

NATIONAL ACADEMIES DESIGN OPTIMIZATION WEBINAR

MAGNA INTERNATIONAL

Tim Skszek
Senior Manager – Research & Government Partnerships
Magna Corporate R&D

It starts with a vision....

We define and create the future of mobility

Magna International

Employees: +166,000 globally

Manufacturing Facilities: 346 globally

Market Position: #1 in NA, #3 globally

Sales: \$40.8 Billion USD in 2018

Collective Expertise: Competitive Advantage

- Body Exteriors & Structures
- Power & Vision
- Seating Systems

Collective Expertise: Competitive Advantage

Complete Vehicles

3.3 Million Automobiles manufactured in Graz, Austria

Voiturette 1906

Alpenwagen 1919

Puch 500 / 650 / 700c / 126 1957 – 1975

Haflinger 1959 – 1974

Pinzgauer 1971 – 2000

Mercedes-Benz G-Class since 1979

in Production

T3 4x4 1984 – 1992

VW Golf Country 1990 – 1991

Audi V8L 1990 – 1994

Jeep Grand Cherokee ZG/WG/WJ 1994 – 2004

1999 - 2002

Chrysler Voyager 2002 – 2007

Mercedes-Benz E-Class 2003 – 2006

MINI

Countryman

2010 - 2016

Saab 9³ Cabrio 2003 – 2009

BMW X3 2003 – 2010

Chrysler 300 C 2005 – 2010

Jeep Grand Cherokee WH 2005 – 2010

Mercedes-Benz SLS Painted Aluminum Body 2009 – 2014

Aston Martin Rapide 2010 – 2012

Peugeot RCZ 2010 – 2015

MINI Paceman 2012 – 2016

BMW 5 Series since 2017

in Production

E-PACE from Q4 2017

In Production

I-PACE from 2018

In Production

Collective Expertise: Competitive Advantage

Power & Vision

Automotive Industry Trends

Autonomy

New Mobility

Future Mobility Solutions

- Autonomous and semi-autonomous operation
- Sensors and Communication (V2V, V2I)
- Cyber Security

Evolving Business Models

- Ride Sharing
- Car Sharing
- Ride Hailing

Electrification

- Fully Electric, Plugin Hybrid & Mild Hybrid
- Battery Efficiency and Fast Charging

Environmental & Safety Legislation

- Powertrain & Engine Efficiency
- Lightweighting
- Recycling
- Alternative Fuels (hydrogen & biofuels)


Magna Innovation Pillars

meet the needs of our customers

and our planet

manufacture of products

Affordable.

Development and Manufacturing EfficiencyAlign and optimize processes for the development and

Magna Corporate R&D

Relative Design Optimization Projects

- Multi Material Vehicle (MMLV), with Ford
- Liteflex, Integrated Door Systems, with FCA

Design Optimization – a synthesis of product design, lightweight materials and manufacturing processes

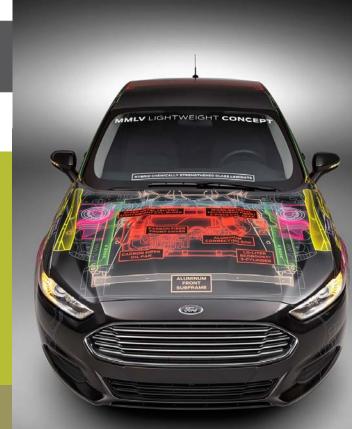
MMLV - Advanced <u>Vehicle</u>

- 23.5% (364kg) full vehicle mass reduction
- 16% (43g/km) reduction CO₂eq
- Equivalent styling, safety & functionality
- Affordable lightweighting, cost not published

LiteFlex, Integrated **Door** System

- 40% (52.5kg) mass reduction, 4 door vehicle
- 2% (6g/km) reduction in CO₂eq
- Equivalent styling, safety & functionality
- Affordable lightweighting, \$2.81 per lb. saved

Multi-Material Lightweight Vehicle



Lightweight Material and Science

MMLV Mach I Vehicle

MMLV Al-intensive vehicle 1,195kg 2014 Fusion Steel-intensive 1,538kg

24% Mass Reduction (343kg)

Demonstrated Benefit

- 23.5% full vehicle mass reduction
- Mass reduction enabled use of 1 liter, 3 cyl.
 FOX engine used in B-segment Ford Fiesta
- Functionally equivalent
- Prototype Vehicles, high volume processes
- Test Validation
 - NVH
 - Durability
 - Crash Safety
- 16% reduction in GHG (43g CO₂ eq/ km)

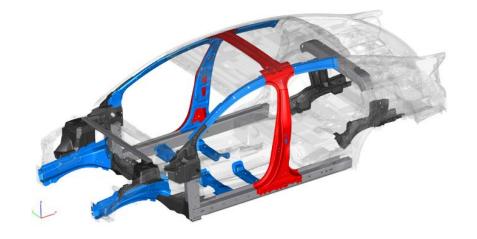
"A synthesis of design, lightweight materials and forming processes"

MMLV Mach II Vehicle

MMLV Mg-intensive vehicle 969kg 2014 Fusion Steel-intensive 1,538kg

42% Mass Reduction (569kg)

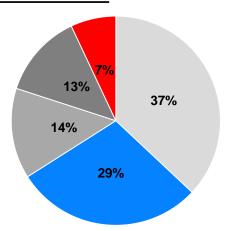
Demonstrated Benefit


- 41.6% full vehicle mass reduction
- Mass reduction enabled use of 1 liter, 3 cyl.
 FOX engine used in B-segment Ford Fiesta
- Functionally equivalent
- <u>CAE</u> Validation of NVH, durability & crash safety
- 29% reduction in GHG (78 CO₂ eq/ km)

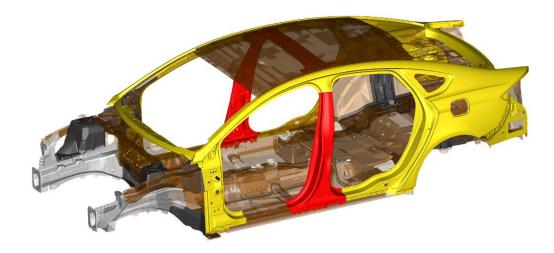
77 kg of Mg sheet per vehicle closures, deck lid, roof, hood and doors.

MMLV Mach I Vehicle

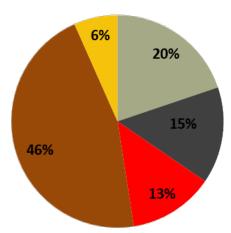
Body Structure, Exterior & Closures
2014 Steel-Intensive Fusion 594kg
MMLV Al-intensive 456kg


24% Mass Reduction 138kg

MMLV Mach I BIW


- Steel Sheet, 29%
- Al Extrusion, 14%
- Al Casting, 13%
- PH Steel, 7%

MMLV Mach II Vehicle


Body Structure Exterior & Closures
2014 Steel-Intensive Fusion 594kg
MMLV FRC & Mg-intensive 352kg

40% Mass Reduction 242kg

MMLV Mach II BIW

- FRC Sheet, 46%
- Al Sheet, 20%
- Al Casting, 15%
- PH Steel, 13%
- Mg Sheet, 6%

Commercialization Potential

The cost of lightweighting increases exponentially beyond 20% of full vehicle weight.

Material cost limits application to luxury segment vehicles.

Cost impact of body shop modifications to manufacture a new BIW archecture and lost production favor programs which include NEW body shop construction, new OEM entrants or contract manufacturing

MMLV Program MMLV Mach I Vehicle MMLV Mach II Vehicle

Lessens Learned

- The GREET models developed by Argonne National Lab correlated perfectly with the fuel savings associated with the MMLV Mach I vehicle.
- Mass Induced Fuel Reduction w/o Engine Downsizing 0.168 liters/100kg per 100km
- Mass Induced Fuel Reduction with Engine Downsizing 0.4 liters/100kg per 100km
- Typical spacing between OEM engine to 100 kg in mass difference. Minimal benefit of incremental mass reduction upto the 100 kg threshold to enable a downsized engine.
- The 343kg mass reduction associated with the MMLV Mach I C/D segment vehicle enabled use of the 1 liter, 3 cylinder engine used in the B-segment Fiesta, with no reduction in performance due to equivalent weight between Mach I and Fiesta.

Magna Corporate R&D

LiteFlex, Integrated Door Systems

LiteFlex - Drivers-side Door

"A synthesis of design, lightweight materials and forming processes"

LiteFlex - 4 door vehicle

2016 FCA Steel-intensive (front) 38.0kg LiteFlex Al-intensive (front) 22.8kg

Mass Reduction 15.2kg

Demonstrated Benefit

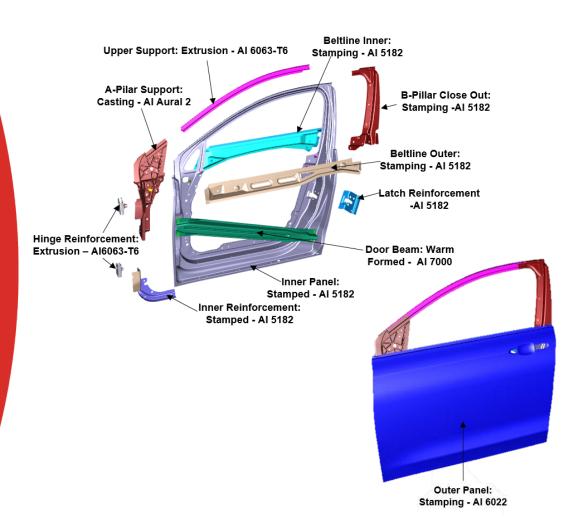
- 40% mass reduction drivers side door
- Manufactured form tooling
- Built 42 prototype doors
- Production-intent validation testing
 - durability
 - crash safety
 - NVH
 - corrosion

Demonstrated Benefit

- 39% full vehicle (4 doors) mass reduction
- Functionally equivalent
- 2% reduction in GHG (6 CO₂ eq/ km)
- CAE validation of
 - durability
 - crash safety
 - NVH

Forming Technologies

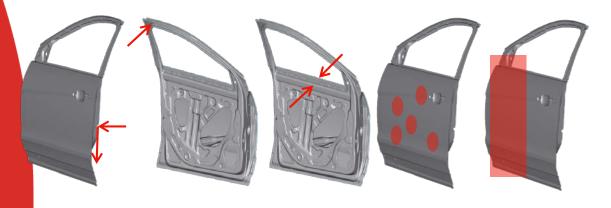
- Cold stamping
- High pressure casting
- Extrusion
- Warm forming


Material Usage

- 16.6kg Al sheet, 5xxx inner panels
- 7.6kg Al sheet, 6xxx outer panels
- 4.2kg Al sheet, 7xxx door beam
- 3.3kg Al casting, A-pillar support
- 1.9kg Al extrusion, upper support
- 0.2kg Al fasteners

33.8kg Al per vehicle

49.5 kg mass reduction per vehicle



LiteFlex Door An aluminum-intensive drivers side door

Design & Development Process

- Establish design space & objectives
- Obtain & set performance targets
- Identify desired features & function
- Cost budget constraints
- Seek part integration opportunities
- Material and Process Alternatives
- Understand load paths
- Compare architecture performance
- Infrastructure compatibility
- Service & repair
- Joining processes
- Corrosion

Sag & Set

Overcheck

Header Stiffness Beltline Stiffness

FMVSS 214

Drivers-side Door

Mass Reduction: Minus 15.2 kg

Complete Vehicle (4 doors)

Mass Reduction: 51.2 kg per vehicle Life Cycle Impact: 6g CO₂ per km

Equivalent or better performance, safety and styling

5-star crash, durability, NVH, corrosion, appearance, fit / finish, and other vehicle attributes

Commercialization Potential of Ultralight Door

The incremental cost of the Ultralight Door is \$2.90 per pound saved, which is very competitive with competing technologies

Bolt-on closure components can be changed mid-cycle, as a refresh and do not require body shop modifications

CAFE and air quality legislation has a significant impact on the decision making process

DRIVING EXCELLENCE. INSPIRING INNOVATION.