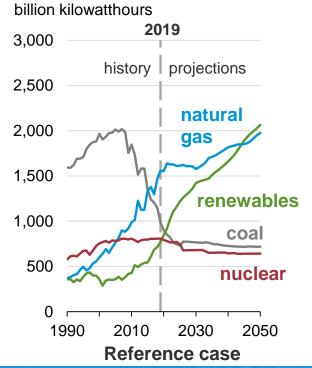
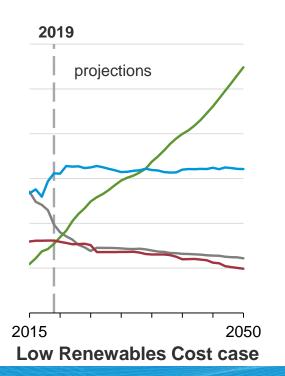
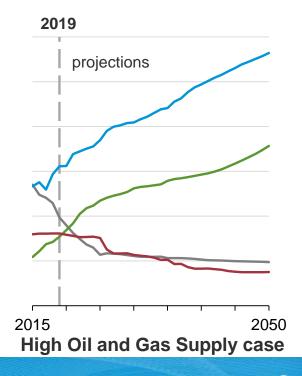
Modeling the future U.S. electric power system

For

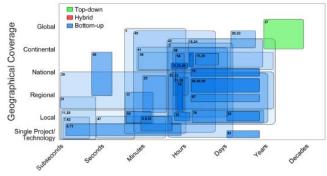

The National Academies Committee on the Future of Electric Power February 3, 2020 / Irvine, CA


By


David Daniels, Chief Energy Modeler

The future power system will be different from today's

AEO2020 electricity generation from selected fuels



Which model should we use to model it?

- Models don't replicate decisions in the real world, they simulate their effects
- Tradeoffs, breadth vs. detail in:
 - Space/Regionality
 - Time/Horizon
 - Sector
 - Fuel/Technology

- Horses for courses there is no "one best way" model
- Check policy prescriptions for robustness
 - Stability of policy impact outcome across variations of inputs, different model structures
 - Stability across models with different scope/granularity of sector/space/time

OK, well then, how can we use models to help us get there?

- 1. Models can identify the art of the (im)possible
 - System configurations that are plausible/implausible
 - Potential outcomes of system perturbations (e.g., changes to laws and/or regulations)
 - But, beware of "zero" assumptions (e.g., what is the cost of NIMBY?)
- 2. Models can distinguish between cost and value
 - The shadow price on a constraint in an optimization model is a proxy for value
 - So, spinning reserves have no intrinsic value...but frequency control can be valuable
 - One person's cost of integration is another's arbitrage opportunity

tl;dr version: Design markets to compensate for value, not reimburse for cost