle h"[ﬁ“ﬂrl | i




4. A closer look at gas — electric interdependence

NERC INTERCONNECTIONS

MRO

RFC

Fraction of U.S. nameplate capacity fueled primarily by natural gas (2017)

b b
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Data sources: EIA-860 2017; NERC
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- GADS and EIA data allow us to analyze electric-gas dependence

RFC

1. Primary: NERC Generating Availability Data
System (GADS)
Sample: 1/2012 — 3/2018 (6 years)
— 6,505 events at 328 natural gas plants
— Only unscheduled fuel starvation causes
(9130, 9131, 9134)

Colors represent
individual pipeline
systems

0.15

0.10

Secondary: PIJIM eGADS
Sample: 3/2002 — 4/2018 (16 years)
— 3,048 events at 133 natural gas plants

2. Generator characteristic data
— To group events by pipeline

0.05

3. Fuel receipt and contract status data
— To group events by contact type

Fraction of gas capacity starved of fuel

0.00

o _ L
4. Pipeline scheduling data | | | | | | |
— To examine high-demand periods 2012 2014 2016 2018
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Correlated, fuel starvation failures at gas plants knocked out generators
with both firm and non-firm fuel contracts

Black: all fuel-starved gas plants

Red: firm contracts, fuel-starved

Eastern Interconnection ERCOT Interconnection Western Interconnection
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In the Eastern Interconnection, correlated fuel shortages (GADS 9130, 9131,9134) didn’t take
down only multiple generators, they affected multiple plants all six years.
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Capacity served by pipeline [GW]

Fraction of capacity served lost
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to correlated fuel starvation
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More capacity was starved of fuel on some pipelines

Red box: pipelines serving more
than the national average of GW/pipeline

Orange bars: pipeline with greater than
national average fraction of connected
gas capacity out simultaneously

due to lack-of-fuel

than others.

Those pipelines were critical, supply corridor
pipelines for Chicago, Detroit, New England and the West.

Data sources: NERC-GADS; EIA-860 2017; EIA Interactive state maps shapefiles



- Pipeline failures did not explain the majority of fuel
shortage failures

* Pipeline and Hazardous Materials Safety Administration pipeline
Incidents explained only ~200 of the 6,200 fuel starvation failures
between 2012-2017.

 But, PHMSA reporting isn’'t adequate for these types of reliability
studies.*

e Transmission pipeline force majeure events explain only a maximum of
9% of unscheduled fuel shortage events.

*See: Gerad Freeman, Jay Apt, and Michael Dworkin. “The Natural Gas Grid Needs

- f -
Better Monitoring.” Issues in Science and Technology 34, no. 4 (Summer 2018). Cﬂl‘llﬁgle h‘lﬁ]lﬂl‘l |




Gas plants with non-firm fuel procurement strategies
are, as expected, over-represented In fuel starvation data

0.90
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Proportion of non-firm plants
o
o
o

o
-.\I
o

NERC

2012 2013 2014 2015 2016 2017 All Years

® All gas plants  ® Fuel-starved gas plants

Note: One-sample proportion test result significance:
** - a=0.05 * . a=0.01
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Capacity was available on pipelines
in PJM during many fuel starvation events

2. Case Study: longer time resolution

PJM database (3/2002 — 4/2018)

We take a close look at the utilization of
pipelines fueling the fuel-starved power
plants

We find that when ~40% of fuel
shortage events began, fueling pipelines
were operating well below their
demonstrated peaks.
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Could plants in RFC and MRO be “firmed up”?

Back to the NERC sample. ) O e o
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Could plants in RFC and MRO be “firmed up”?

« Back to the NERC sample. -

 We group plants by the nearest natural gas
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Could plants in RFC and MRO be “firmed up”?

Back to the NERC sample.

We group plants by the nearest natural gas
trading hub

Pipeline capacity was available in MRO and
RFC (blue) at the nearest major gas trading
hub when fuel starvation events occurred.
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Could plants in RFC and MRO be “firmed up”?

Back to the NERC sample.

We group plants by the nearest natural gas
trading hub

Pipeline capacity was available in MRO and
RFC (blue) at the nearest major gas trading
hub when fuel starvation events occurred.

Pipeline capacity was not available in the red
area.

Only sparse public data exist downstream of
city gates, so we cannot tell if power plants
could out-prioritize C&l customers, or if the gas
IS going to residents. The utilities have the

lllinois Natural Gas Deliveries by Nicor Gas Deliveries by Sector 2014
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Summary of findings on interdependence

e Correlated, fuel starvation failures at gas plants knocked out
generators with both firm and non-firm fuel contracts

 Critical supply corridor pipelines for major urban areas starved
larger fractions of their connected capacity than the national
average.

* Pipeline failures did not explain the majority of fuel shortage
failures, out-prioritization drove these failures.

o Data downstream of city gates are needed to tell if some
plants in RFC and MRO could be “firmed up”. Plants in
eastern New York and New England might use dual fuel.
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