Carnegie Mellon University Electrical & Computer Engineering

SUGAR - Examples and Applications

JANUARY 15TH, 2020

Amritanshu Pandey

Overview

Demonstration of what is possible with SUGAR framework:

- Unify steady-state simulation of T&D networks
- Achieve robust convergence to physical solution for power flow and three-phase power flow problems
- Localize and quantify network power deficiencies
- Solve billion+ size optimization problems

Power Flow for Extreme Events

- SUGAR's robust convergence scales to any system size or complexity
- Ex.: Extreme contingency analysis on the Eastern Interconnection
 - Converges from any set of initial conditions in SUGAR

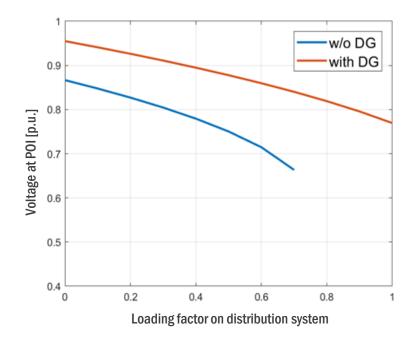
Extreme Contingency Operation

Case	Contingency Type	No. of Buses	Standard Commercial Tool	SUGAR
			From initial solution or arbitrary initial conditions	
1	N-2	75456	X	✓
2	N-2	78021	X	✓
3	N-3	80293	X	✓
4	N-3	81238	X	✓

Robust Three-Phase Power Flow

Robust convergence is extended to three-phase networks as well

Cases	#Nodes	SUGAR	Standard Tool
R1-12.47-1	2455	✓	✓
R3-12.47-3	7096	✓	✓
Network Model 1	1420	✓	✓
Case145*	176	✓	X
Case9241pegase*	12528	✓	X

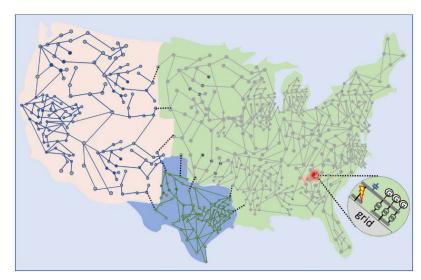

[✓] convergedX diverged

- Standard three-phase tools do not always converge
 - Especially true for networks with significant generation
 - Circuit simulation methods enable convergence for hard to solve three-phase test cases

^{*} Transmission networks were extended to three-phase models

Combined Transmission and Distribution Analysis

- Design and evaluation of combined T&D models increasingly critical due to growing generation in the distribution grid
 - Study the impact of distribution on transmission and vice-versa

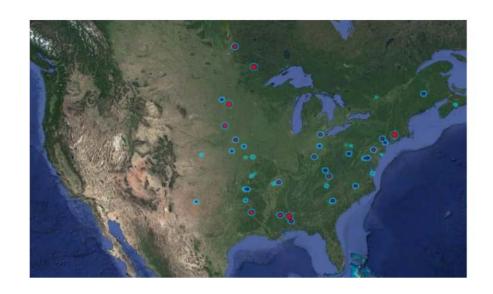


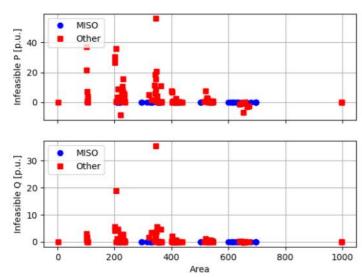
Ex.: 80k+ node Eastern Interconnection with an 8k+ node three-phase distribution network

Evaluate impact of distributed generation (DG) on transmission voltages

Optimal Siting of Grid Resources

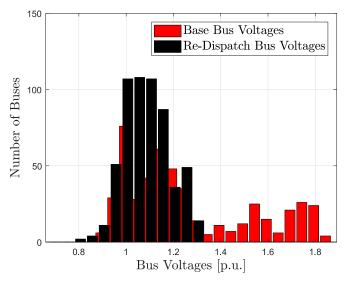
- Ex.: An N-1 contingency on a Synthetic USA transmission network^[1]
 - SUGAR localizes and quantifies the area with power deficiency (commercial tools do not converge)
 - Corrective action with capacitor bank makes the case feasible
- To optimally site equipment, develop optimization framework to locate resources while solving NERC mandated contingencies




Localized area of infeasibility within the Synthetic USA network

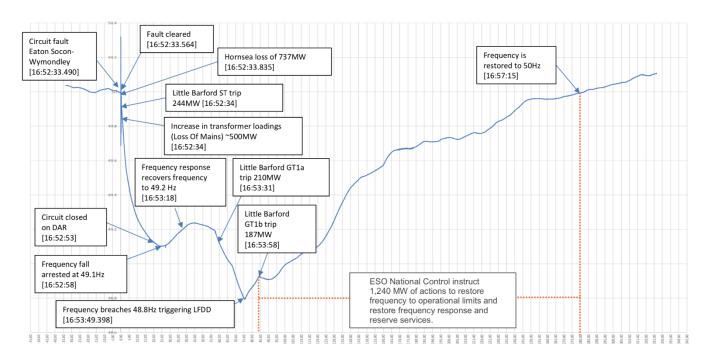
Carnegie Mellon University

ISO Study - High Renewable Penetration


- Ex.: High renewable penetration policy study on U.S. Eastern Interconnect
 - Initial case created by replacing conventional generation with renewables, scaling loads
 - Power flow solution indicates and quantifies infeasible power
 - Use SUGAR to re-dispatch resources to get a feasible working case

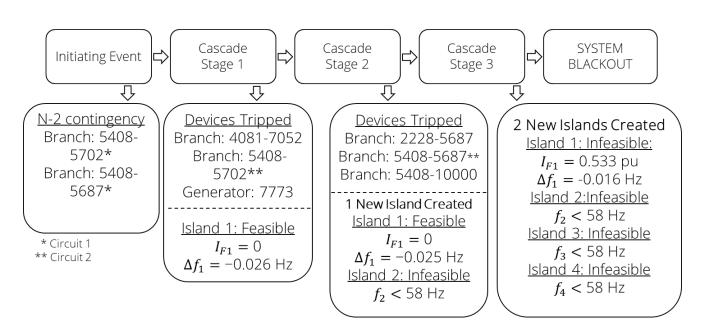
Reliability Study for Nigerian Grid

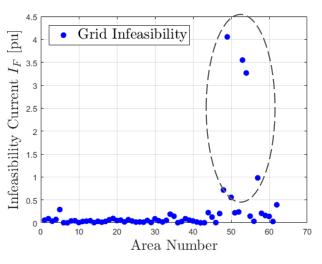
- Ex:. An un-dispatchable network received from a Nigerian utility
 - The network had extreme voltages upon convergence
 - Can soft technological improvements improve the grid voltages?
- Optimization framework improves network reliability¹ without capital investment
 - Recommended generator voltage set-points improved voltage profile
- Extend framework to develop actionable recommendations
 - Evaluate decision against critical contingencies, loading scenarios and utility decision variables



Bus voltages for a Nigerian grid planning case

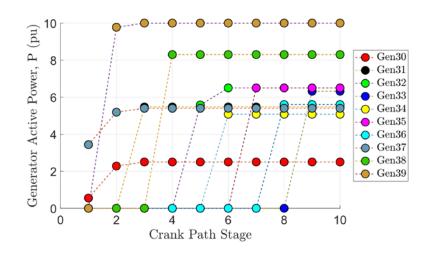
Carnegie Mellon University
Electrical & Computer Engineering


Modeling Frequency in Power Flow


- Commercial power flow tools generally do not capture frequency in steady-state
 - Useful for studying events such as controlled blackout in UK¹

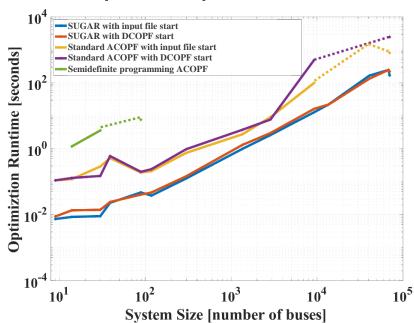
Simulating Cascading Outage

- Simulating cascading outages can avoid or mitigate such events
 - Differentiate system blackout from simulation divergence
 - Model frequency behavior to better mimic reality
- Applied N-2 contingency event to a stable 8k+ bus network
 - Cascading event led to system blackout



Carnegie Mellon University
Electrical & Computer Engineering

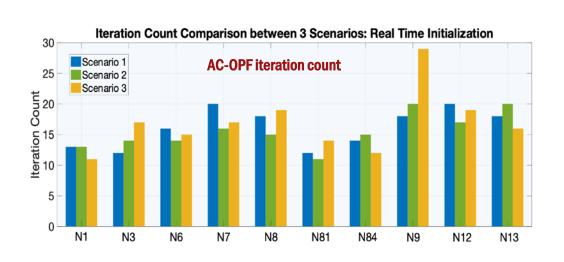
Grid Restoration with Compromised SCADA

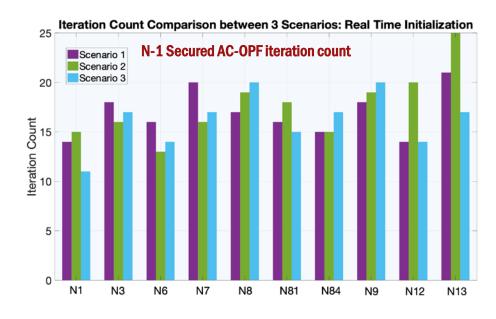

- Robust grid restoration under comprised SCADA (e.g. during cyber-attacks) an unsolved problem
 - Build and maintain local models; update with local measurements in real-time
- Optimize for restoration sequence in real-time
 - Prevent tripping of protective devices; include frequency-based schemes

Robust AC-OPF Analysis

- SUGAR robustly solves AC-OPF circuit to find an optimal solution¹
- Circuit framework for optimization enables efficient parallelism
 - Critical for N-x Security Constrained AC Optimal Power Flow (SCOPF) problem

Runtime comparison for optimized networks


Test Case	SUGAR	MATPOWER with 'MIPS/FMINCON'	
	Cost [\$/hr]	Cost [\$/hr]	
Case 1354	74,064.30	74,064.30	
Case 2869	133,993.48	133,993.48	
Case 9241	315,902.49	315,903.36	
Case 13659	386,106.58		
Case 40605	15,395,681.29		
Case 68251	27,551,688.77		


Carnegie Mellon University

N-1 Secured AC Optimal Power Flow Results*

- Iteration count bounded by network complexity not problem size
- With efficient distributed matrix solver and circuit heuristics, SUGAR is scalable to realistic SC-OPF problems

ARPA-E GO Competition Test Cases

Carnegie Mellon University
Electrical & Computer Engineering

SUGAR – ARPA-E Grid Optimization Challenge

- SUGAR is a leading contender in ARPA-E Grid Optimization Challenge
 - Largest problem size with hundreds of millions of variables
 - Competition based on synthetic networks, but the framework developed for real grids
- Extending the approach to an industry acceptable solution is a key goal

TRIAL EVENT 3 - DIVISION 1

updated 10/1/2019

Team Name	Team Leader	Leader's Organization	Team Members	Score
GMI-GO	Prof. Xu Sun	Georgia Institute of Technology	Santanu Dey Amin Gholami Xu (Andy) Sun Kaizhao Sun Shixuan Zhang	1,595,939.67
Pearl Street Technologies	Dr. Hui Zheng	Pearl Street Technologies	David Bromberg Marko Jereminov Amritanshu Pandey Larry Pileggi Hui Zheng	1,660,477.42
BAT	Mr. Andrew George Telyatnik	Individual	Andrew Telyatnik	2,232,640.14

ARPA-E GO Competition

Carnegie Mellon UniversityElectrical & Computer Engineering

Robust analysis of grid of tomorrow requires:

- Generic optimization framework that is robust and scalable, capable of running on distributed cores (servers or cloud)
- Distributed analysis of networks while utilizing localized measurement data including those from internet of things (IOTs)
- Newer more complex models to map behavior of new-age power electronicsbased grid devices and control

Contributors to Presentation

Larry Pileggi

Marko Jereminov

Aayushya Agrawal

Shimiao Li