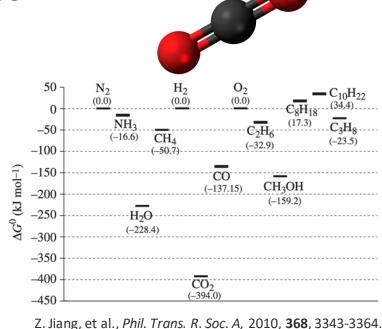

Opportunities and Challenges in Converting CO₂ into Fuels and Chemicals

Josh Schaidle
June 27th, 2023
NASEM Committee on Carbon Utilization

Market Size and Value of CO₂ Utilization Products



Brutal Reality of CO₂ Reduction

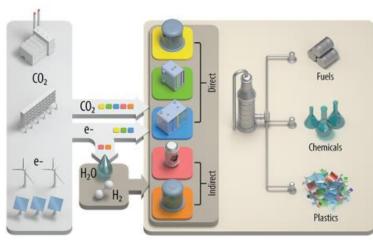
- CO₂ is 73wt% O and is neither free nor pure
- CO₂ is abundant, but has no heating value
 - Energy demand for converting CO₂ to ethylene is >40 kWh/kg
 - Ammonia synthesis: ca. 8 kWh/kg*
- Pipeline availability is limited
- CO₂ as feedstock ≠ lower carbon intensity than the incumbent

Challenge: Overcome thermodynamic barriers to reach cost-competitive and environmentally-friendly fuels and chemicals for hard to abate sectors

Which Products to Target and Why

What is the Feasibility of CO₂ Utilization?

Technical Feasibility

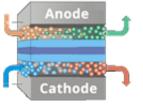

- Relative TRL of conversion technologies?
- 2. What kinds of products accessible?
- 3. Unique advantages & disadvantages?

Economic Feasibility

- 1. What are current and future cost estimates?
- 2. Greatest R&D needs? Cost drivers?

Environmental Considerations

- 1. Carbon and energy intensity
- Sources and footprint of energy



https://www.nrel.gov/bioenergy/co2-utilization-economics/

Opportunity: Use analysis to baseline technologies, products, and identify best practices to accelerate CO₂ utilization deployment

Technology Snapshot

Electrolysis (Alkaline, PEM, SOEC)

CO C_2H_4 C(s)

HCOOH C₂H₅OH

 $C_{2}O_{4}^{-}$ C₃H₇OH

CH₃COOH

 CH_{4}

CH₃OH C_3H_6O

 $C_{2}H_{4}O_{2}$


 C_2H_4O

 $C_{2}H_{6}O_{2}$

CH₃COCH₃

 $C_2H_2O_2$

Microbial Electrosynthesis (MES)

HCOOH C₂H₅OH C₂H₇OH CH₃COOH $C_2H_4COO^-$ **Fermentation**

C₂H₅OH C_3H_7OH CH₃COOH CH₄

Thermochemistry

CO C_2H_4 CH_4 CH₃OH C_3H_6

Aim to answer:

- What are the major technical challenges for each technology?
- What are the most impactful near-term R&D needs?
- What are near- and long-term opportunities?
- Which products should be targeted?

Technical Perspective

Species	Market Price (\$/kg)	\$/e- req. (x10³)ª	Global Prod. (MMT/y)	Equiv. # Coal Plants
Carbon Monoxide	1.20	16.8	~2.5	1.1
Carbon Monoxide (syngas)	0.31	4.3	150.0	66.4
Formic Acid	0.74	17.0	0.6	0.2
Carbon Nanotubes	110.2	331.0	0.003	0.0
Methanol	0.40	2.2	80.5	31.1
Methane	0.18	0.4	250.0	193.2
Acetic Acid	0.59	4.4	14.0	5.8
Ethylene Glycol	0.97	6.0	26.7	10.7
Acetaldehyde	~1.9	8.4	0.9	0.5
Dimethyl Ether	0.64	2.5	3.7	2.0
Ethanol	0.61	2.3	77.0	41.4
Ethylene	0.72	1.7	145	128.1
Acetone	0.93	3.4	6.4	4.1
Propionaldehyde	~1.6	5.8	0.5	0.3
Propylene	1.01	2.4	98.6	84.4
1-Propanol	1.43	4.8	0.2	0.1
Isopropanol	1.32	4.4	1.91	1.2
Oxalate	n.d.	n.d.	n.d.	n.d.
Glyoxal	n.d.	n.d.	n.d.	n.d.
Glycolaldehyde	n.d.	n.d.	n.d.	n.d.
Hydroxyacetone	n.d.	n.d.	n.d.	n.d.
Propionate	n.d.	n.d.	n.d.	n.d.
Allyl Alcohol	n.d.	n.d.	n.d.	n.d.

Evaluated 20+ products across 5 CO₂ reduction technologies to assess ease of formation:

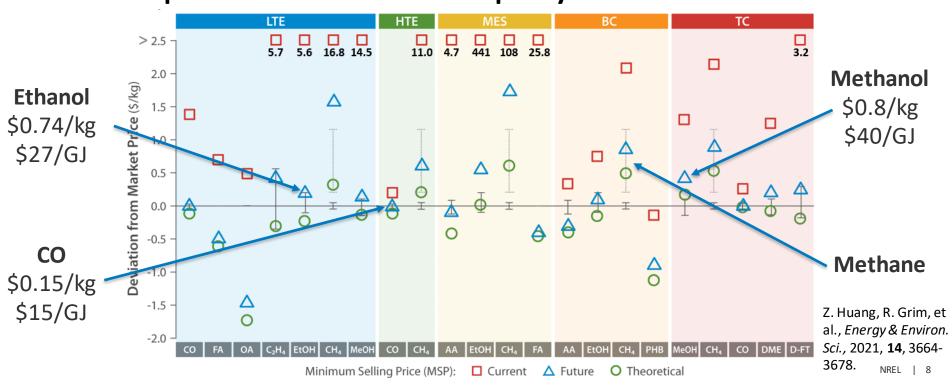
- Metrics: Formation rate, selectivity, energy efficiency and technology readiness level (TRL)
- Identified six products with the highest near-term viability

Qualitative Evaluation of Product Ease of Formation

Species	Rate of Formation ^a	Selectivity ^b	Energy Efficiency ^c	Current Commercial Level ^d
СО	High	High	High	High
Ethylene	High	Intermediate	Low	Low
Formate	Intermediate	High	Intermediate	Low
Methane	High	High	Intermediate	High
Acetate	Low	High	Intermediate	Low
Methanol	High	High	High	High

a: High: >200 mA/cm² (or commercial TC), Intermediate: 200 > j > 100 mA/cm²,

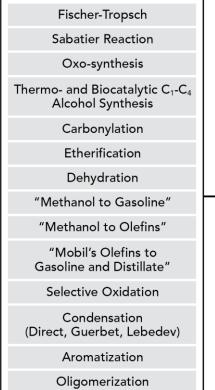
Low: < 100 mA/m²

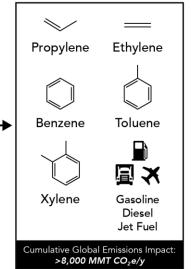

b: High: >80%, Intermediate 80% > FE > 60%, Low: < 60%

c: High: >60%, Intermediate: 60%> EE >40%, Low: <40%

d: High: Operated at TRL > 6. Intermediate: Operated TRL 4-6. Low: Operated TRL 1-3

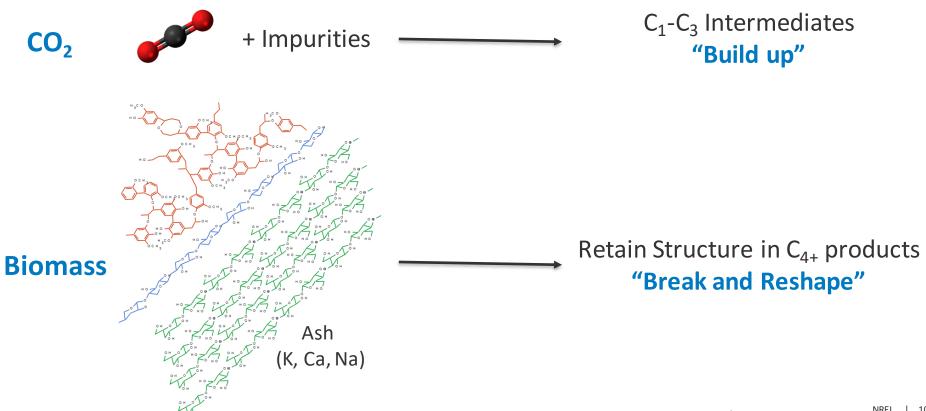
Economic Perspective


Economics are challenging under current conditions, but 8 of 11 products can reach market parity in future scenario

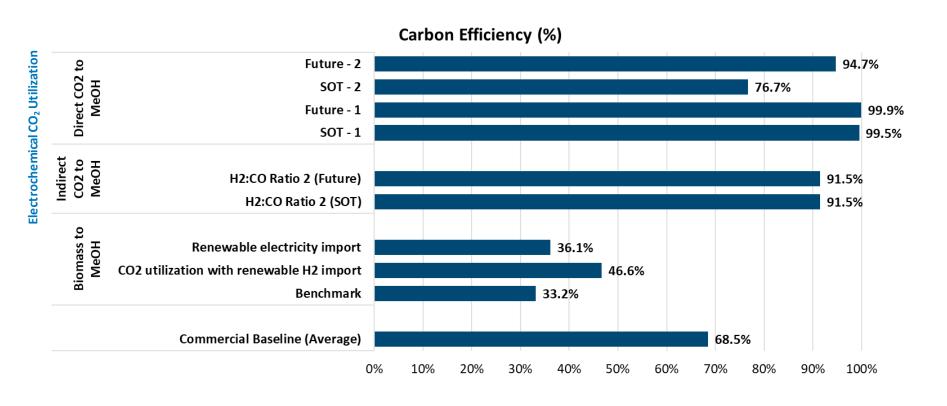

Decarbonization Perspective

Feedstocks Carbon Monoxide (Syngas) Global Emissions Impact: 346 MMT CO₂e/y Methanol Potential to Global Emissions Impact: 56 MMT CO₂e/y Avoid ~0.74 Gt CO₂/year **Ethanol** globally Global Emissions Impact: 112 MMT CO₂e/y Ethylene Global Emissions Impact: 226 MMT CO₂e/y R. Grim, et al., *Under Review*.

Pathways

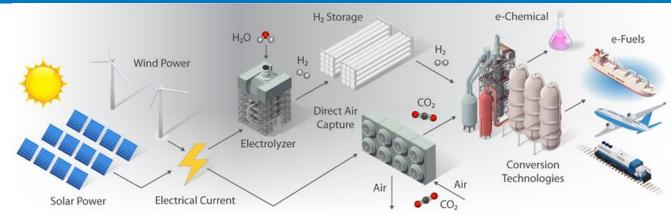


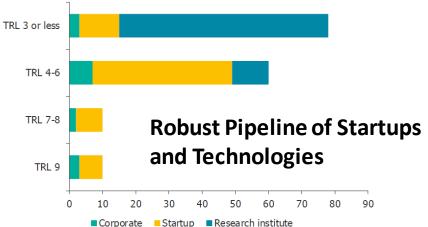
High Impact Products



Could scale to multi-Gt avoidance

What about Biomass?

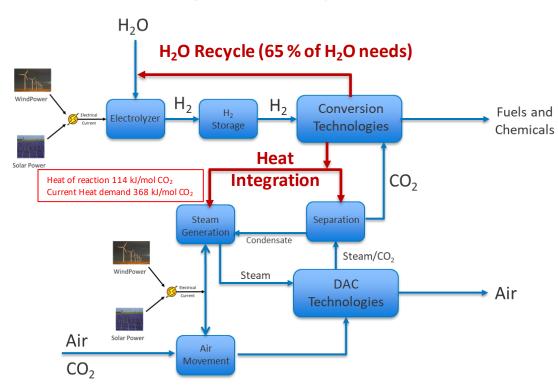

Methanol Production: Biomass vs. CO₂



11

Challenges, Opportunities, and Needs

CO₂ Utilization to Fuels and Chemicals

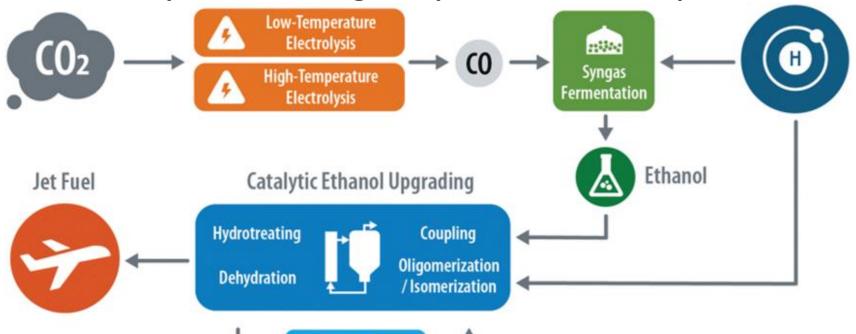

Key Considerations and Challenges:

- Limited integration and diverse unit ops
- Intermittent operation / load following
- Energy intensity and land use
- Cost and market demand
- Scale and rate of CO₂ emissions relative to CO₂ conversion needs

Global CO₂ Initiative, Implementing CO₂ Capture and Utilization at Scale and Speed, May 2022

Need for Integration Science

Systems Perspective

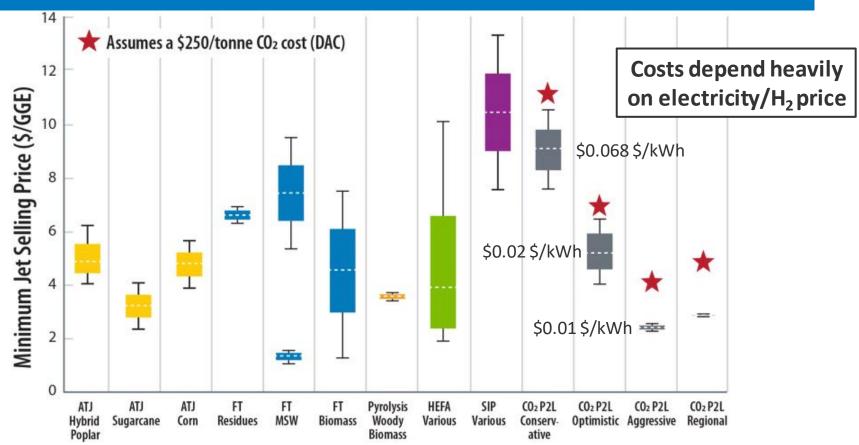


Example Research Questions:

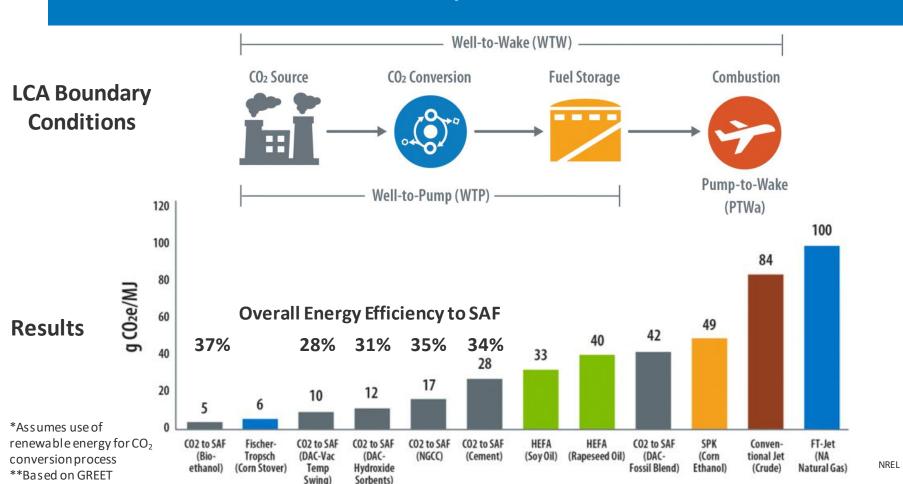
- How can cost be reduced through heat and water integration?
- What are the real cost trade-offs of lower-quality intermediate streams (e.g., CO₂ concentration and impurities)?
- What limits scalability of emerging technologies?
- How can costs be reduced through process intensification?

Producing Sustainable Aviation Fuel (SAF) from CO₂

Developed a heat-integrated process model in Aspen Plus



Light Olefins


R. Grim, et al., Energy Environ. Sci., 2022, 15, 4798-4812.

^{**}NOTE: This is *one* possible pathway to reach SAF from CO₂ and is not necessarily indicative of the most optimized or "best" design. All results are reflective to this pathway only.

Cost of SAF Production Relative to Alternatives

Carbon Intensity of SAF Production

1 17

CO₂-to-SAF Risk Assessment

Identified risks by interviewing subject matter experts

- Unknown stability of electrolyzers, catalysts, membranes
- Lack of testing with real systems and impact on performance
- Poor performance metrics relative to other technologies

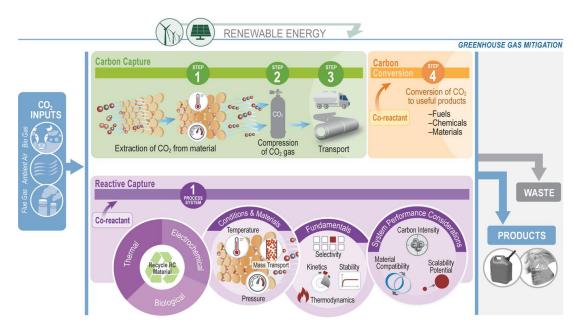
- Competition from established markets (i.e., ways to make CO, EtOH)
- Overly complex
- Sourcing rare earths and other materials at the scale needed. Finding suppliers
- High upfront capital costs, loan availability
- Resource allocation preferences

- Siting risks and requirements
- Integration of multiple complex conversion steps (process intensification)
- Intermittency

R. Grim, et al., *Energy Environ. Sci.*, 2022, **15**, 4798-4812.

Opportunity: Reactive Carbon Capture

Emerging Approach: Reactive Capture of CO₂

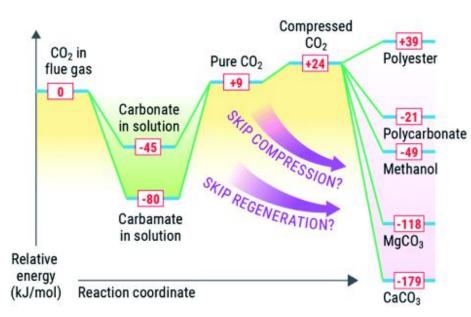

Reactive Capture Definition: The coupled process of capturing CO₂ from a mixed gas stream and converting it into a valuable product *without* going through a purified CO₂ intermediate

Can Include:

- Integration of CO₂ separation and conversion in one step
- Integration of separation and conversion in one unit
- Process intensification

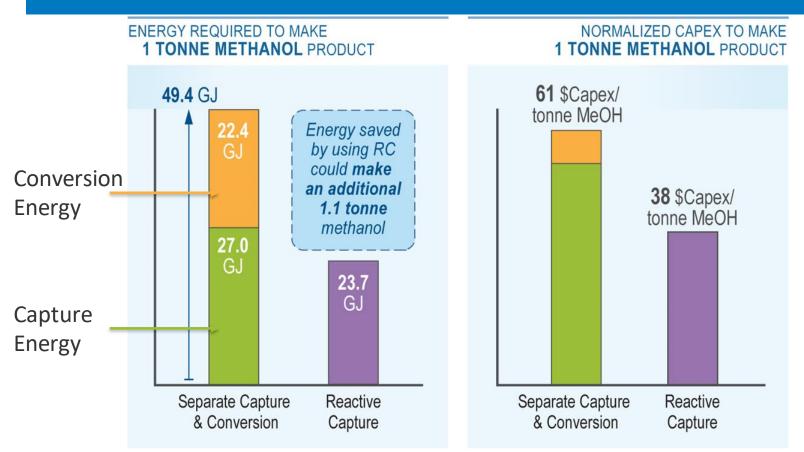
Product Targets:

Form a valuable product, or mixture of products, in a more reduced state than CO₂

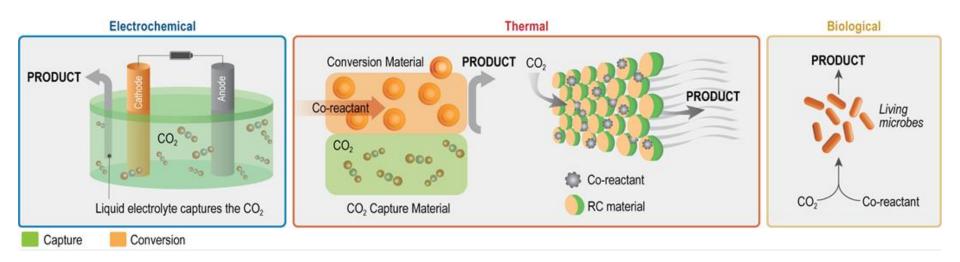


Proposed Value Proposition

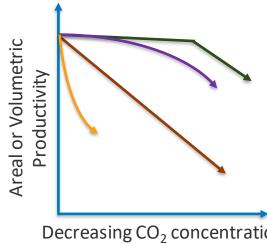
Our proposed value proposition for reactive CO₂ capture is:


- 1. Lower energy intensity
- Increased capital-expensenormalized productivity (i.e., capital utilization)

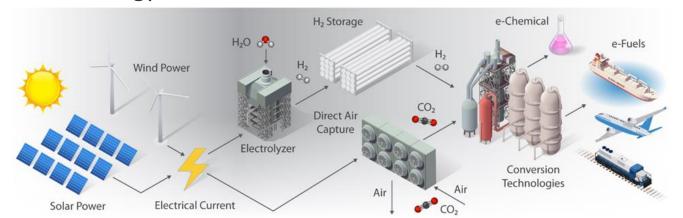
relative to the separate CO_2 capture and conversion processes that require a purified CO_2 intermediate.


D. Heldebrant, et al., Chem. Sci. 13 (2022) 2445-6456

Value Proposition: Potential Savings


Reactive Capture Technology Categories

Diverse slate of technologies under development, most of which are at the proof-of-concept stage


Overarching Challenges and Needs

- Integrating with real process streams
- Transitioning from batch to continuous processing matching capture and conversion rates
- Understanding and mitigating impacts of impurities
- Quantifying capture media stability, attrition, and cycleability
- Identifying figures of merit
 - Energy intensity
 - Productivity-normalized capex

Summary

- CO₂ conversion to fuels and chemicals has significant opportunity space and can reduce GHG emissions, but is expensive today
- Fundamental to applied R&D is needed to close this cost gap, with an emphasis on integration
- Achieving high energy and carbon efficiency to C₁-C₃ intermediates creates near-term CO₂ conversion opportunities when coupled with renewable energy

Acknowledgements

Zhe Huang

Gary Grim

Ling Tao

Special thanks to 40+ reviewers and subject matter experts!

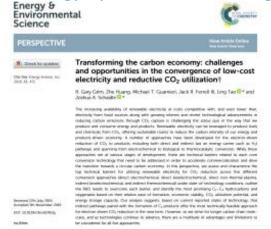
Our Team and Contributors:

- Dwarak Ravikumar
- Dan Ruddy
- Wilson McNeary
- Anh To
- Susan Habas
- Martha Arellano-Trevino
- Eric Tan
- Jen King
- Aaron Barker
- Matt Yung
- Mike Griffin
- Jimmy Crawford
- Mike Guarnieri
- Jack Ferrell
- Randy Cortright

- KC Neyerlin
- Mike Resch
- Zhenglong Li (ORNL)
- Dong Ding (INL)
- Lesley Snowden-Swan (PNNL)
- Steve Phillips (PNNL)
- Chirag Mevawala (PNNL)
- Richard Boardman (INL)
- Al Weimer (CU-Boulder)
- Megan Freyman (LLNL)
- Eric Duoss (LLNL)
- Sarah Baker (LLNL)
- Simon Pang (LLNL)
- Yat Li (UC-Santa Cruz)
- Doug Kauffman (NETL)

Thank You

www.nrel.gov


Joshua.Schaidle@nrel.gov

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office, the Advanced Research Projects Agency – Energy, and the Office of Fossil Energy and Carbon Management. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Resources

Technology Options and Challenges

Economics

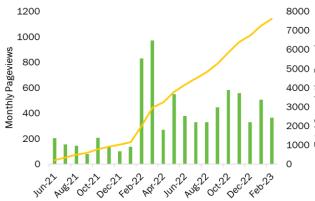
CO₂-to-SAF

Energy & Environmental Science

(A) Check for updates Cite this: Energy Environ, Sci.,

PAPER

Electrifying the production of sustainable aviation fuel: the risks, economics, and environmental benefits of emerging pathways including CO2+


R. Gary Grim, 9 ** Dwarak Ravikumar, Eric C. D. Tan, 9 * Zhe Huang, Jack R. Ferrell III, 65th Michael Resch, 65th Zhenglong Li, b Chirag Mevawala, c Steven D. Phillips, Lesley Snowden-Swan, Ling Tao 0 and Joshua A. Schaidle (0 **

Due to challenges related to weight and travel distance, the medium to long-haul aviation sector is expected to remain reliant on liquid hydrocarbon fuels into the foreseeable future, representing a persistent source of CO2 emissions within the anthropogenic carbon cycle. As the world grapples with the environmental fallout from rising CO₂ emissions, a prevailing strategy to mitigate the impact of air travel is through the utilization of sustainable minimum hads (SAE) proclared from bioperic carbon sources such as fats, oils, greases, and biomass. However, with the demand for SAF expected to grow substantially in the coming decades, there is concern around the availability of these feedstocks at scale. Recent studies have proposed that this potential gap in supply could be closed by utilizing CO₂ as a complementary source of carbon combined with renewable electricity to drive the chemical transformation. In this study, a crosscutting comparison of an emerging CO--to-SAF pathway with existing routes to SAF is performed. revealing the potential for CO₂-derived SAF to be competitive both in terms of costs and carbon intensity. further diversifying future options for SAF and providing a complementary option for the conversion of CO₂-to-SAF beyond the decades old methanol to olefins (MTO) and Fischer-Tropsch (FT) technologies In addition, we discuss optential technical, market, and systems integration risks for the ultimate scale-up and commercialization of the pathway identified herein.

Received 29th July 2022, Accepted 6th October 2022 DOI: 10.1039/H26402439

https://www.nrel.gov/bio energy/co2-utilizationeconomics/

28