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Ideal Power Flow “Simulation”

• Given a network (grid) with expected loads and some or all 
planned generation sources, power flow should always include:
– Modeling of the  generation that changes se t-point to balance  power
– Changes in frequency as a function of power balance
– Control systems that respond to power requirements and flow
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 Voltage sensitivity
 Freq. sensitivity
 Load shedding 
 Smart control
 Demand response

 AVR
 Gov. response
 AGC
 Smart control
 Reserves
 OPF/UC

Increasing Modeling Complexity



Next Generation Models and Analyses

• Abstractions used in commercial steady-state  analysis tools do 
not fully capture  grid behaviors
– E.g., insufficient for modeling cascading failures

• Our approach is based on developing two capabilities for a more  
robust and comprehensive power flow:
1. Physics-based modeling and simulation
2. Integrated optimization when the most complicated modeling 

abstractions are incompatible with simulation

3



SUGAR – An Equivalent Circuit Approach

• Circuit-theore tic framework for modeling, analysis, and optimization

• No need to separate  T&D, or three-phase  from positive  sequence
– Combined T&D handled naturally

• Mathematically corresponds to current-injection method
– Circuit-formalism preserves physical intuition and enables robustness
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SPICE and SUGAR
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Simulation Program with 
Integrated Circuit Emphasis

Simulation with Unified Grid 
Analyses and Renewables
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Robust Convergence
• Existing power flow tools re ly heavily on ‘expert’ users

• Physical circuit framework can be used to guarantee  convergence:
– Limiting methods constrain the  system variables in physical space
– Homotopy methods help where  limiting is insufficient

13k+ PEGASE Case with Limiting

10 ‘Good’ Initial Conditions

1. “Virtually short” the 
system initially to 
produce a trivial 
problem

2. Gradually reduce the 
added admittance 
until original problem 
is solved

Tx-Stepping Homotopy Method
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How Much Can We Model Directly?

• Robust simulation engine  facilitates more  complex models
– Control actions that are  abrupt switching 

changes can now be  modeled

• Existing approaches model such control 
actions as discontinuous, and can suffer 
from divergence  or convergence to 
non-physical solutions
– E.g. PV/PQ generator switching

• Future  models like ly to be  more  complex
– Circuit formalism generalizes mapping of I-V 

behavior
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Analytical vs. Piecewise
Model for Generator



Modeling Frequency in Power Flow

• Commercial power flow tools do not capture  frequency controls
– Needed for understanding events such as partial blackout in UK [1]
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[1] National Grid ESO, “Interim Report into the Low Frequency Demand Disconnection 
(LFDD) following Generator Trips and Frequency Excursion on 9 Aug 2019,” August 16,2019



Modeling Frequency within SUGAR

• Generator real power (P) varies with frequency (f) 
– Model primary and secondary control implicitly while  respecting limits

• Other models like  under-frequency load shedding 
(UFLS) equally critical

– Critical for simulating events like  
2019 UK grid-controlled blackout
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Implicit modeling of ΔP change due to Δf



Simulation or Optimization?

• Example: Cascading outage  analysis requires:
– Models that capture  voltage  and frequency dependence
– A robust engine  that can simulate  N-k contingency 
– Modeling of protective  re laying and associated control
– Distinguishing between stressed and collapsed state
– Other generator and load control strategies
– Optimizations that represent decision making
– …
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Physics-based
models

Optimizations



Hard-to-solve  vs. Infeasible  Networks

• Existing solvers cannot differentiate  hard-to-solve networks from power 
deficient networks

• Ex.: Four difficult cases from an ISO
– Must be  able  to distinguish collapsed from hard-to-solve ne tworks
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1 Ran with default settings
2 Infeasible solution found

Case #Nodes

St andard 
Com m ercial Tool1 SUGAR1

From  
Input  
Fi le

From  
Flat  

St ar t

From  
Input  
Fi le

From  
Flat  

St ar t
Hard  to  Solve  Ne twork 1 5944 × × ✔ ✔
Hard  to  Solve  Ne twork 2 7023 ✔ × ✔ ✔

N-1-1 Contingency 1 7029 × × ✔ ✔
N-1-1 Contingency 2 7028 × × ✔2 ✔2



Built-In Optimization

12

Optimization

Objective 𝓕𝓕𝒐𝒐𝒐𝒐𝒐𝒐
+ Constraints 

 Minimize Infeasibilities
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 …
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SUGAR for Infeasible Grid Networks

• Place  slack sources (    ) at all (or se lected) buses
– Minimize  the  injected power while  satisfying network constraints

• Insufficient models to do this as a physics-based simulation
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Feasible system
Source values are zero, power flow 

solution unchanged

Infeasible system
Nonzero injected power at buses that 

cause infeasibility



Incorporating Measurement Data

• Presently done separate ly as State  Estimation (SE)

• SE is a mathematical abstraction that has roots in Estimation Theory
– Does not necessarily capture  comple te  ne twork topology
– Solutions dependent on accuracy of ne twork models

• Can be  naturally incorporated into equivalent circuit framework
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Circuit-Theore tic SE

• Circuit Substitution Theorem: 
Replace  existing models with
measurement models
– Incorporate  both RTU and PMU models

• Network topology becomes represented
by linear models – greatly simplifying SE

• Must be  solved by optimization though, 
since  measurement errors can otherwise
violate  conservation of charge/energy
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Grid



More Optimization – Optimal Power Flow
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Formulate as
circuit eqns

Optimization
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+ Constraints 
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Security Constrained AC-OPF

• Robust SC-OPF can result in 5-10% electricity cost reduction in the  
U.S.

• Non-convex optimization problem with more  than a billion variables

• Equivalent circuit approach can map SC-OPF problem into an 
aggregated circuit

• Circuit heuristics with distributed computing robustly solves the  
problem
– SUGAR is one  of the  top performers in ARPA-E Grid Optimization Competition –

and it includes all physics-based models
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Solving Billion-Size  SC-OPF Problems
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Minimize cost of generation
- Satisfy power flow equations and operational limits

- Ensure feasibility across K contingencies

N-bus Base  OPF Split-Circuit

…+Contingency Split-Circuit # 1 Contingency Split-Circuit # k

…
+
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Nonzero matrix pattern of Security Constrained AC 
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Conclusions

• Robust: SUGAR can guarantee  convergence  for feasible  and 
infeasible  ne tworks

• Advanced Models: Accommodates highly non-linear continuous 
analytical models

• Accurate  State  Estimation: Circuit-theore tic SE is linear ye t more  
accurate

• Scalable  and Distributed: Inherently paralle lizable  for large  scale  
grid problems such as expansion planning
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