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Carnegie Mellon Electricity Industry Center

• We are in our 19th year.
• Created jointly by the A.P. Sloan Foundation and EPRI after a 16-university 

competition.
• Close research partnerships with industry.
• We define ‘Electricity Industry’ broadly to include the companies that supply 

the equipment, the organizations that build and operate the grid, the agencies 
that shape and regulate the system, and the customers who use the power.

• Support: 30% from federal & state government, 30% from foundations, 
40% from industry.

• 33 faculty, 26 Ph.D. students.
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Our work on reliability and security

Began with a workshop in 2001 on resilience, just before the 9/11 attacks

Talukdar, S., J. Apt, M. Ilic, L. Lave, and 
M.G. Morgan, Cascading Failures: 
Survival vs. Prevention. The Electricity 
Journal, 2003. 16(9): 25-31.
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Four years ago, we began a project with NERC
that uses a generator-by-generator record of
outages, partial outages, and failures to start

GADS: “Generating Availability Data System”
• 8,500 generating units in all 8 NERC regions
• Covers 85% of installed capacity in the U.S. and Canada
• 4 year study period (2012-2015) for our initial work
• 2012- March 2018 for our later work on natural gas interruptions

In parallel, we worked with PJM, 
analyzing the same sort of data covering 23 years
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We will discuss 4 things today

1. Generation reserves are computed based on the assumption that generators fail 
independently of each other. NERC data show that, even over 4 years, many 
generators fail simultaneously (correlated failures). 

2. The 23 years of PJM data is long enough to rigorously quantify the temperature 
dependence of the forced outage rate for each type of generator.

3. Using these data, we compute how much reserve generation is needed to meet 
mandated reliability requirements in PJM, given that correlated failures occur.

4. Since natural gas generation has increased from 9% to 35% market share in the 
past 30 years, we take a careful look at why gas plants fail at low temperatures, 
and a preliminary look at what mitigation may be feasible.
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This sort of work has an 85 year history

• “Service Reliability Measured by Probabilities of Outage”, S.A. Smith, Jr., 
Electrical World, Vol. 103, March 10, 1934, pp. 371-374.

• “The use of theory of probability to determine spare capacity”, P.E. Benner, 
General Electric Review, Vol. 37, No. 7, 1934, pp. 345-348.

Work on IEEE 762 
began in 1968, 
44 years before 
mandatory NERC 
GADS reporting!
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What is new is the availability of detailed 
data on generator-by-generator failures

Unfortunately, the natural gas system has not evolved to the point where 
such data are available for pipelines. But we’ve used GADS and EIA data 
to find some quite interesting results for the gas system’s effect on power 
generators.
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Introduction to the Generating Availability Data 
System (GADS)

• Generator-level database recording anything affecting ability of a 
generator to produce electricity

• We focus on “unscheduled” events, not out-of-the-money (RS) or 
scheduled maintenance

• NERC GADS (2012-present):
• 8,500 generators (~85% of capacity in North America)
• ≥20 MW mandatory reporting threshold for conventional generators; 

no wind or solar
• PJM GADS (1995-present):

• 1,850 generators (~95% of capacity serving PJM) 
• All conventional generators participating in PJM markets; no wind or 

solar

Key value-add: developing a method to translate GADS 
events into historical hourly time series of unavailable 
capacity
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Image source: NERC

1. Examination of resource adequacy modeling assumptions

Research questions: 
1. Do correlated failures exist?
2. Is generator availability seasonal?

Data: NERC GADS (2012-2015)

Methods: 
1. Block subsampling
2. Autocorrelation functions
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Time series of unscheduled unavailable 
capacity for each region

Total
Outages
Derates
Start failures
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Use block subsampling to test the RAM assumptions
(in simple terms, randomly sample the time series for each 
generator, to destroy any correlations among generators)

Block subsampling:
1. Subsample “blocks” of 

observations from each 
generator’s time series

2. Sum over generators to obtain 
one system-level time series

R
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t m
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y 

tim
es

Block subsampling allows us to 
create a counterfactual 
universe where the RAM 
assumptions hold by design
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Use block subsampling to test the RAM assumptions
(in simple terms, randomly sample the time series for each 

generator, to destroy any correlations)

Block subsampling:
1. Subsample “blocks” of 

observations from each 
generator’s time series

2. Sum over generators to obtain 
one system-level time series
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Block subsampling allows us to create 
a counterfactual universe where the 
independent failure assumption holds 
by design

2012 2013 2014 2015 2016

2012 2013 2014 2015 2016

Empirical time series

Confidence intervals 
from 1,000 iterations
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Use block subsampling to test the RAM assumptions
(in simple terms, randomly sample the time series for each 

generator, to destroy any correlations)
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Repeat when excluding 2014 Polar Vortex 
and Hurricane Sandy
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Summary so far

• Correlated generator failures exist in most NERC regions, even with just 
four years of data
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Image source: PJM

2. Modeling correlated generator failures and recoveries

Research questions: Can we model the correlated 
failures to improve prediction of system-level failure 
dynamics? 

Data: PJM GADS (1995-2018)

Methods: 
1. Logistic regression
2. Monte Carlo 

simulation

19



Revised and resubmitted after review at Applied Energy
(Working paper available on the CEIC website)



If generator transition probabilities are 
not constant, what affects them?

Gaver et al. (1964): 
environmental conditions 
can elevate failure 
probabilities

January 7, 2014 (Polar 
Vortex): 22% of PJM’s 
total capacity was 
unavailable

PJM (2014): relationship 
between cold weather 
and outages
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Modeled relationship between
temperature and unavailable capacity

Unit type key:
CC: combined cycle gas
CT: simple cycle gas
DS: diesel

HD: hydroelectric
NU: nuclear
ST: steam turbine (coal)

Temp-dependent FORs

Temp-invariant FOR
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Summary so far

• Correlated generator failures exist in most NERC regions, even with just 
four years of data.

• 23 years of data in PJM shows many correlated failures are explained by 
extreme temperatures.

• Incorporating temp-dependent correlated failures does a good job 
predicting forced outages in PJM.
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3. Incorporating temperature dependence into resource adequacy

Research question: 
1. Does temperature dependence represent resource 

adequacy risk for PJM?

Data: Forced outage rates 
calculated from PJM GADS
Methods: Modify open-source 
resource adequacy model to 
allow temperature-dependent 
forced outage rates

Temp-invariant FOR

Temp-dependent FORs
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Overview of resource adequacy modeling 
(RAM) in PJM

• RAM determines how much capacity is required to 
meet the forecast peak load of a power system

• Overview of the “supply” side of the equation in PJM:
1. Obtain five years of performance history for each generator 

in the power system via GADS
2. Use to calculate temperature-invariant forced outage rate 

for each generator (defines probability distribution)
3. Combine generator distributions to obtain system 

distribution

25



Overview of resource adequacy modeling 
(RAM) in PJM

• RAM determines how much capacity is required to 
meet the forecast peak load of a power system

• Overview of the “supply” side of the equation in PJM:
1. Obtain five years of performance history for each generator 

in the power system via GADS
2. Use to calculate temperature-invariant forced outage rate 

for each generator (defines probability distribution)
3. Combine generator distributions to obtain system 

distribution
Reminder – this approach assumes:
1. Generator failures independent
2. Constant generator availability
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Simple example of current practice
Generator FOR Nameplate

Gen 1 0.10 100

Gen 2 0.20 50

Gen 3 0.05 80

System state 
(G1-G2-G3)

Probability 
of state

Available 
capacity

U-U-U .9*.8*.95 100+50+80

U-U-D .9*.8*.05 100+50+0

U-D-U .9*.2*.95 100+0+80

U-D-D .9*.2*.05 100+0+0

D-U-U .1*.8*.95 0+50+80

D-U-D .1*.8*.05 0+50+0

D-D-U .1*.2*.95 0+0+80

D-D-D .1*.2*.05 0+0+0

Gen 1

Gen 2
Gen 3

N
am

ep
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te
 (M

W
)

Generators are treated as independent
two-state homogeneous Markov models

Up (U) Down (D)

Gen 1

Gen 2

Gen 3

0.10

0.20

0.05

0.90

0.80

0.95

Forced outage rate (FOR): 
The fraction of the time the generator was 
unavailable due to an unscheduled event
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Effect of temperature-dependent forced 
outage rates for PJM

Available capacity using
temp-invariant FORs

31
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Effect of temperature-dependent forced 
outage rates for PJM

Load (GW)
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Introduction to the RECAP model
• A planning model built by Energy+Environmental

Economics (E3) in collaboration with CAISO
• Long-term; no unit commitment or economic dispatch

• Very similar to PJM’s tool: RECAP computes capacity 
requirements for achieving a user-selected reliability 
target

• We modify RECAP to allow
transition probabilities to 
depend on temperature
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RECAP parameterization
Included Not included

Conventional generation Zonal disaggregation

Wind + solar generation Emergency imports

Scheduled outages

Summer ambient deratings

Load forecast

Reasonably well calibrated:
• PJM: 16.2% reserve margin needed to achieve the 

reliability target for delivery year 2018/2019
• RECAP: 15.9% reserve margin needed
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Resource adequacy risk from temperature 
dependence in PJM Temperature dependent

Temperature invariant

Resource adequacy impact of 
temperature dependence in 
PJM (~11 GW, ~6% of total)

x PJM’s actual procurement 
in Delivery Year 2018/2019

LOLE = loss of load expectation, the expected 
number of loss-of-load events per year

(Lower LOLE is more reliable)
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Summary of generator results

• Correlated generator failures exist in most NERC 
regions, even with just four years of data
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• Correlated generator failures exist in most NERC 
regions, even with just four years of data

• 23 years of data in PJM shows many correlated 
failures are explained by extreme temperatures

• Temperature dependence has substantial resource 
adequacy modeling implications

Summary of generator results
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Pipeline failure reporting isn’t nearly as good as 
generator failure reporting

• NERC’s 2013 Special Reliability Report Phase II identified a lack of 
“compiled statistical data on gas system outages” that would be like GADS.

• FERC: interstate pipelines; PHMSA: safety; State PUCs: intrastate
• No central reliability organization.
• FERC Form 588 (emergency transaction report) has essentially no data on 

pipeline failures.
• PHMSA reporting threshold: death, hospitalization, $50,000 property 

damage, gas loss of ≥3 million cubic feet, or “significant in the judgement of 
the operator”. Many events, including Aliso Canyon, are missing.

• While Maine requires reports of gas interruptions to power plants of >30 
minutes, other states’ reporting requirements are generally loose. 

38 See: Gerad Freeman, Jay Apt, and Michael Dworkin. “The Natural Gas Grid Needs 
Better Monitoring.” Issues in Science and Technology 34, no. 4 (Summer 2018).

Gerad Freeman



4. A closer look at gas – electric interdependence

Data sources: EIA-860 2017; NERC
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Fraction of U.S. nameplate capacity fueled primarily by natural gas (2017)



GADS and EIA data allow us to analyze electric-gas dependence

1. Primary: NERC Generating Availability Data 
System (GADS)

Sample: 1/2012 – 3/2018 (6 years)
– 6,505 events at 328 natural gas plants 
– Only unscheduled fuel starvation causes 

(9130, 9131, 9134)

Secondary: PJM eGADS
Sample: 3/2002 – 4/2018 (16 years)
– 3,048 events at 133 natural gas plants

2. Generator characteristic data
– To group events by pipeline

3. Fuel receipt and contract status data
– To group events by contact type

4. Pipeline scheduling data
– To examine high-demand periods

40
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Correlated, fuel starvation failures at gas plants knocked out generators 
with both firm and non-firm fuel contracts

In the Eastern Interconnection, correlated fuel shortages (GADS 9130, 9131,9134) didn’t take 
down only multiple generators, they affected multiple plants all six years.41

Black: all fuel-starved gas plants

Red: firm contracts, fuel-starved
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Red box: pipelines serving more 
than the national average of GW/pipeline

More capacity was starved of fuel on some pipelines 
than others.
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Red box: pipelines serving more 
than the national average of GW/pipeline

More capacity was starved of fuel on some pipelines 
than others.

Orange bars: pipeline with greater than 
national average fraction of connected 
gas capacity out simultaneously 
due to lack-of-fuel

Data sources: NERC-GADS; EIA-860 2017; EIA Interactive state maps shapefiles

Those pipelines were critical, supply corridor
pipelines for Chicago, Detroit, New England and the West.



Pipeline failures did not explain the majority of fuel 
shortage failures

• Pipeline and Hazardous Materials Safety Administration pipeline 
incidents explained only ~200 of the 6,200 fuel starvation failures 
between 2012-2017.

• But, PHMSA reporting isn’t adequate for these types of reliability 
studies.*

• Transmission pipeline force majeure events explain only a maximum of 
9% of unscheduled fuel shortage events.

*See: Gerad Freeman, Jay Apt, and Michael Dworkin. “The Natural Gas Grid Needs 
Better Monitoring.” Issues in Science and Technology 34, no. 4 (Summer 2018).44
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Gas plants with non-firm fuel procurement strategies
are, as expected, over-represented in fuel starvation data

Note: One-sample proportion test result significance:
** : α = 0.05       *** : α = 0.01

2012   2013   2014   2015   2016   2017   All Years
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Capacity was available on pipelines
in PJM during many fuel starvation events

2. Case Study: longer time resolution 
PJM database (3/2002 – 4/2018)

• We take a close look at the utilization of 
pipelines fueling the fuel-starved power 
plants

• We find that when ~40% of fuel 
shortage events began, fueling pipelines 
were operating well below their 
demonstrated peaks.
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Could plants in RFC and MRO be “firmed up”?

• Back to the NERC sample.
• We group plants by the nearest natural gas 

trading hub
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Could plants in RFC and MRO be “firmed up”?

• Back to the NERC sample.
• We group plants by the nearest natural gas 

trading hub
• Pipeline capacity was available in MRO and 

RFC (blue) at the nearest major gas trading 
hub when fuel starvation events occurred.
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Could plants in RFC and MRO be “firmed up”?

• Back to the NERC sample.
• We group plants by the nearest natural gas 

trading hub
• Pipeline capacity was available in MRO and 

RFC (blue) at the nearest major gas trading 
hub when fuel starvation events occurred.

• Pipeline capacity was not available in the red 
area.

• Only sparse public data exist downstream of 
city gates, so we cannot tell if power plants 
could out-prioritize C&I customers, or if the gas 
is going to residents. The utilities have the 
data. 
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Summary of findings on interdependence

• Correlated, fuel starvation failures at gas plants knocked out 
generators with both firm and non-firm fuel contracts

• Critical supply corridor pipelines for major urban areas starved 
larger fractions of their connected capacity than the national 
average.

• Pipeline failures did not explain the majority of fuel shortage 
failures, out-prioritization drove these failures.

• Data downstream of city gates are needed to tell if some 
plants in RFC and MRO could be “firmed up”. Plants in 
eastern New York and New England might use dual fuel.
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Contacts for questions
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• Luke Lavin   LLavin@andrew.cmu.edu
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