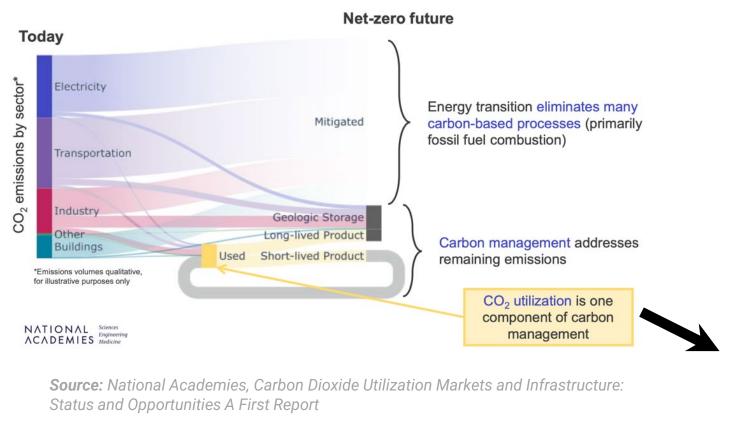
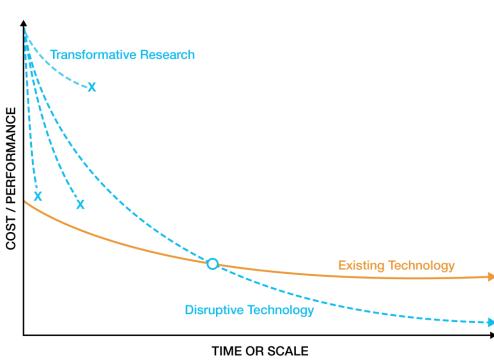


ARPA-E Efforts in Carbon Dioxide Utilization


Briefing to National Academies Committee on Carbon Utilization Infrastructure, Markets, Research and Development


February 27, 2023

Agenda

- ► Introduction
- ► HESTIA Program- CO₂ Utilization for products multi-routes to building materials
- ► ECOSynBio Program- CO₂ Utilization route synthetic biology
- ► MINER Program CO₂ Utilization route mineralization
- ▶ New opportunities in distributed power --> liquids via reactor efficiency

Creating New Learning Curves in Carbon Utilization

ARPA-E Program Portfolio

+ OPEN 2009, 2012, 2015, 2018, & 2021 Solicitations + Seedlings, Competitions, Complementary Exploratory Topics + SCALEUP 2019 & 2021

MULTIPLE PATHWAYS FOR CO₂ → BUILDING PRODUCTS

Harnessing Emissions into Structures Taking Inputs from the Atmosphere (HESTIA)

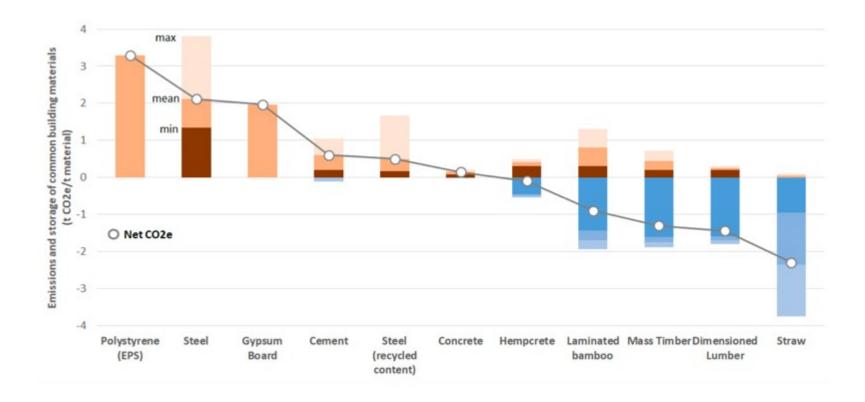
Marina Sofos, Program Director marina.sofos@hq.doe.gov

ARPA-E's HESTIA program expands NAS definition for building products

What is Carbon Dioxide (CO₂) Utilization?

 Chemical transformation of CO₂ from the atmosphere, water, or waste gas streams into a marketable product

- In this report, CO₂ utilization does not include:
 - uses of CO₂ that do not involve a chemical transformation
 (e.g., enhanced oil recovery, fire suppression, beverage carbonation)
 - chemical transformations of CO₂ resulting in non-traded products and goods (e.g., soil carbon, ocean mineralization)



NATIONAL Sciences Engineering Medicine

Icons from Flaticon.com

HESTIA seeks to address today's barriers to CO₂-derived building products

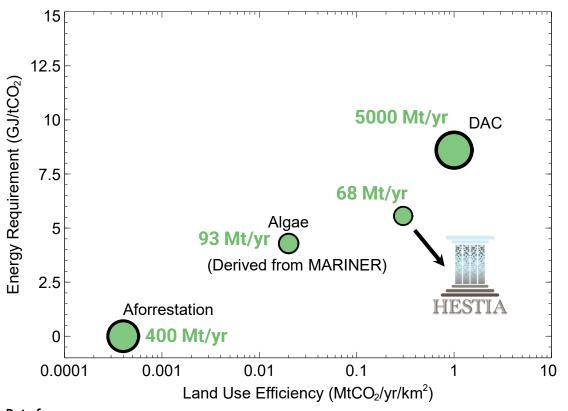
- Promising materials are emerging in use, but have limited code-compliant options
- Scarce, expensive, and geographically limited

Data from:

Pomponi,F.andMoncaster,A."ScrutinisingEmbodedCarboninBuildings:TheNextPerformanceGapMade Mainfest, "Renewable and Sustainable Energy Reviews, V. 81(P2), 2431-2442, 2018, DOI: 10.1016/j.rser.2017.06.049.

Ruuska.,"CarbonFootprintforbuildingproducts,"2013,https://cris.vtt.fi/en/publications/carbon-footprint-for- building-products-eco2-data-for-materials-an.

HESTIA


Harnessing Emissions into Structures Taking Inputs from the Atmosphere

Goals

Develop & demonstrate **building materials** & **whole-building designs** from a wide range of feedstocks (e.g., forestry & purpose-grown products, agricultural residues, direct carbon utilization) that are **net carbon negative** on a life-cycle basis by using atmospheric CO₂* in the production process.

Program Director	Dr. Marina Sofos	
Year	2022	
Projects	19	
Funding Amount	\$45 million	
Status	Active	

Data from:

Srubar III, W.V. "Can We Grow Carbon-Storing Buildings?" in *Build Beyond Zero: New Ideas for Carbon-Smart Architecture.* B. King & C. Magwood, Eds. In press;

BNEF; MARINER program; carbonplan.org

*Greenhouse gases (GHGs), measured in CO₂ equivalents, originally absorbed from the atmosphere through means including biomass growth and/or direct capture (from air or the ocean)

HESTIA Program Structure

FOA Category A: Building Materials

FOA Category B: Building Designs with at least one c-negative material

Material Prototype

Architectural Plans + Material Prototype

Metrics:

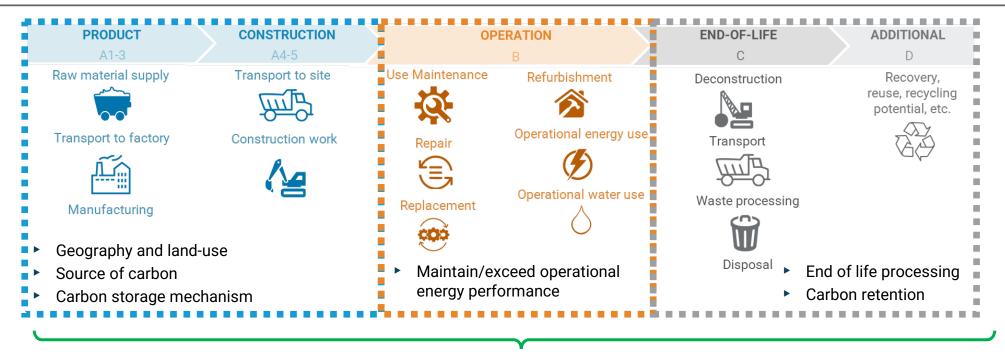
GHG Impacts on LCA bases:

- Cradle-to-gate carbon negative with no increase to gate-to-grave @ material level
- Cradle-to-grave carbon negative @ whole-building level

Prototype Performance:

- Relevant **performance testing** (e.g., flammability, strength) per applicable building code & incumbent specifications
- Market advantage (e.g., improved performance in at least one building construction or operational energy usage requirement, lower cost, or easier installation) over best-in-class incumbent building element (i.e. structural and/or enclosure) selected for replacement
- Demonstration of recycling, repurposing and/or reusability potential to enable **longer** service life and/or minimize end-of-life emissions

Exploratory Topic


Life-cycle Analyses (LCA)

LCA Teams to Consistently & Accurately Evaluate Environmental Impacts

- Cradle-to-Gate/Grave
- Comparative Analysis (multiple indicators)
- Sensitivity Analyses
- Annual LCA stage-gates for continuous improvement

Program optimizes CO₂-derived building products

LCA Framework

- Carbon negative material: Embodied emissions < atmospheric GHGs captured & stored (in any form) in the material itself over a specific time period
- Carbon negative building: Total embodied + operational emissions (including routine maintenance & replacement
 of common building elements) < atmospheric carbon stored in the materials of the building itself
 (only theoretically possible today)

Both timescales are being pursued in HESTIA

Long-term: centuries time scale, including "permanent" storage options

Mineral materials

Sources: Blue Plant Systems Corp.; CalPlant

Medium-term: "temporary" storage on the order of years to decades.

Biogenic materials

Expansion of bio-based feedstocks intended to:
(1) lengthen time horizon for increasing CDR capacity; and
(2) increase C storage time scale for bio-based waste, residues

Innovations in LCA for assessing carbon utilization

- ▶ Sharpening pencil when modeling regional differences in biogenic materials production (e.g. land use change, regional cultivation practices, etc.)
 - Spatially-explicit LCA models

- ► Life cycle data for novel materials that do not exist in literature/databases
 - Consider uncertainty
 - Develop new ways to predict LCI based on material properties

Final deliverable: open-source LCA tool for use by the Architecture, Engineering, & Construction community

Diverse portfolio of feedstocks, routes, materials & finished products

Insulation Materials

Beetle-killed wood → cellulose-mycelium

Recycled materials & ag residues → cellulose

Cellulose/straw/hemp/wheat waste & silica aerogels → interlocking superinsulation panel

Waste lignin →
non-isocyanate based
polyurethane foam

New "Wood" Materials

Bamboo slats & chips → superinsulation panel

Fungi & bacteria → "living" wood structure

Small diameter waste wood → wood wool cement composite

Composite Materials

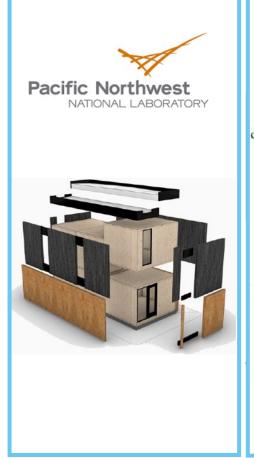
C-fiber waste, C-nanotubes & bamboo → composite

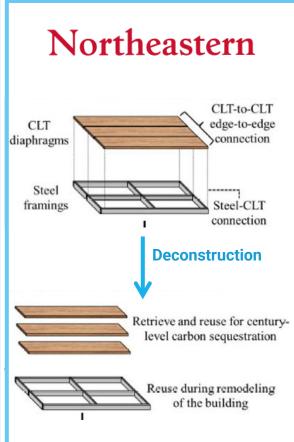
Cementitious Materials

Upcycle industrial mineral waste via DAC → geopolymer cement

SAF production process waste → bio-ash SCM w/ biochar

Biogenic urea → bio-based cement




Biogenic limestone (CaCO₃) from calcifying microalgae → bio-based portland cement

Maximizing carbon utilization potential via new building designs

- ► Link design decisions w/ material selection → maximize carbon storage
- ▶ Design for disassembly and reuse → increase service life/carbon retention

Building Design Teams

ECOSYNBIO

Kirk Liu, Technology-to-Market Adviser Kirk.liu@hq.doe.gov

ECOSynBio

Energy and Carbon Optimized Synthesis for the Bioeconomy

Mission

Develop new technologies/tools that significantly improve bioconversion carbon efficiency, leveraging the use of external reducing equivalents

All systems will demonstrate the capacity to accommodate external reducing equivalents

Novel biomass systems will utilize external energy inputs to substantially increase carbon utilization and target economies of scale for industrial applications

Program Director	Dr. David Babson	
Year	2020	
Projects	16	
Funding Amount	\$35 million	
Status	Active	

Goal Alignment with NAS Findings

- ► CO₂ Purification Requirements (from Findings 4.2 & 4.3)
 - Biological conversions utilizing high purity
- Strategic Co-Location (from Finding 6.4)
 - Program technologies considered for co-location with existing bioeconomy

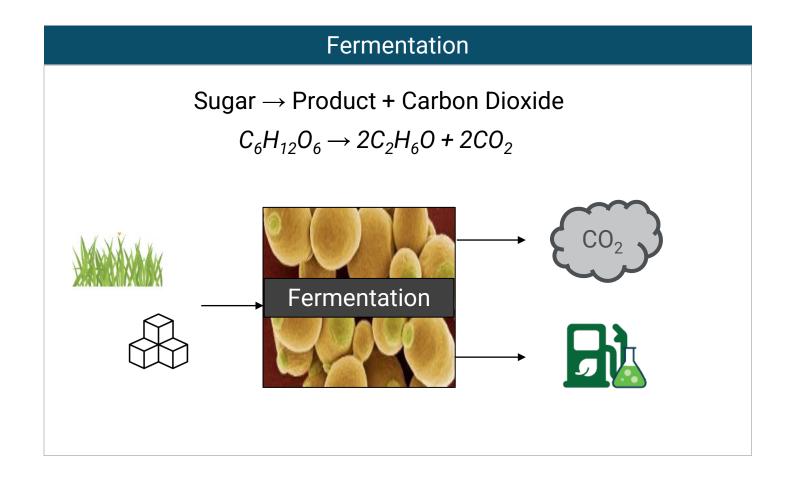
Technical Categories

- Gas Fermentation
- Cell-free biocatalysis conversion platforms
- Non-oxidative glycolysis
- Consortia fermentation

ARPAE biological CO2 utilization program aligned to NAS definition

What is Carbon Dioxide (CO₂) Utilization?

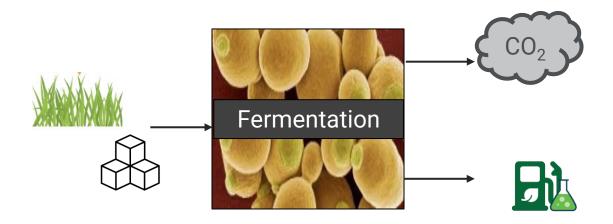
 Chemical transformation of CO₂ from the atmosphere, water, or waste gas streams into a marketable product


- In this report, CO₂ utilization does not include:
 - uses of CO₂ that do not involve a chemical transformation
 (e.g., enhanced oil recovery, fire suppression, beverage carbonation)
 - chemical transformations of CO₂ resulting in non-traded products and goods (e.g., soil carbon, ocean mineralization)

Icons from Flaticon.com

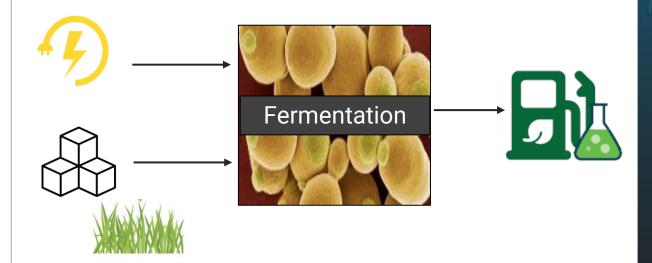
Bioconversion not considered for carbon efficiency – liquid energy product

With assembly and added energy, engineered 100% carbon yield fermentation


Traditional Glycolysis Non-Oxidative Glycolysis (NOG) 6 CO2 (CH2O), 6 CH₃OH CBB RuMP **C3 EMP** NOG 2 G3P Phosphoketolase 2 F6P Carbon Yield = 66% Carbon Yield = 100% 2 pyruvate Carbon rearrangement 2 CO. 3 AcCoA

2 AcCoA

Design system accommodate reducing equivalent to drive carbon efficiency


Fermentation

Sugar
$$\rightarrow$$
 Product + Carbon Dioxide
 $C_6H_{12}O_6 \rightarrow 2C_2H_6O + 2CO_2$

Carbon Efficient Fermentation

Sugar + Reducing Equivalent
$$\rightarrow$$
 Product
$$C_6H_{12}O_6 + 6H_2 \rightarrow 3C_2H_6O + 3H_2O$$

Program challenge to tackle established commodity markets

Program Metric Considerations

Key output yield Specific energy ratio	$\frac{U_{product}}{U_{C feedstock}} > 1$		
Avoided CO ₂ evolution (system basis)	100%		
Production rate	40 kJ _{product} L _{broth} ⁻¹ h ⁻¹		
External reducing equivalent accommodation	Biological energy carriers regenerated electrochemically and/or from H ₂ O / CO ₂		

Program Commercialization Illustration 40 kJ_{product} L_{broth}-1 h-1 Commercialization Phase 1 $\frac{U_{product}}{} > 1$ U_{C feedstock} Production Specificity

Diverse portfolio of technical approaches – program themes

Gas Fermentation

Mixotrophic Consortia / Synthetic Ecology

Engineering Carbon-Efficient Pathways Non-Oxidative Glycolysis

Cell-Free Biosynthesis Biocatalysis

MINER

Mining Innovations for Negative Emissions Resource Recovery Dr. Douglas Wicks, Program Director doug.wicks@hq.doe.gov

MINER

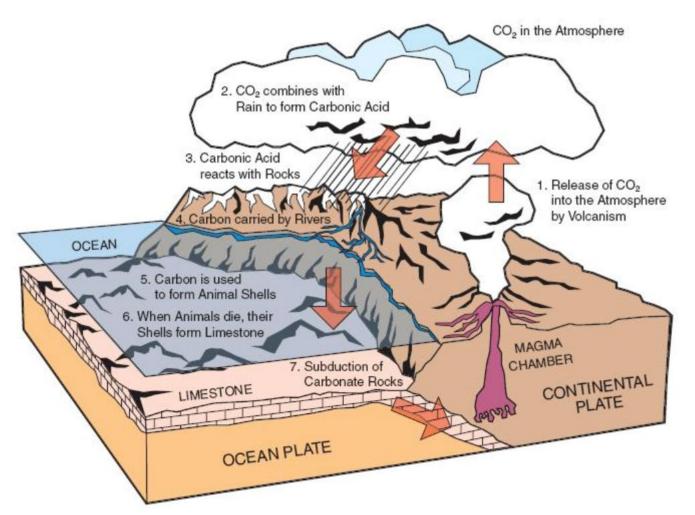
Mining Innovations for Negative Emissions Resource Recovery

Mission

Develop commercially scalable technologies that would enable greater domestic supplies of copper, nickel, lithium, cobalt, rare earth elements, and other critical elements.

Program Director	Dr. Douglas Wicks	
Year	2022	
Funding Amount	\$44 million	
Status	Active	

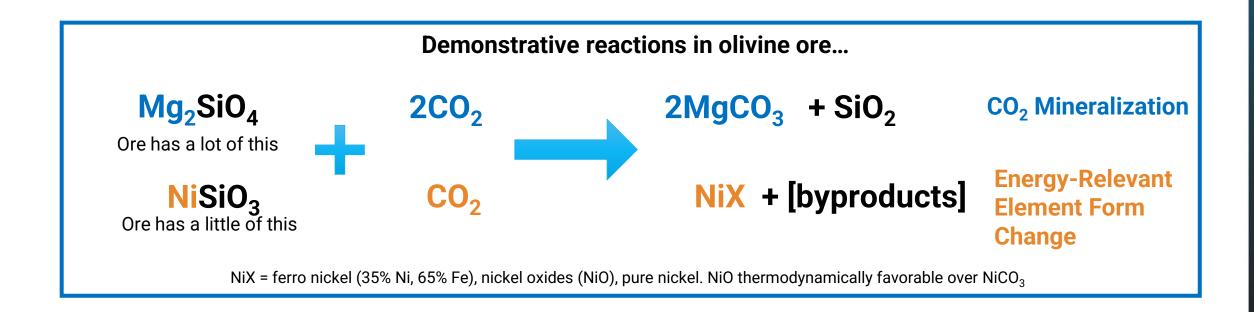
Goals


- ► Increase the mineral yield while decreasing the required energy, and subsequent emissions, to mine and extract these energy-relevant minerals.
- ► Investigate the potential CO₂-reactive ores to unlock net-zero or net-negative emission technologies.

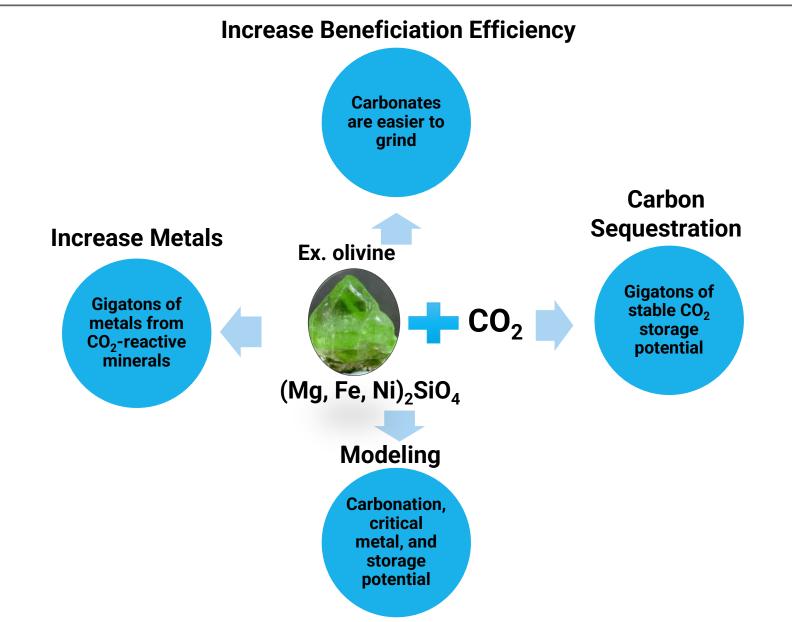
Routes to Enable Mineral Extraction:

- Electrochemical
- Mineralization

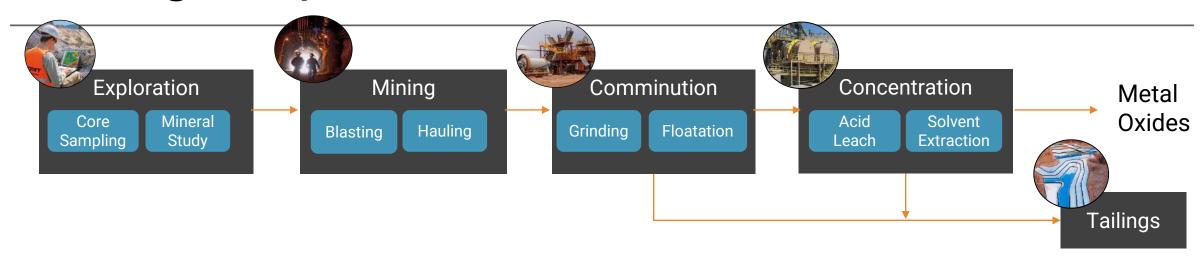
Mineralization is a Natural Process that Sequesters CO₂



Nature's way takes WAY TOO MUCH time – literally eons


- Basically reaction of ambient CO₂ and water with rocks
- Locks CO₂ away as stable carbonates

How Improved Element Extraction Will be Accomplished


► Convert components of low-grade ores containing ER elements from harder to process forms to easier forms

Mineralized products to be explored for multiple potentials

Program impact across mineral value chain

Teams

- Harvard
- CO Mines

- INL
- UT Austin
- PNNL

- Mich Tech
- UNev Reno
- Missouri S&T
- UKentucky

- VA Tech
- Columbia

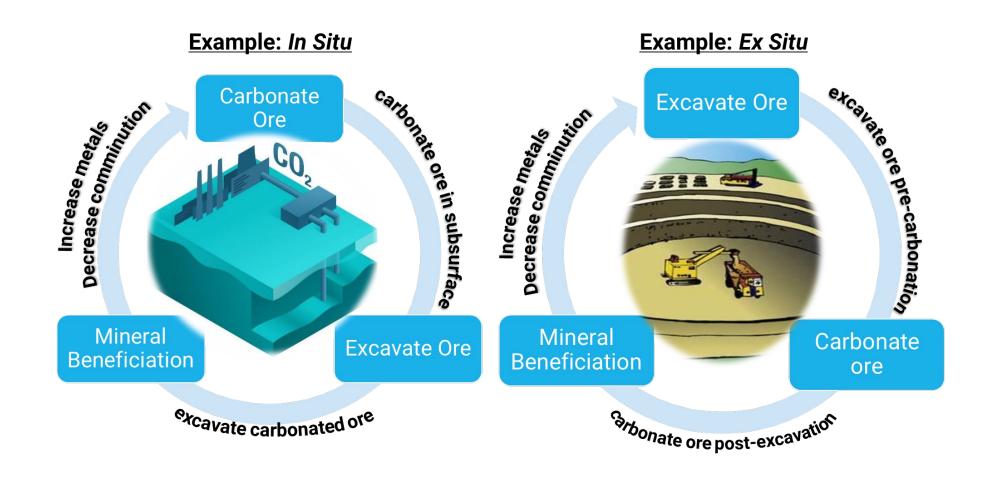
- UT ArlingtonColumbia
- JHU
- Travertine
- PHX Tailing

Technology Example

Characterize carbonation potential

Research for novel in-situ fracturing, monitoring, and leaching techniques Novel flowsheet design, mechanical equipment supercritical CO2, techniques to reduce overall energy use and GHG impact

Novel flowsheets for concentration of metals by carbonation


Utilize waste stream and recover residual minerals via CO₂ reactant

Program investigates multiple mineral deposits

Metal Target	Team	Technology Scope
General Metal Deposits	Harvard CO Mines Schlumberger Rio Tinto, VPI	Subsurface carbonation characterization & monitoring
Ni-Co-PGE	MST INL Columbia Sibanye- Sibanye- Eagle Mine, Stillwater, Stillwater, Eden Princeton, Talon, LANL GeoPower, CSM VPI	In-situ carbonation, monitoring, fracking, metal
Ni-Co	Travertine Phoenix MTU JHU UT Austin ANSTO, Tailings PolyMet Mining, Guelph, Canada Nickel, Monash, Alberta Eagle Mine ANL Carbfix, CNRS	leaching metal extraction, and electrochem acid leach
Li-Ni	UT Arlington Rio Tinto, UCLA	Electrochemistry
Cu-REEs	U. Kentucky Rio Tinto, MP Materials, Eriez Manufacturing, Solvay	Milling, Flotation, Bioleaching
REEs	U. Reno MP Materials, USGS	Milling, Flotation
Cu-Ni	Columbia Talon Metals	Hydromet + Electrochemisry
Ni-Co-REEs	VPI Western REE, Columbia, UVA, CSU	Full Ore

Program technology themes

Balanced and diverse carbonation research portfolio

7 Ore/Mineral deposit types/Metal targets

- Investigates carbonation and process for critical minerals Ni, Co, Cu, REE, PGE, Li

Spans exploration to beneficiation from ore to metal oxides

Novel carbonation flowsheets or integration

Geographically diverse leads with industry partnerships

- 14 academic universities
- 2 national lab
- 2 small businesses

OPEN 2021: SAMPLE PROJECT

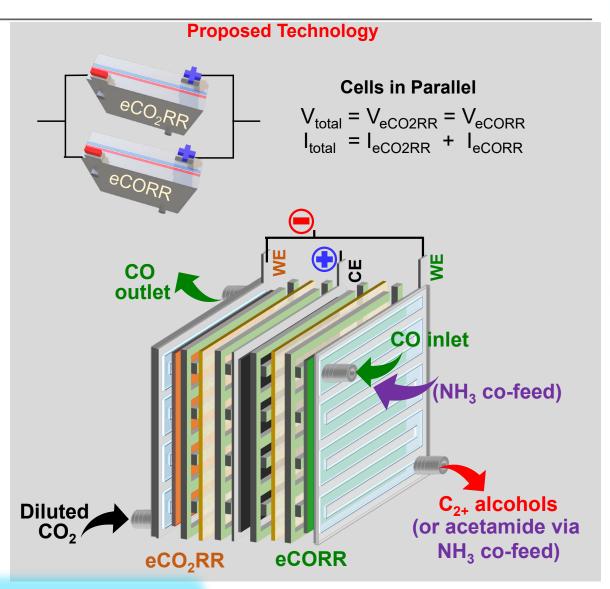
Jack Lewnard, Program Director Jack.lewnard@hq.doe.gov

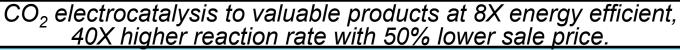
Novel Tandem Design for Electrosynthesis of Pure Alcohols Using Diluted CO₂ Feed Stream *Mohammad Asadi, Illinois Institute of Technology (Chicago, IL)*

Technology Summary

Develop a novel tandem electrocatalysis cell design for economically feasible and energy efficient conversion of CO₂ to valuable chemicals.

This unique design enables us to drive two sequential reactions in parallel with remarkable current density where the applied voltage is limited to that of the higher potential reaction.

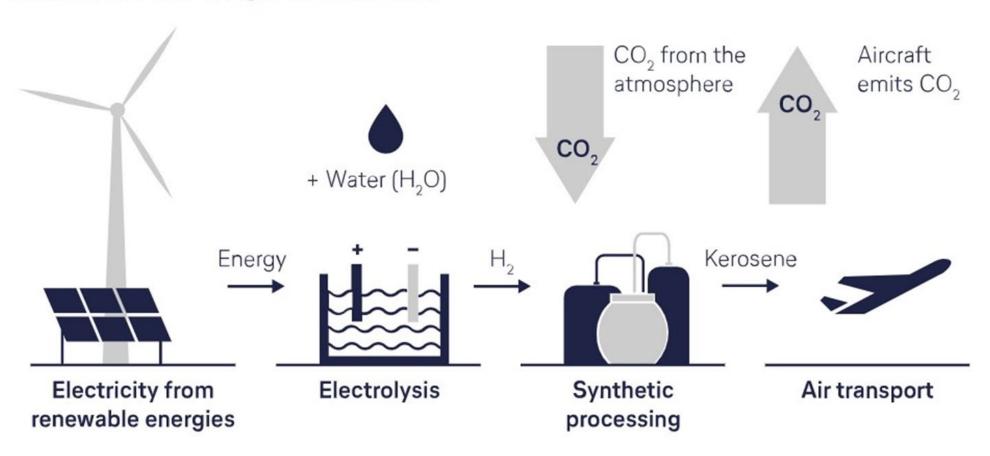

Demonstrate a lab-scale electrolyzer (5cm²) that works with a diluted CO₂ feed stream of higher pressure and temperature to effectively produce valuable chemicals.


Technology Impact

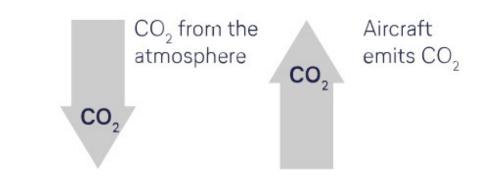
40X higher reaction rate (current density) and 5X better selectivity of CO₂ electrocatalysis by significantly reducing required potential.

Sustainable production of a variety of chemicals with extremely high market values such as acetamide by co-feeding chemicals such as ammonia.

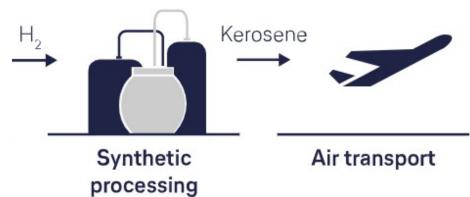
Production of propanol, and acetamide with an approximate retail sale price (RSP) of about \$730, and \$1471, respectively that are about 40% and 50% lower than current average market values.


NEXT GEN. POWER TO LIQUIDS

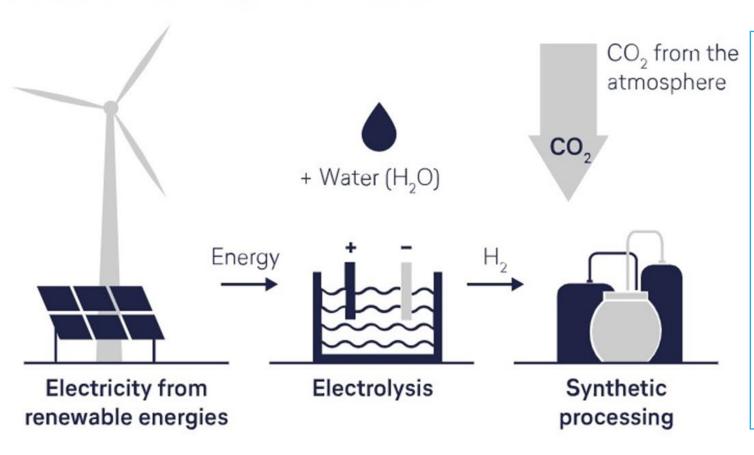
Dr. James Seaba James.seaba@hq.doe.gov



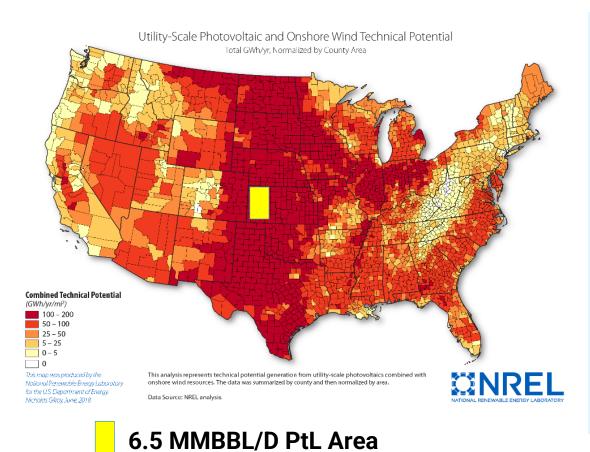
What is Power to Liquids

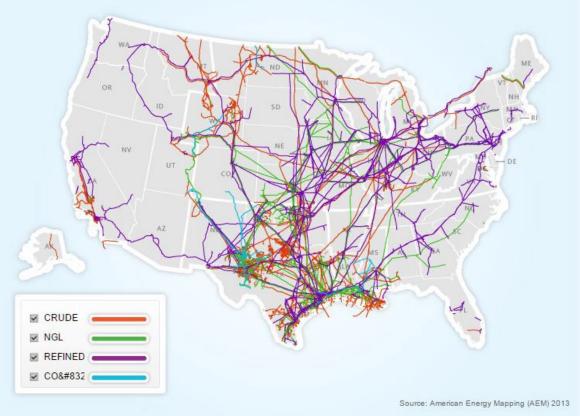

This is how the Power-to-Liquid-Procedure works

Reactor System is the key to unlock PtL



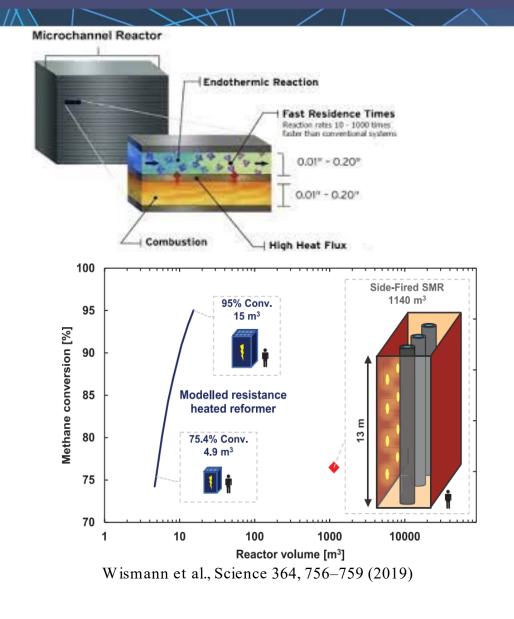
Focus on the reactor system


Integrate with Renewable Power at site


This is how the Power-to-Liquid-Procedure works

- Enabled by <\$2/kg H₂
- 100 to 1000 BBL/D
- Target: \$4/gallon

U.S. Renewable Resources and Infrastructure


Liquid Pipeline System

Wind and Solar Potential

Next Generation Modular Reactor System?

- Modular Reactors
 - Microchannels
 - catalytic membrane
 - spinning disk
- Electrochemical reactors
 - CO2, HCO3 electrolysis
- Thermochemical pathways
 - Alcohol to Jet
- Plasma reformers
- Electric reformers
- Microwave reformers

Reformate exhaust