


# Norwegian EV Charging Infrastructure and User Experiences

The future of Electric Vehicle Infrastructure in the U.S. Webinar. 2 may 2019 The National Academies of Sciences – Engineering - Medicine

Chief Research Engineer Erik Figenbaum Institute of Transport Economics Oslo, Norway

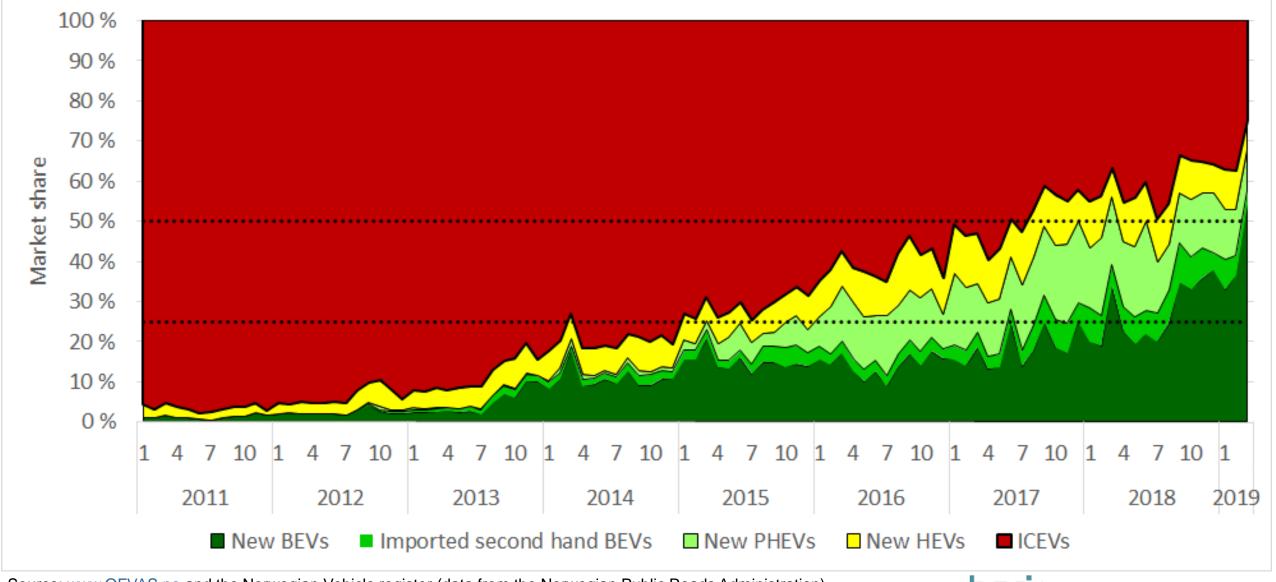


## Institute of Transport Economics

- Multi-disciplinary Independent, non-profit research foundation.
- To develop and disseminate transportation knowledge with scientific quality and practical application

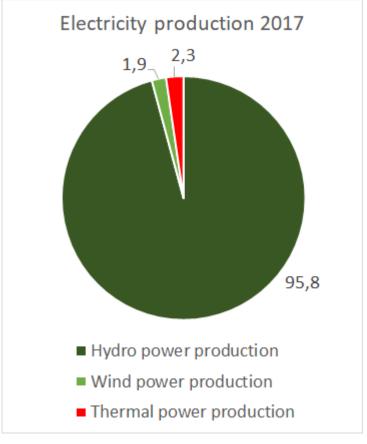


## Norway quick facts


- 5.3 million inhabitants
- 2.75 million passenger vehicles, of which:
  - 194 000 Battery Electric Vehicles (7.1%)
  - 96 000 Plug in Hybrid vehicles (3.5%)
- 0.48 million Light commercial vehicles, of which:
  - 5 300 Battery Electric Vans (1.1%)
- Charging infrastructure (status 01.01.2019)
  - ~1 100 50 kW CCS/Chademo fast chargers in ~500 locations
  - ~7 500 public normal chargers + domestic type sockets
  - ~90 000 Type 2 EVSE wallbox home chargers
  - Tesla Supercharger infrastructure

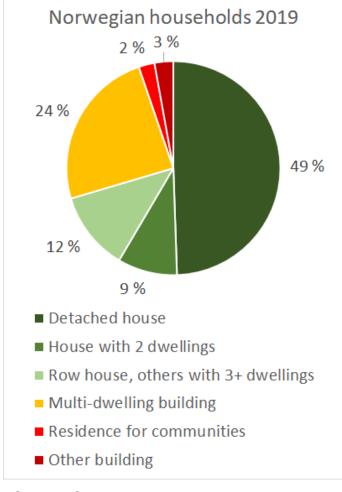
### Sources:

Vehicle register (status 01.01.2019) and Statistics Norway E. Figenbaum 2018. Electromobility Status in Norway. TOI report 1627/2018. New un-published estimates from 2018 TOI BEV user survey




## Monthly market shares




## The first main reason for the high adoption of BEVs Norway is especially suited for BEVs

### Clean Electricity, strong grid



Source: Statistics Norway

### **Private parking access**



Source: Statistics Norway

### Moderate road speeds







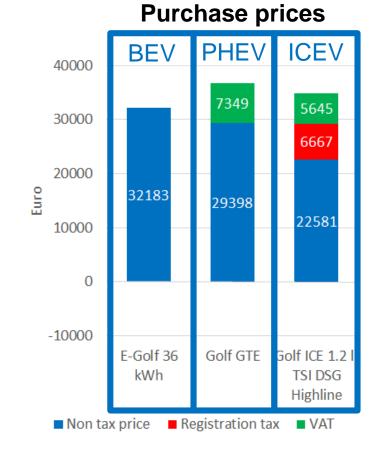
Long distance trip average speed: 70-80 km/h

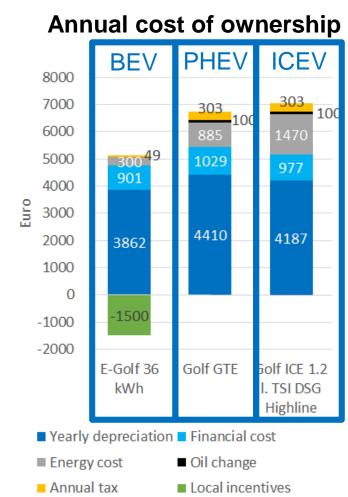


### National

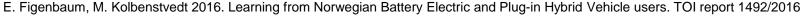
- Exemption from VAT (25% on other vehicles)
- Exemption from registration tax
- Reduced annual (circulation) tax
- Reduced benefit taxation on company cars
- Exemption from tax on change of ownership (introduced 2018)

### Local


- Free toll roads
- Free parking
- Reduced ferry rates
- Access to bus lanes


New policy: Max 50% of ICEV rate, local decision

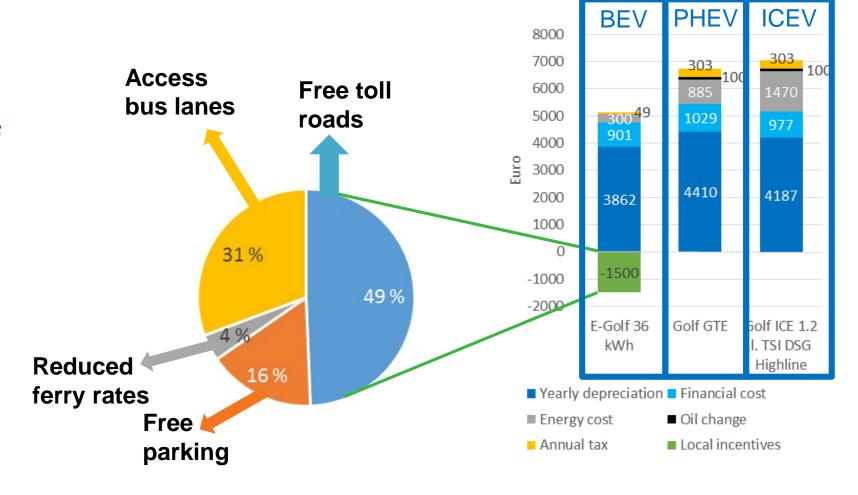
New policy: Need to have a passenger in rush hours some places


### VW Golf in 3 versions:

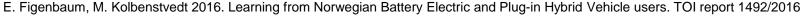
- 1. BEV E-Golf
- 2. PHEV GTE
- 3. ICEV Gasoline






#### Sources:




E. Figenbaum 2018. Electromobility Status in Norway. TOI report 1627/2018.



BEV total cost of ownership advantage: 3 200 Euro/year



#### Sources:



E. Figenbaum 2018. Electromobility Status in Norway. TOI report 1627/2018.



Annual cost of ownership

## Who owns BEVs in Norway?

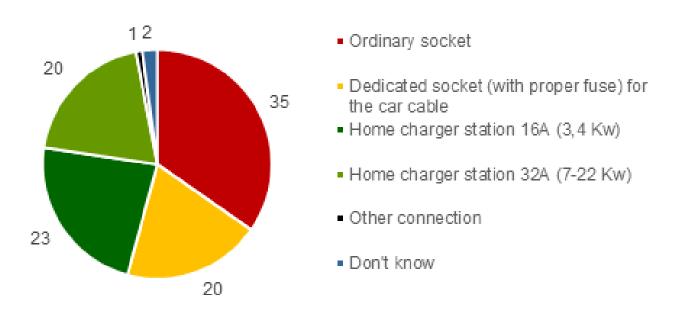
### 85% are consumers

- Younger than average
- 79% are multi-vehicle owners
- Families, children <18y</p>
- Large transportation need
- Live in cities or outskirts
- 94% can charge at home

### **Buying motivation**

- Reduced user cost
- Vehicle matching needs
- Incentives
- Environment

### Experience


- Few challenges
- Have alternatives when range short



## Home charging

### **Detached/small houses**

- No public support available
- EVSE wallbox cost about 1200-1800 US\$ to install



### Flats with common parking

- Parking facility jointly owned
- Annual meeting decides
- High cost
- Insufficient grid power

### **Typical solution:**

- Basic infrastructure jointly owned
- Load shedding equipment
- Common cost: 1000 US\$/flat
- Wallbox chargers are bought by flat owners which is billed for the electricity
- Charger cost: 1500 US\$/flat
- Public support for basic installation



## Public charging infrastructure (1)

### **Up to 2010**

- A few hundred public chargers
- People also used available outdoor domestic plugs

### 2010-2011

- Public support program Normal chargers, first come first serve
- Money left was used to install a few fast chargers in late 2011

### 2012-2014

- National support fast chargers first come first serve, 40%
- Municipalities installed free to use public «normal chargers»

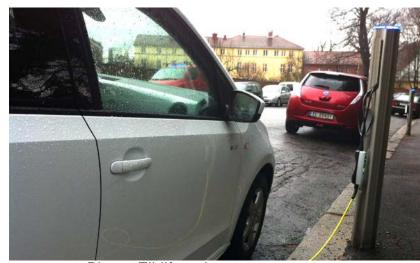



Photo: Elbilforeningen.no

# Public charging infrastructure (2)

### 2015-2017

- Supply a fast charger network along major roads
  - 2 fast + 2 semi-fast/50 km, 8000 km road network
  - Tenders for service up to 100% support
  - Lowest bidder
  - Teamed up with McDonalds, fuel stations etc.
- Free to use public normal chargers in cities

### 2018

- Full fast charger coverage along all major roads
- Normal public charging infrastructure lags fleet
- Municipalities subcontract operation to operators



## Public charging infrastructure - 2019 and beyond

### Cities – Fast charging

- Fully commercial market, no support
- Challenge: Land to put chargers on

### **Cities – Normal charging**

- Main challenge: On-street parkers
- From free to use to paid service

### Fast charging between cities

- Economic viability, with variability workday, weekend, vacation?
- Expanding to super fast (150 350 kW)

### Destinations

- Resorts
- Private cabins and holiday homes



### Not that fast....

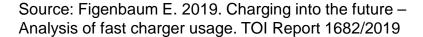
### **Average fast charge session:**

- 30 kW power from 50 kW chargers
- 20 minutes duration
- 10 kWh energy charged
- ~13-19 fast charge events per user per year

### Main reasons for low power:

- Primitive battery thermal management systems
- Cold winters

### Result:


Costs transfer from vehicle manufacturer to fast charge operator

### Advice:

Type approval test of charge speed versus ambient temperature



Photo: Norsk Elbilforening



## 2017 fast charger usage by users that charged in 2016

|                                      | Average | 10-perc | 20-<br>perc | Median | 80-<br>perc | 90-<br>perc | 95-<br>perc | 98-<br>perc |
|--------------------------------------|---------|---------|-------------|--------|-------------|-------------|-------------|-------------|
| # of Charge events per year          | 13.1    | 1       | 1           | 5      | 18          | 32          | 48          | 80          |
| # of Locations used                  | 4.2     | 1       | 1           | 3      | 6           | 9           | 13          | 17          |
| # of Counties charged in             | 2.1     | 1       | 1           | 2      | 3           | 4           | 5           | 7           |
| # of<br>Municipalities<br>charged in | 3.5     | 1       | 1           | 2      | 5           | 8           | 10          | 14          |
| # of Months users charged in         | 4.3     | 1       | 1           | 3      | 7           | 10          | 11          | 12          |

Four fast charger user types, separated markets

### **Users**

 Occasional user (30%): likely use fast charger when they have a rare range problem

■ <u>Frequent user (10%):</u> likely people without home charging or professional users

■ Long distance trip user (rare): fast charges to get to far-away destinations

■ <u>Local user (common):</u> fast charges regularly to solve their everyday needs

### **Markets**

South-East and Innlandet: Users often charge in other provinces

Other provinces: Most charge within province



Trøndelag

Nordland

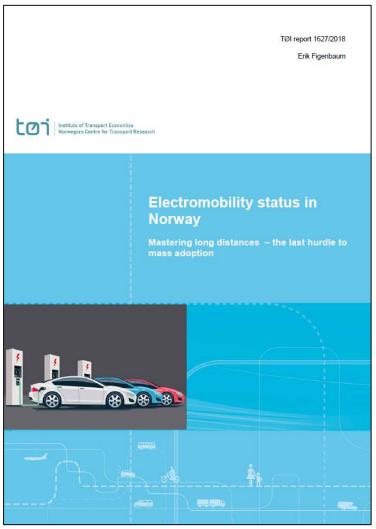
South-East and

Innlandet

in Centre for Transport Research

Source: Figenbaum E. 2019. Charging into the future – Analysis of fast charger usage. TOI Report 1682/2019

## Everyday money saver...long distance time waster...


Total cost of energy and charge/pause time over a year, average long distance driving pattern





### More information:





## efi@toi.no

https://www.toi.no/ ansatte/figenbaum -erik-article31074-202.html

## Back-up slides

# The third main reason for the high adoption of BEVs

Three decades of complex interactions between niche markets, regimes (automobility as we know it) and landscape (long term trends)

- 1. Niche market experimentation
- 2. Weak ICEV regime
- 3. BEV industrialization efforts
- 4. Strong governance with large incentives
- 5. Enabling landscape (Li-Ion tech, vehicles)
- 6. ICEV regime grabbed BEV opportunity
- 7. Interested, wealthy and able consumers

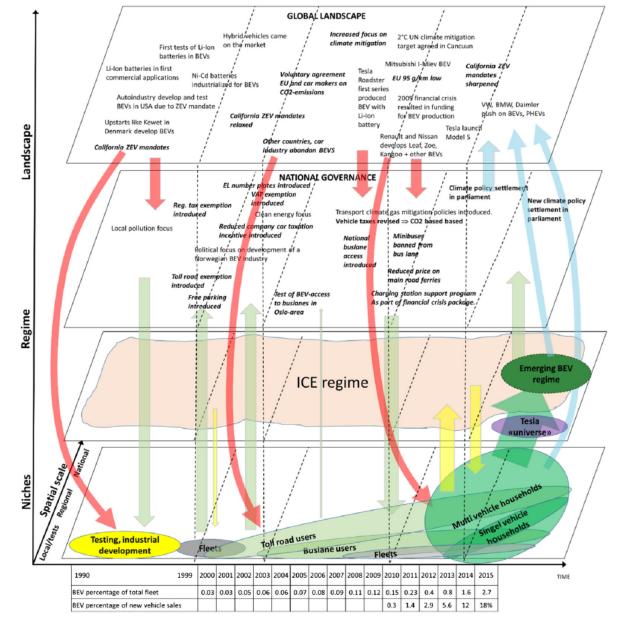



Fig. 11. Multi-level perspective framework for analysing Electromobility in Norway. Red arrows: International influence on Norway, Blue: Norwegian BEV market influence on global landscape, Yellow: Influence between regime and niches, Green: Influences between governance and niches. Sources of sale volumes of BEVs: OFVAS (2015), SSB (2015a). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

## Public normal charging

### On street:

- Very challenging due to cost, permit, practicality, time
- Makes road use less flexible
- Installation in parking houses much easier
- Have been a free service:
  - Some use it to get free parking
  - Use data unreliable
  - Has blocked private initiatives
- More important as adoption increases among users without parking

.....to be able to get people out of these....






....and into these.....





...but now, getting people out of these...









