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/deal/ Power How “Simulation”

* Given a network (grid) with expected loads and some or all
planned generation sources, power flow shouldalways include:
— Modeling of the generation that changes set-point to balance power

— Changes in frequencyas a function of power balance
— Controlsystems that respond to power requirements and flow

= AR : = Voltage sensitivity
= Gov. response e * Freq. sensitivity

= AGC = Load shedding

= Smart control = Smart control

= Reserves = Demand response
= OPF/UC

Increasing Modeling Complexity
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Next Generation Models and Analyses

* Abstractions used in commercial steady-state analysis tools do
not fully capture grid behaviors

— E.g., Insufficient for modeling cascading failures

* Qur approach is based on developing two capabilities for a more
robust and comprehensivepower flow:

1. Physics-based modeling and simulation

2. Integrated optimization when the most complicated modeling
abstractions are incompatible with simulation

Carnegie Mellon University
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SUGAR - An Equivalent Circult Approach @

* Circuilt-theoretic framework for modeling, analysis, and optimization

l_<'V_V.\'>7 ) ﬁ_l Real
P\%s I I P(iBui - HP $ @ g é <J> ¢<D $ % Circuit
I I
Slaéls ¢ $ @ <§\N\I¢ é) @ @ ? ﬁ? ?:ri%it

Split equivalent circuit with |-V variables linearized
for (k+1)" Newton-Raphson iteration

* No need to separate T&D, or three-phase from positive sequence
— Combined T&D handled naturally

* Mathematically corresponds to current-injection method
— Circuit-formalism preserves physical intuition and enables robustness
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SPICE and SUGAR

Simulation Program with
Integrated Circuit Emphasis

Simulation with Unified Grid
Analyses and Renewables
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Robust Convergence

* Existing power flow tools rely heavily on expert’users
* Physical circuit framework can be used to guarantee convergence:

— Limiting methods constrain the system variables in physical space
— Homotopy methods help where limiting is insufficient

10 ‘Good'’ Initial Conditions Tx-Stepping Homotopy Method
14 \ \
[l High Voltage Sol.
12 L Il Angular Unstable High Voltage Sol. | | 1. “\/irtu a”y Short” the
Il Diverge

system initially to
produce a trivial
problem

2. Gradually reduce the
added admittance
until original problem
is solved

Number of Cases

SUGAR Standard Commericial Tool

13k+ PEGASE Case with Limiting
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How Much Can We Model Directly?

* Robustsimulation engine facilitates more complex models

— Controlactions that are abrupt switching
changes can now be modeled

* Existing approaches modelsuch control
actions as discontinuous, and can suffer
from divergence or convergence to

non-physical solutions
— E.g. PVVPQ generator switching

* Future models likelyto be more complex

— Circuit formalism generalizes mapping of |-V
behavior

Generator Reactive Power Q [pu]
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Analytical vs. Piecewise
Model for Generator
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Modeling Hrequency in Power How

* Commercial power flow tools do not capture frequency controls
— Needed for understanding events such as partial blackout in UKJ[1]

Fault cleared

Circuit fault [16:52:33.564]

Eaton Socon-

Hornsea loss of 737MW

Wymondley [ mse
[16:52:33.490] \ // [16:52:33.835]
T Little Barford ST trip

o« | 244MW [16:52:34)

Frequency is
restored to 50Hz
[16:57:15]

Increase in transformer loadings
(Loss Of Mains) ~500MW
[16:52:34]

Frequency response
recovers frequency
t0 49.2 Hz
[16:53:18]

Little Barford GT1a
trip 210MW
[16:53:31]

[16:52:58]

arrested at 49.1Hz

Circuit closed \. Little Ba_rford
on DAR GT1b trip
[16:52:53] 187MW

[16:53:58]
Frequency fall

Frequency breaches 48.8Hz triggering LFDD
[16:53:49.398]

[1] National Grid ESO, “Interim Report into the Low Frequency Demand Disconnection
(LFDD) following Generator Trips and Frequency Excursion on 9 Aug 2019,” August 16,2019

.............................

ESO National Control instruct
1,240 MW of actions to restore
frequency to operational limits and
restore frequency response and
reserve services.
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Modeling Frequency within SUGAR

* Generator realpower (P)varies with frequency (f)
— Model primaryand secondary control implicitly while respecting limits

* Other models like under-frequency load shedding
(UFLS) equally critical

— Critical for simulating events like
2019 UKgrid-controlled blackout

Af

. Inertial
1 Response

Primary | Secondary
Control ; Control
Response ! Response

t, t3

Af,

m== Region 1
= Region 2

Region 3
= Region 4
== Region 5

A prs [p.u.]

o
A f[HZ]

Implicit modeling of AP change due to Af
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Simulation or Optimization?

e Example: Cascading outage analysis requires:

— Models that capture voltage and frequency dependence hyeice based
— Arobust engine that can simulate N-k contingency models

— Modeling of protective relaying and associated control
— Distinguishing between stressed and collapsed state \//\

— Other generator and load control strategies
— Optimizations that represent decision making

Optimizations

Carnegie Mellon University
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Hard-to-solve vs. Infeasible Networks

* Existing solvers cannot differentiate hard-to-solve networks from power
deficient networks

e Ex.:Four difficult cases from an ISO
— Must be able to distinguish collapsed from hard-to-solve networks

Standard
Commercial Tool?! SUGAR'
Case #Nodes From From From From
Input Hat Input Hat
File Start File Start
Hard to Solve Network 1 5944 X X v v
Hard to Solve Network 2 7023 v X v v
N-1-1 Contingency 1 7029 X X v v
N-1-1 Contingency 2 7028 X X V2 V2

1 Ran with default settings
2 Infeasible solution found

Carnegie Mellon University
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Built-In Optimization

Nonlinear Power How
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= Minimize Infeasibilities

Optimization mi . .
» Optimize expansion planning
» Simulate cascading outages

Objective _Tobj <:: = Allow robust grid restoration
+ Constraints LI

Formulate the dual constraints
in KKT as an equivalent circuit

Adjoint split-circuit (I-V)

zk+1
Real +—=R
000
k k +
a:FObj ai ai /1R
Vp Vx Vg — vee kil
T

Imag. «—

. + 2900
o 1y otk Y ok S| 2
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Together represent
first-order optimality
conditions

Solve using SUGAR
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SUGAR for Infeasible Grid Networks

* Place slacksources (r1)at all (or selected) buses
— Minimize the injected power while satisfying network constraints

Feasible system
Source values are zero, power flow

solution unchanged

Infeasible system
Nonzero injected power at buses that

cause infeasibility

* Insufficient models to do this as a physics-based simulation

Carnegie Mellon University
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Incorporating Measurement Data

* Presentlydone separately as State Estimation (SE)

* SEis a mathematical abstraction that has roots in Estimation Theory
— Does not necessarily capture complete network topology
— Solutions dependent on accuracy of network models

* Can be naturally incorporated into equivalent circuit framework

Carnegie Mellon University
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Circuit-Theoretic SE

15

Circult Substitution Theorem:
Replace existing models with
measurement models

— Incorporate both RTU and PMU models

Network topology becomes represented
by linear models — greatly simplifying SE

Must be solved by optimization though,
since measurement errors can otherwise
violate conservation of charge/energy

Carnegie Mellon University
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More Optimization — Optimal Power Flow
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Nonlinear Power How
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Optimization

Objective F
+ Constraints

-

= Minimize Infeasibilities

= Minimize Cost of Generation
= Minimize Losses

= Estimate System State

= Estimate Network Topology
= Optimize Load Shedding

Formulate as
circuit eqns

Adjoint split-circuit (I-V)

k+1
Real _::jzﬂ
k k +
aTOw gﬁ_ Qﬁi AR
Adjoint split-circuit Vg Vy Vg — ee i
Xy
v Imag. e
. +
0F obj oIk oIF A
Wi v, Y vy _
6 200

Solve using SUGAR
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Security Constrained AC-OPF

* Robust SC-OPF can result in 5-10% electricity cost reduction in the
U.S.

* Non-convex optimization problem with more than a billion variables

* Equivalent circuit approach can map SC-OPFproblem into an
aggregated circuit

* Circult heuristics with distributed computing robustly solves the
problem

— SUGAR s one ofthe top performers in ARPA-E Grid Optimization Competition —
and it /ncludes all physics-based models

Carnegie Mellon University
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Solving Billion-Size SC-OPF Problems Pea;(IJS‘?c-reet

TECHNOLOGIES

Minimize cost of generation Nonzero matrix pattern of Security Constrained AC

- Satisfy power flow equations and operational limits Optimal Power How Problem solved in SUGAR
- Ensure feasibility across Kcontingencies .

¢ ‘ .: N E Contingency Ckt 1 contiggzgiﬁo the
| Mbus Base OPF Split-Circuit | P
+ E E
| Contingency Split-Circuit #1 | +++ | Contingency Split-Circuit # k | P
Base Split- Base Adjoint AN
Circuit [ | Split-Circuit N
Cont. Split- | | Cont. Adjoint |...| Cont.Split- | | Cont. Adjoint wo
Circuit #1 [ |Split-Circuit #1. Circuit #k [|Split-Circuit # A b

‘1, N-R linearization

2= ' 212 %" parallel 2
- o) KN x kN matrix - (o B N-R
- at each —_—> . sparse LU iterations
. iteration . factorization :
- [ = o E Carnegie Mellon University
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Conclusions

* Robust: SUGAR can guarantee convergence for feasible and
Infeasible networks

* Advanced Models: Accommodates highly non-linear continuous
analytical models

* Accurate State Estimation: Circuit-theoretic SE Is linear yet more
accurate

* Scalable and Distributed: Inherently parallelizable for large scale
grid problems such as expansion planning

Carnegie Mellon University
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