

Accelerating EVs and a Clean Grid:

Impacts and Policy Considerations

Sara Baldwin
Director, Electrification Policy
@Sara_Baldwin2
@EnergyInnovLLC

2035 2.0 Report Research Question:

Given recent rapid declines in battery costs, what are the impacts of rapid transportation sector electrification on:

- Consumers
- Emissions
- Public Health
- Employment
- Electric Grid

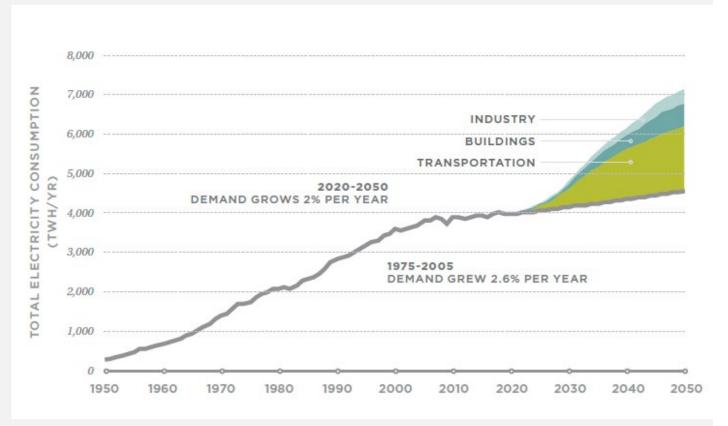
PLUMMETING COSTS AND DRAMATIC **IMPROVEMENTS** IN BATTERIES CAN ACCELERATE **OUR CLEAN** TRANSPORTATION THE REPORT **FUTURE APRIL 2021 TRANSPORTATION** PUBLIC POLICY GridL套B

<u>www.2035report.com/transportation/</u>

Two Comparative Scenarios

- DRIVE CLEAN Scenario:
 - 100% electric sales of new passenger cars and trucks by 2030
 - 100% electric sales of new medium- and heavy-duty vehicles by 2035
 - 90% clean electricity grid by 2035
- ❖ NO NEW POLICY Scenario (BAU)

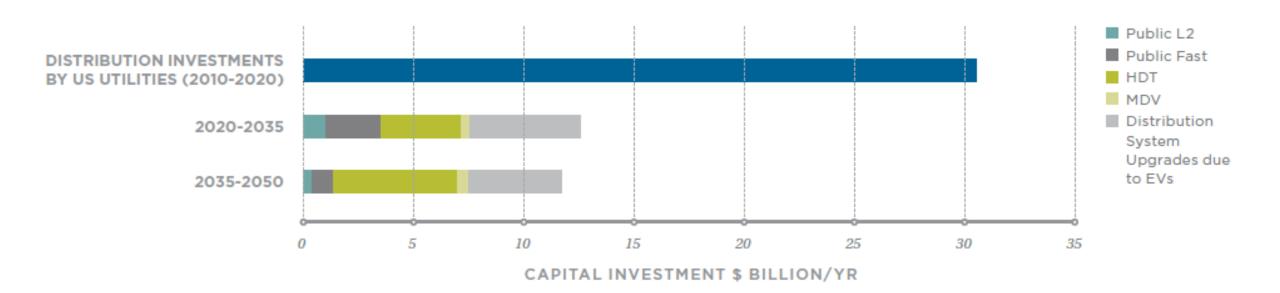
EVs as a Percentage of Sales: DRIVE CLEAN vs. No NEW POLICY Scenarios

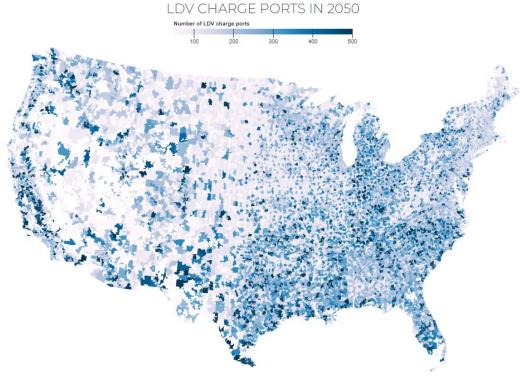

Accelerating EVs and a Clean Grid Benefits Consumers, the Economy, and the Environment

- Consumers save ~\$2.7 trillion between 2020 and 2050
 - Avg. household saves \$1,000/yr. for 30 years
- **2 Million** net jobs in 2035
- GHG emissions* decline
 - 60% by 2035
 - 93% by 2050
- Pollution-related* premature deaths decline
 - 56% by 2035
 - 96% by 2050

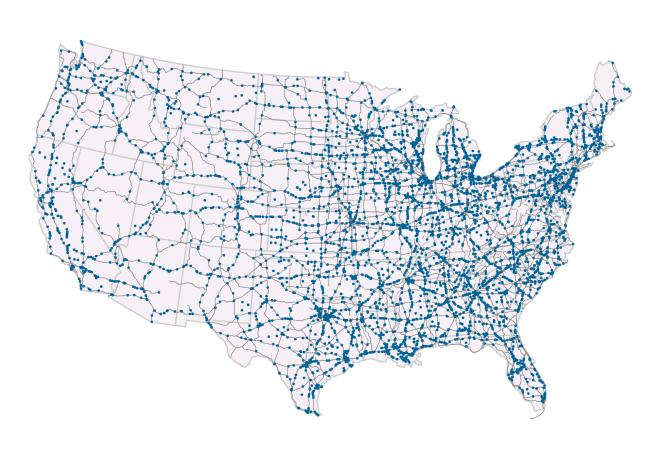
^{*} Associated with ground transportation

Grid Impacts & Ratepayer Impacts


- A 90% clean grid can handle the additional demand in the DRIVEClean scenario.
- ~120 GW/year of new renewables/storage capacity additions needed.
- Wholesale electricity costs and distribution costs on a per kWh basis do not increase from today's levels.
- Since total electricity sales increase, average \$/kwh may decline for the average ratepayer (E3 Analysis).

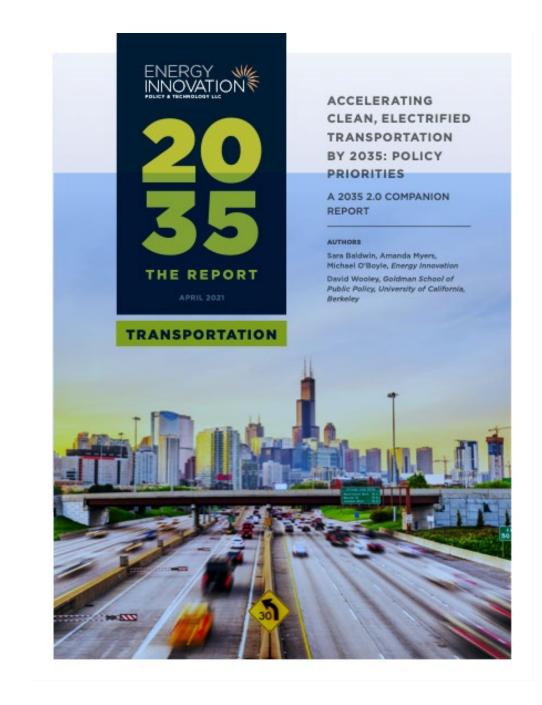

^{*} Note: Industry and building electrification projections are lower than technical potential and are derived from NREL Electrification Futures Study (May 2021).

Charging Infrastructure & Grid Investments Are Needed


- Rapid investments in public charging infrastructure (+ grid upgrades) required
 - ~\$11 billion/year through 2050
 - New public charging plugs: ~300,000/year (China already achieved that number in 2020)
 - New MDV/HDV charging plugs: ~30,000/year
- Historical distribution grid investments are ~\$30 billion/year

Charging Ports in 2050 – DRIVE Clean Scenario

New LDV charging points/ year	2020-2035	2035-2050		
Home	4.8 million	2.3 million		
Work	170,000	51,000		
Public L2	350,000	110,000		
Public Fast	60,000	19,000		



Map (right) shows optimal siting of the MDV/HDV charging infrastructure by 2050 so that every long-haul freight mile along major highways is electrified

What Policies Are Needed to Achieve the 2035 2.0 DRIVE CLEAN Scenario?

Companion Policy Report available at:

<u>www.2035report.com/</u> transportation/

50+ Policy Actions, Across 7 Core Categories

- National & State Vehicle Standards
- Targeted Incentives
- Strategic Charging Infrastructure
- Domestic Manufacturing
- Smart Rate Design
- EV-Friendly Codes & Procedures
- Equity & Environmental Justice

POLICY ACTIONS & TIMELINE FOR ENACTMENT

FEDERAL STATE LOCAL UTILIT
ACTION ACTION ACTION ACTION

	NEAR-TERM (2021 - 2023)	MID-TERM (2024-2026)	LONG-TERM (2027-2035)				
NATIONAL/STATE 100% EV SALES STANDARD	Adopt federal GHG Emissi Og/mile by 2			A			
	Adopt increasingly rig Economy (CAFI			A			
	Adopt state 100% ZE	V Sales Standards					
INCENTIVES AND FUNDING TO SUPPORT EV ADOPTION	Reform and expand Federal Plug-In EV Consumer Tax Credit			Å			
	Provide incentives for public a	nd private fleet conversion					
	Provide used E	V incentive		A	â		
	Offer competitive grants and f	unding programs for public	and non-profit entities	A	â	å	
	Require EV procu	rement for public fleets, tran	sit, buses	A	â	ā	
	Offer federal/state tax ex	emption or reduction		A	â		
	Adopt special lane access fo road toll fee waivers, and				â		
	Support new financing mode programs that significantly business	expand consumer and		Å	â	ā	套

www.2035report.com/transportation/

Policy & Regulatory Pathways to Manage Grid Impacts

Coordinated Plans & Publicly Available Maps:

- Direct electric utilities to develop transportation electrification plans/forecasts
- Adopt and implement hosting capacity analyses and maps that integrate EVs and EVSE
- Adopt Integrated Distribution Planning (IDP) with a framework for EVs and EVSE

• Interconnection Best Practices:

Adopt interconnection best practices that proactively streamline EV charging

Rate Design:

- Enable time-varying rates
- Mitigate demand charge impacts for HDV charging
- Enable managed charging
- Explore V2G and bi-directional charging, and adaptive load management

• Incentives:

Target co-located distributed generation and/or energy storage at strategic EVSE charging locations

Thank you!

<u>sbaldwin@energyinnovation.org</u>

www.energyinnovation.org

