DL Efficiency Through Technology: Hardware-Software Interactions

NASEM AI Workshop
Implications of Artificial Intelligence-Related
Data Center Electricity Use and Emissions

November 13, 2024

Bill Dally

Chief Scientist and SVP of Research, NVIDIA Corporation Adjunct Professor of CS and EE, Stanford University

nature

Explore content >

About the journal ∨

Publish with us ➤

Subscribe

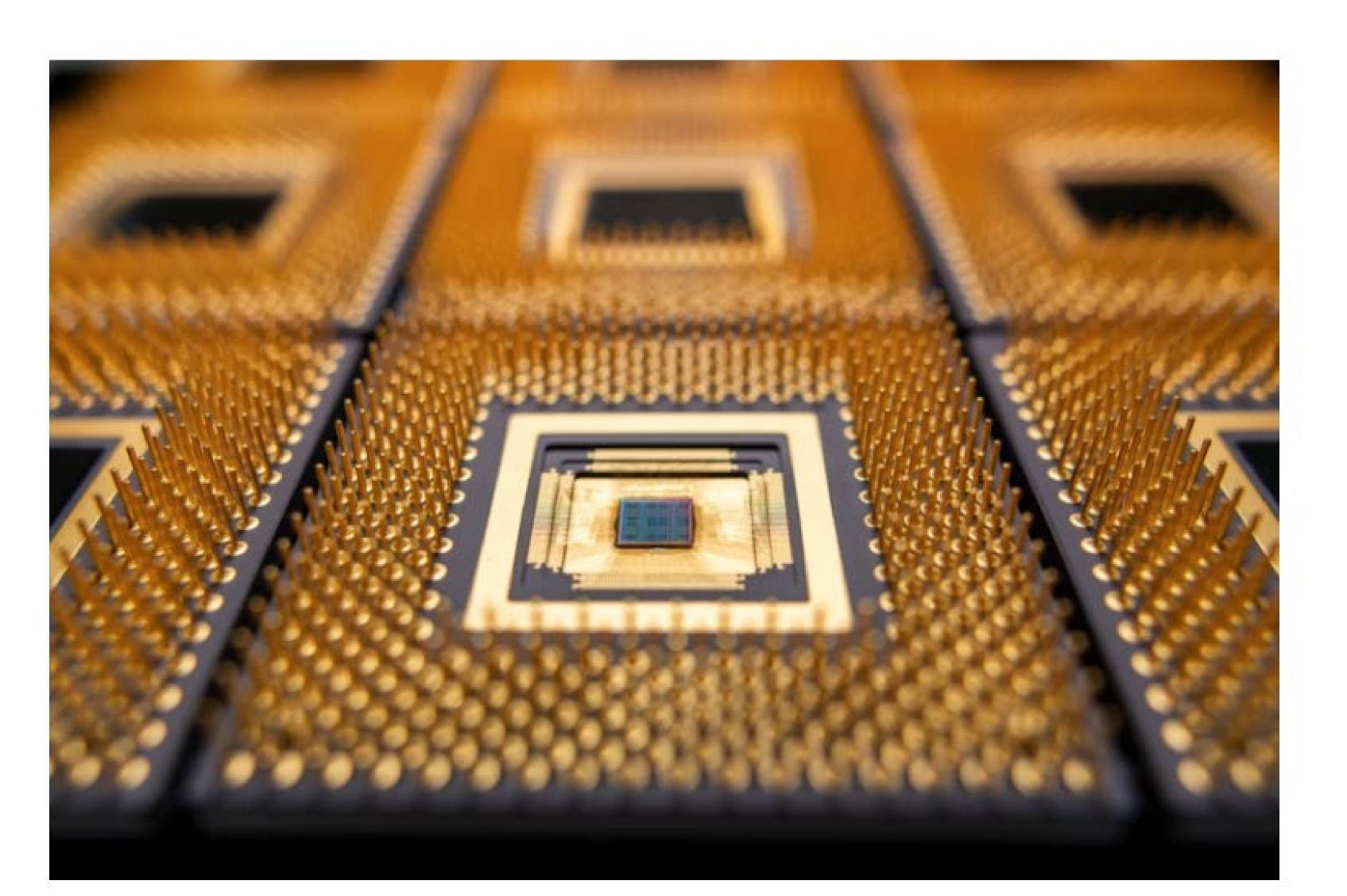
nature > outlook > article

OUTLOOK 17 October 2024

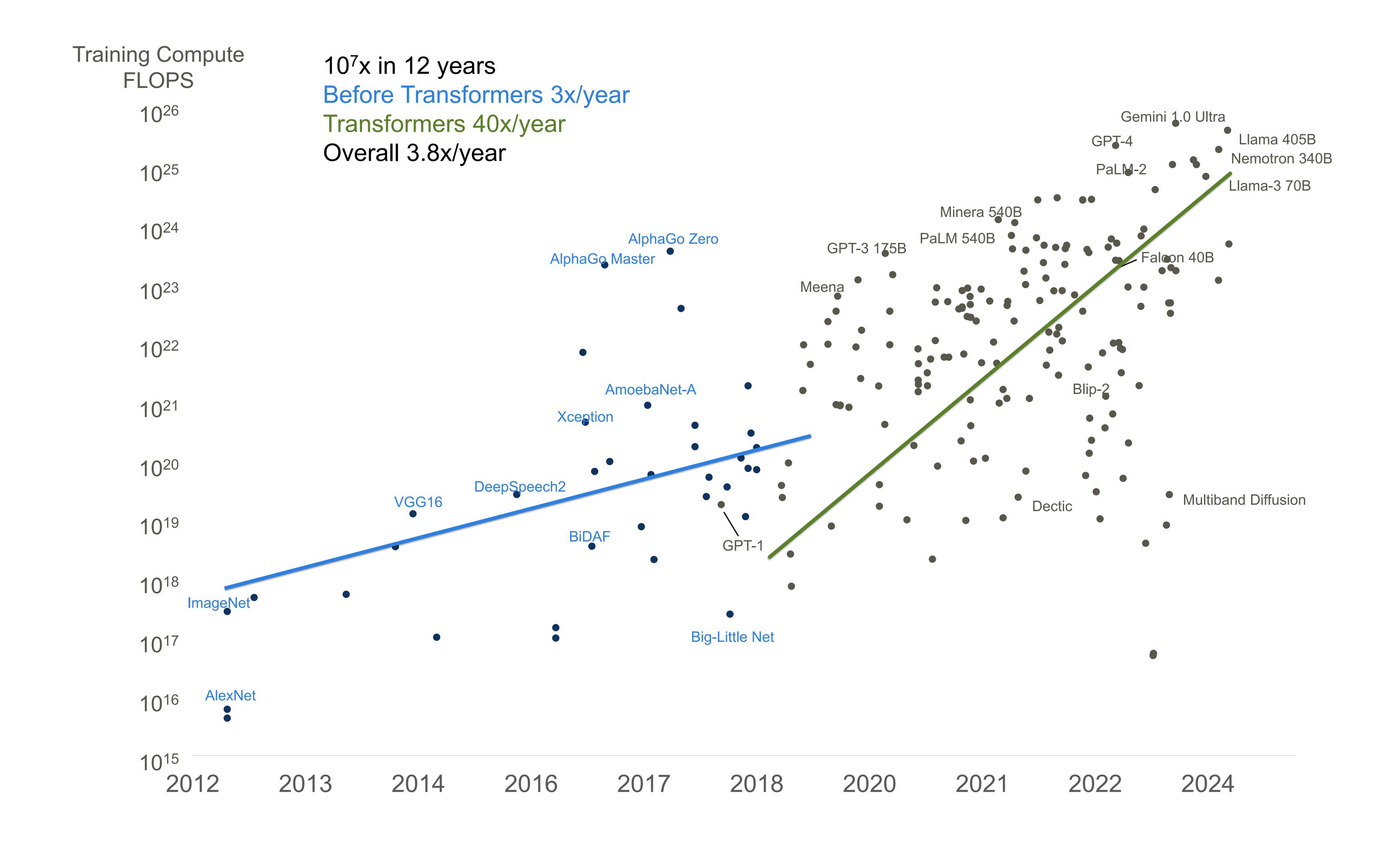
Fixing Al's energy crisis

Hardware that consumes less power will reduce artificial intelligence's appetite for energy. But transparency about its carbon footprint is still needed.

By Katherine Bourzac



FLOPS to Train a Model vs Calendar Year

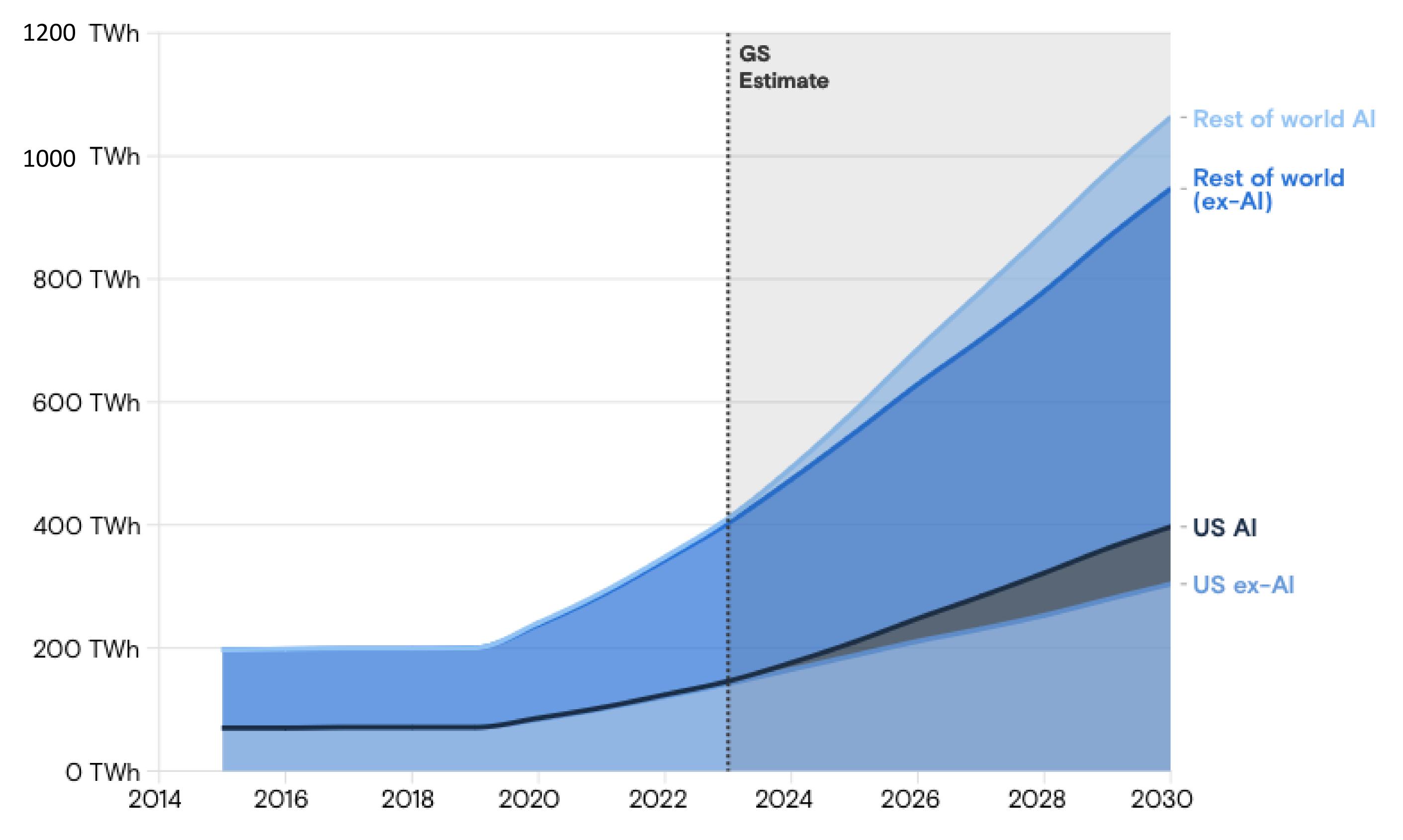


Each model is taking more Ops (training and inference)

We are also deploying more models

for more applications

Data center power demand



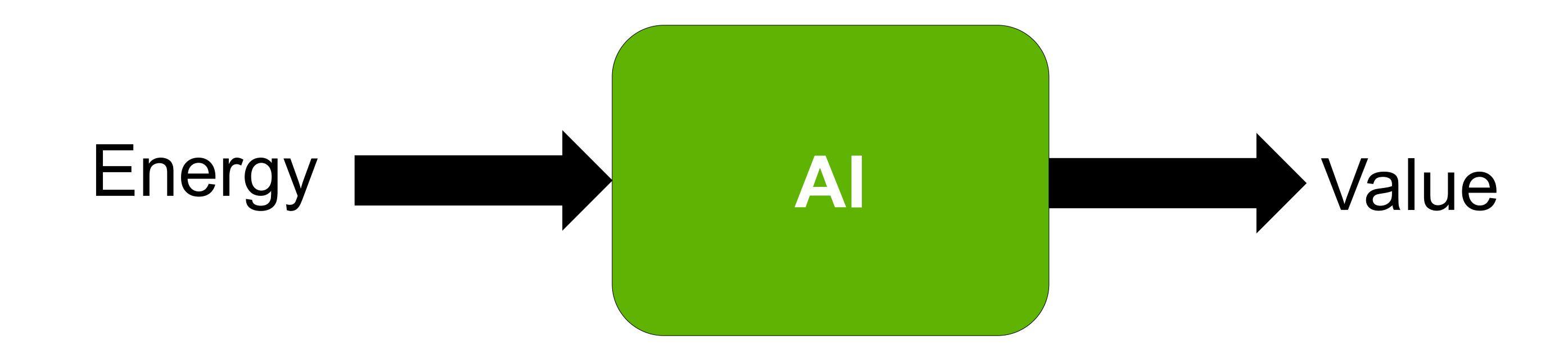
Source: Masanet et al. (2020), Cisco, IEA, Goldman Sachs Research

Trends driving increased deployment of Al

Larger LLMs

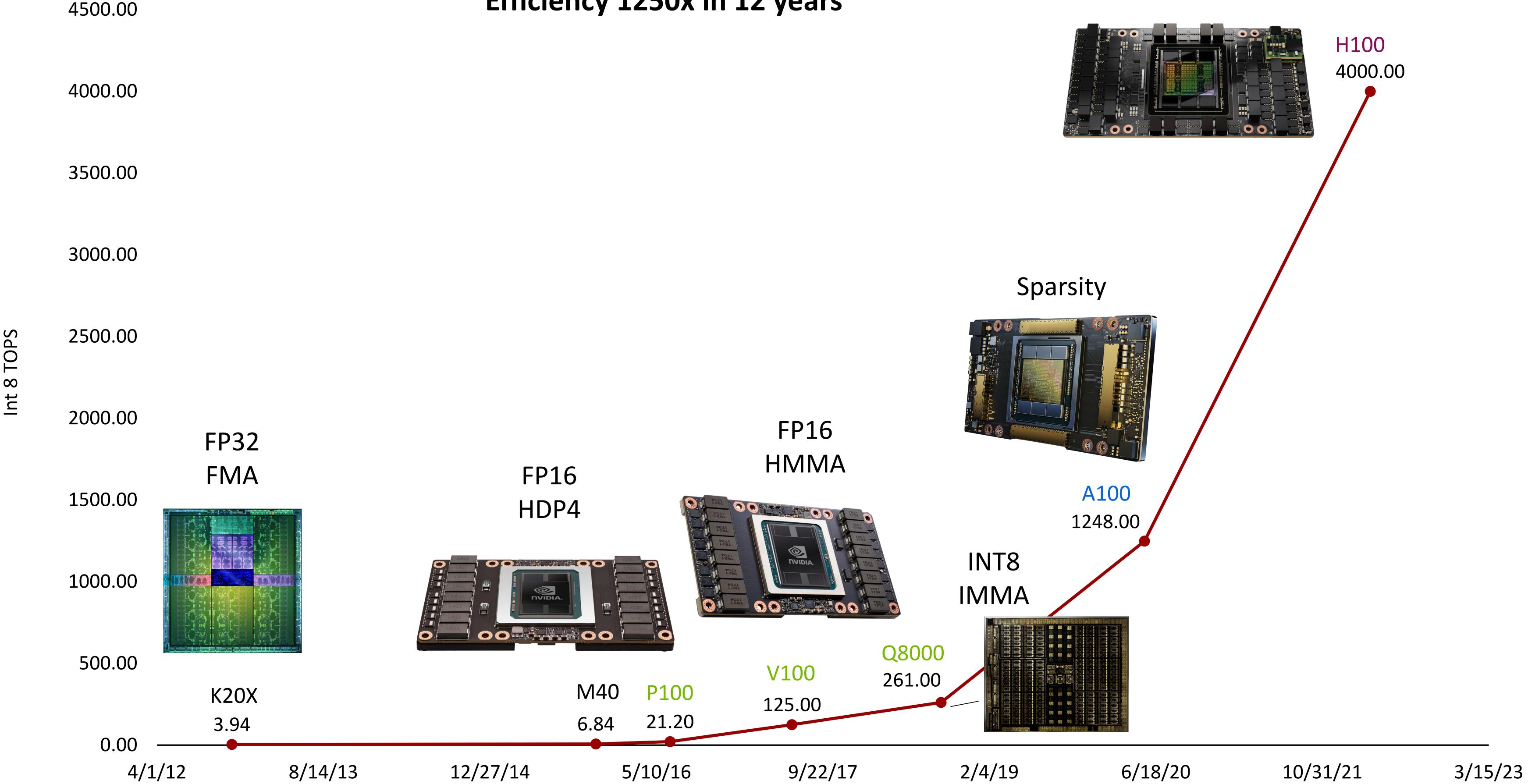
More applications: medicine, education, science, entertainment, engineering, software corporate productivity

Multiple-pass inference (chain-of-thought, eg., GPT4-o1)



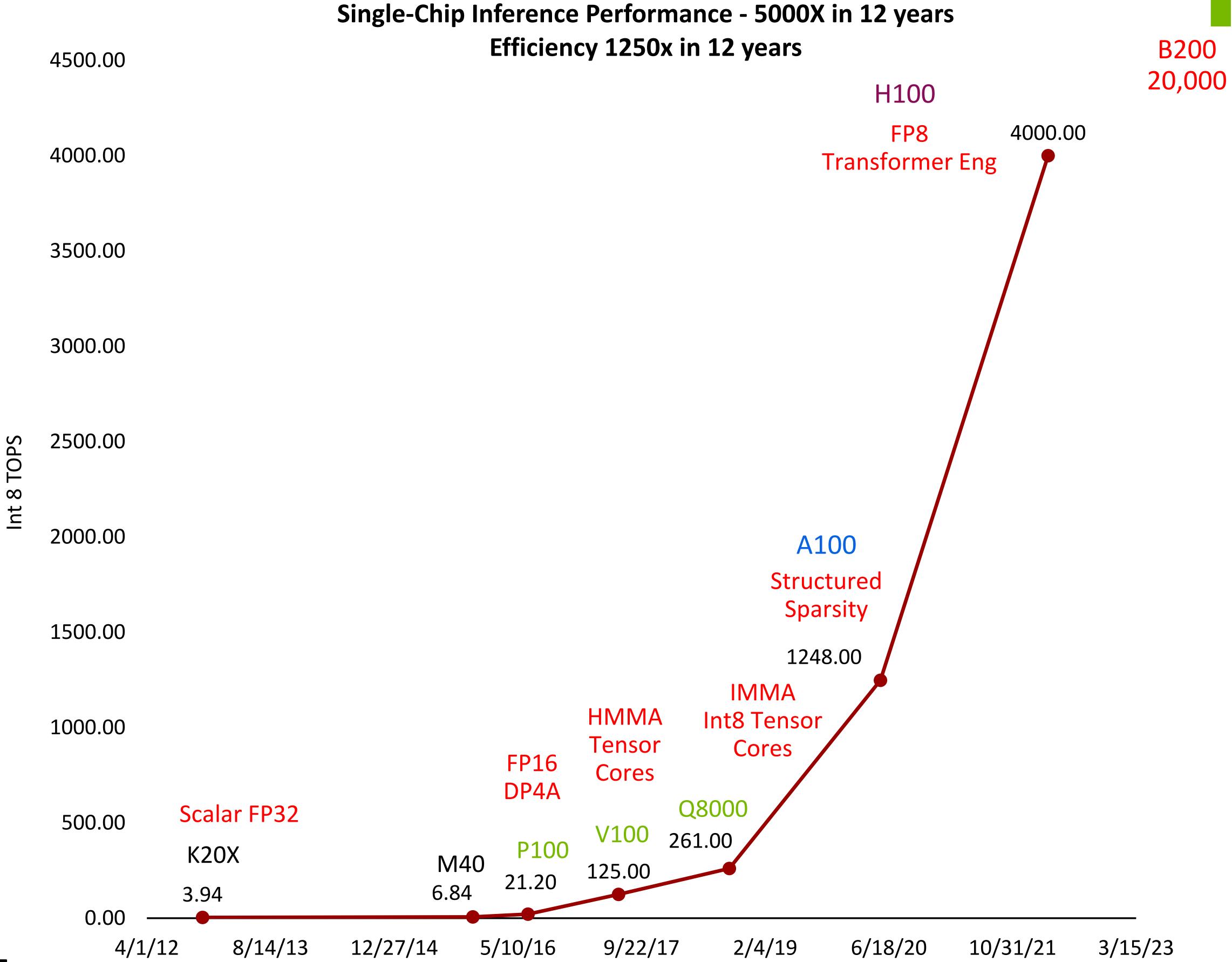
Huge increase in demand has been offset by large increase in efficiency

Single-Chip Inference Performance – 5000x in 12 years Efficiency 1250x in 12 years



Gains from

- FP32, FP16, Int8, FP4
- (TF32, BF16)
- ~16x, 32x
- Complex Instructions
 - DP4, HMMA, IMMA
 - ~12.5x
- Process
 - 28nm, 16nm, 7nm, 5nm, 4nm
 - $^{2}.5x$, ^{3}x
- Sparsity ~2x
- Die Size 2x
- Model efficiency has also improved overall gain > 1000x



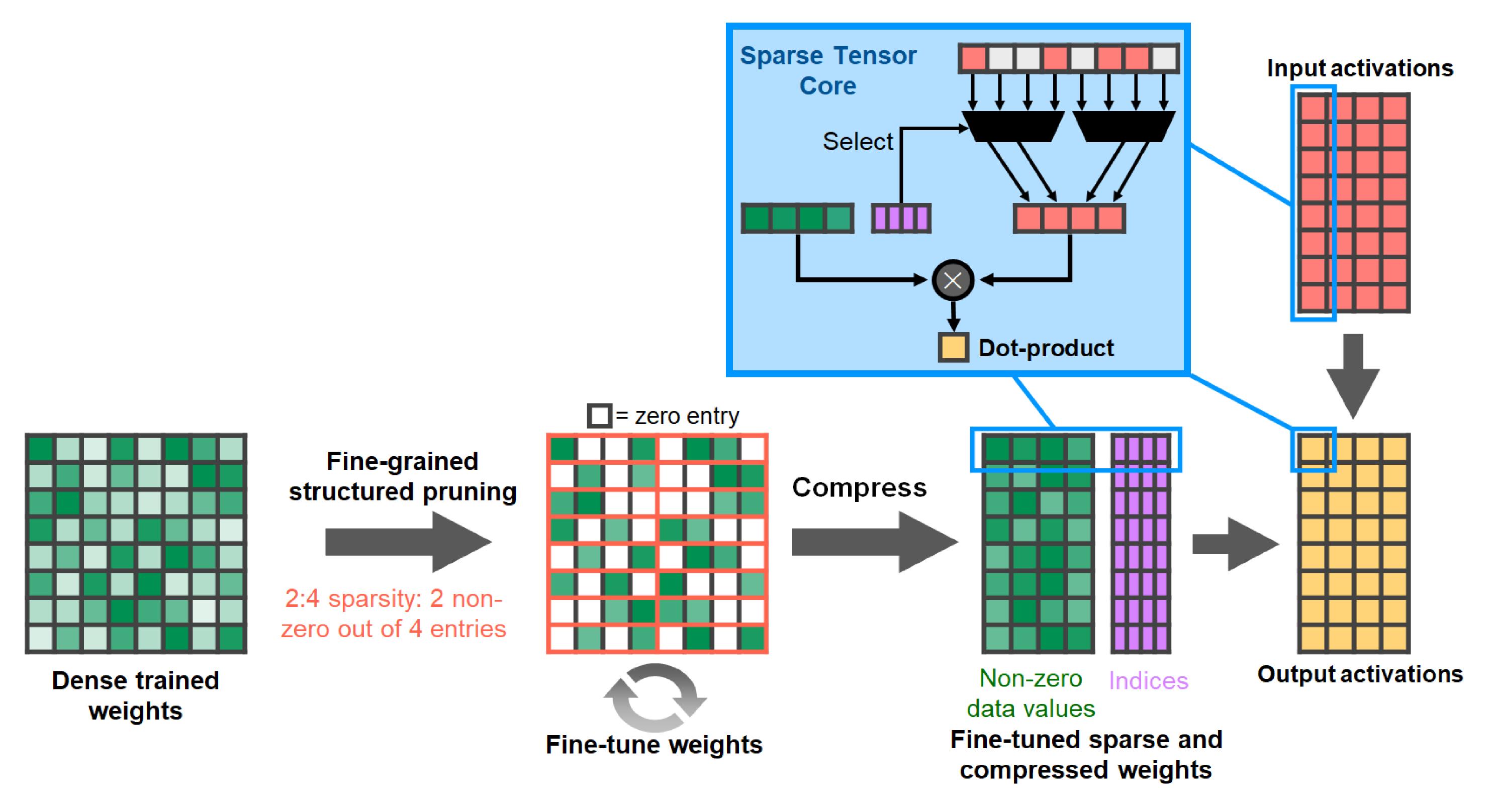
Specialized Instructions Amortize Overhead

Operation	Energy**	Overhead*
HFMA	1.5pJ	200%
HDP4A	6.0pJ	500%
HMA	110pJ	22%
IMA	160pJ	16%

^{*}Overhead is instruction fetch, decode, and operand fetch – 30pJ

^{**}Energy numbers from 45nm process

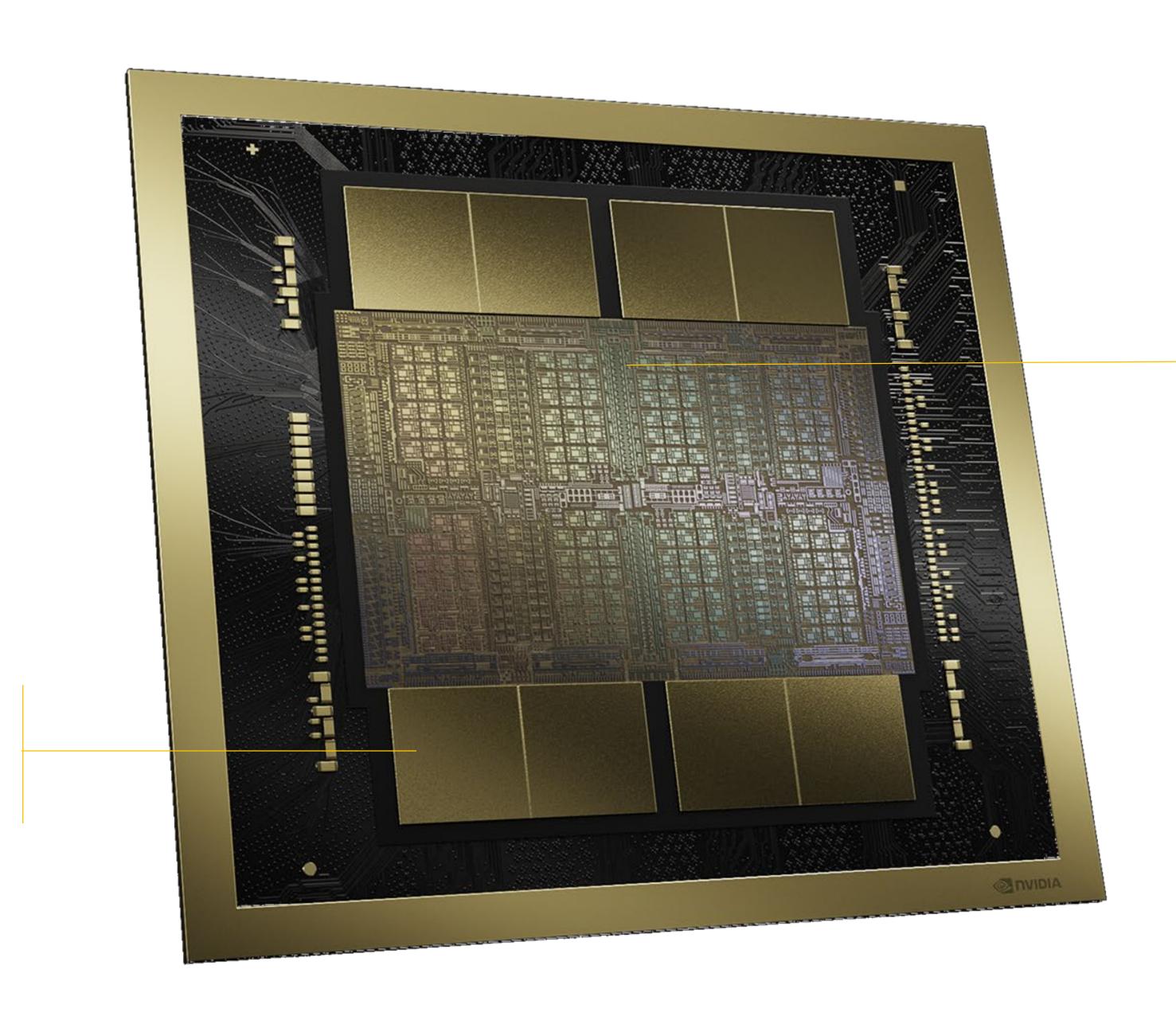
Structured Sparsity



Mishra, Asit, et al. "Accelerating sparse deep neural networks." arXiv preprint arXiv:2104.08378 (2021)

Blackwell B200

The Two Largest Dies Possible—Unified as One GPU



Fast Memory

192GB HBM3e

2 reticle-limited dies operate as One Unified CUDA GPU

NV-HBI 10TB/s High Bandwidth Interface

Full performance. No compromises

4X Training | 30X Inference | 25X Energy Efficiency & TCO

10 PetaFLOPS FP8 | 20 PetaFLOPS FP4 192GB HBM3e | 8 TB/sec HBM Bandwidth | 1.8TB/s NVLink

GB200 NVL72

Delivers New Unit of Compute

36 GRACE CPUs

GB200 NVL72 72 BLACKWELL GPUs

Fully Connected NVLink Switch Rack

Training 720 PFLOPs

Inference 1.4 EFLOPs

NVL Model Size 27T params

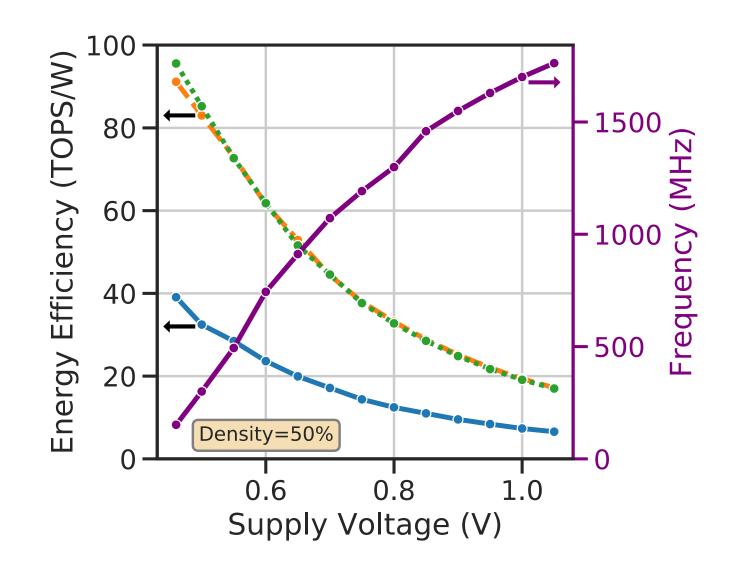
Multi-Node All-to-All 130 TB/s

Multi-Node All-Reduce 260 TB/s

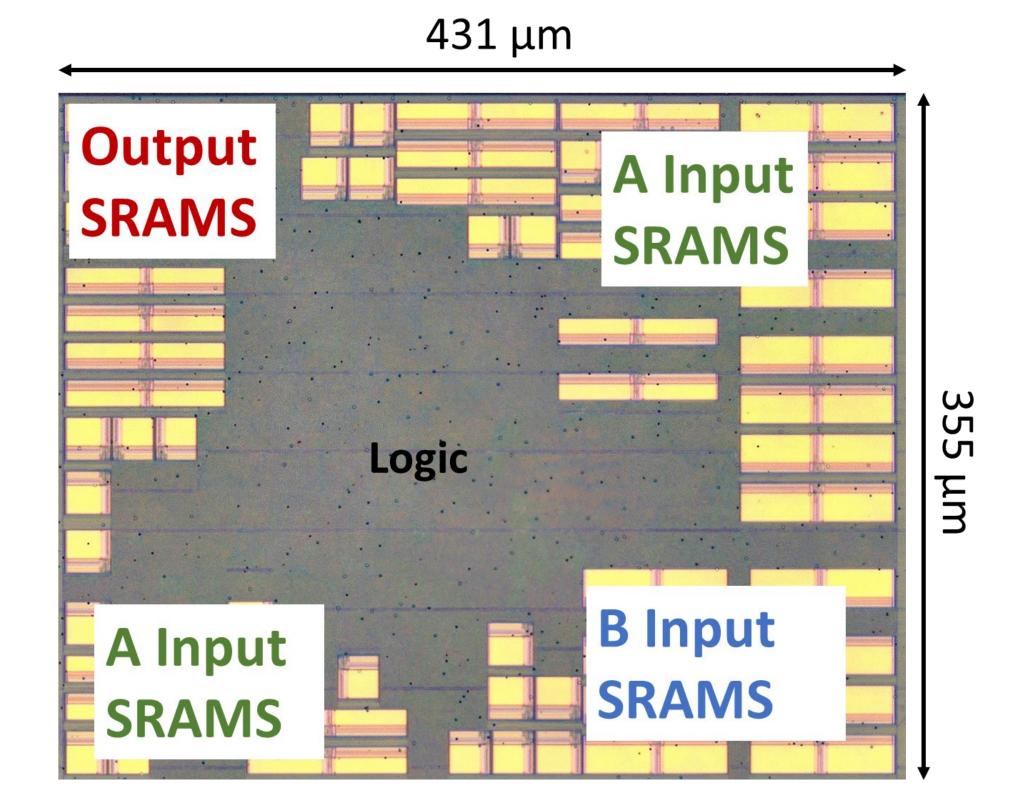
Energy-efficient DL Inference accelerator

Transformers, VS-Quant INT4, TSMC 5nm

- Efficient architecture
 - Used MAGNet [Venkatesan et al., ICCAD 2019] to design a low-precision DL inference accelerator for Transformers
 - Multi-level dataflow to improve data reuse and energy efficiency
- Low-precision data format: VS-Quant INT4
 - Hardware-software techniques to tolerate quantization error
 - Enable low cost multiply-accumulate (MAC) operations
 - Reduce storage and data movement
- Special function units



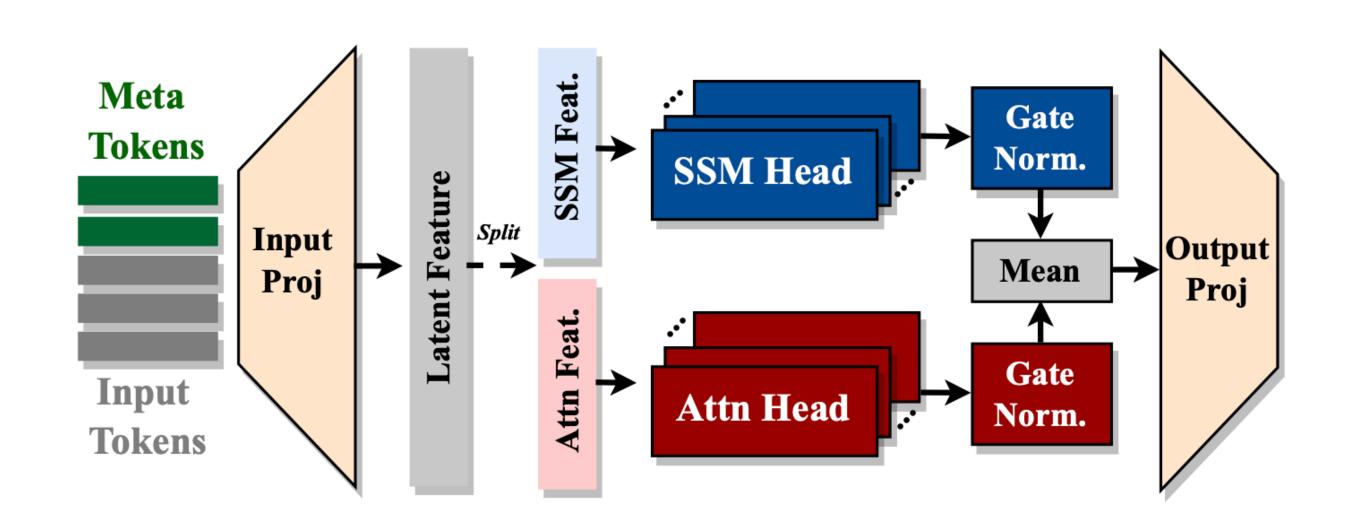
- 95.6 TOPS/W with 50%-dense 4-bit input matrices with VSQ enabled at 0.46V
- 0.8% energy overhead from VSQ support with 50%dense inputs at 0.67V

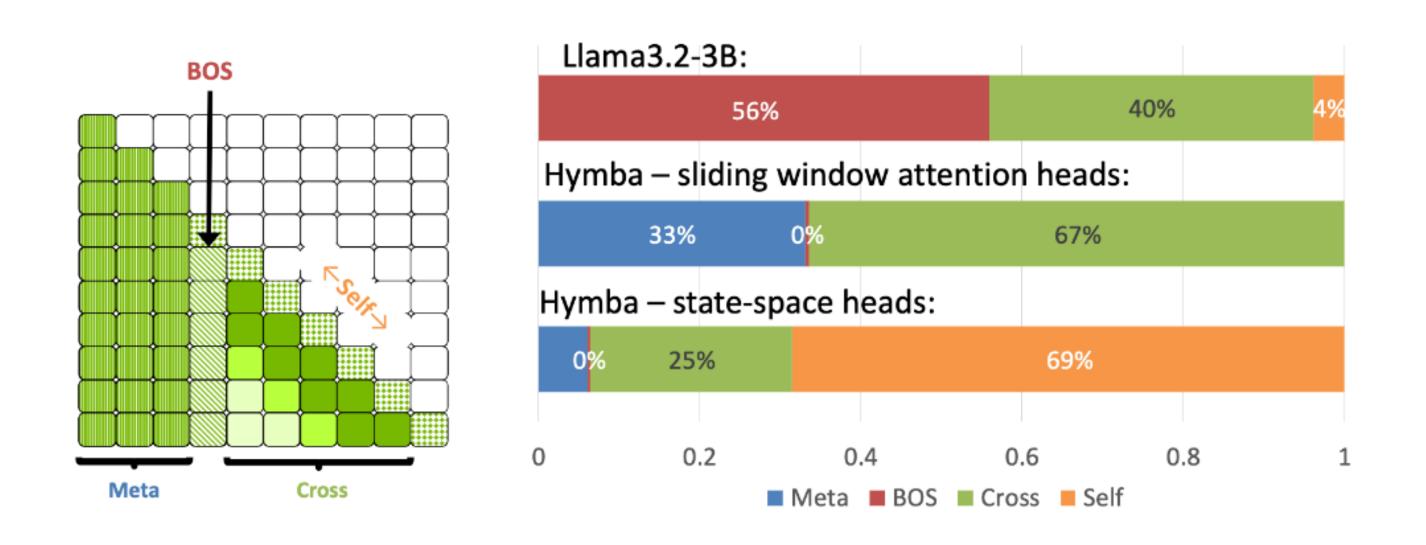


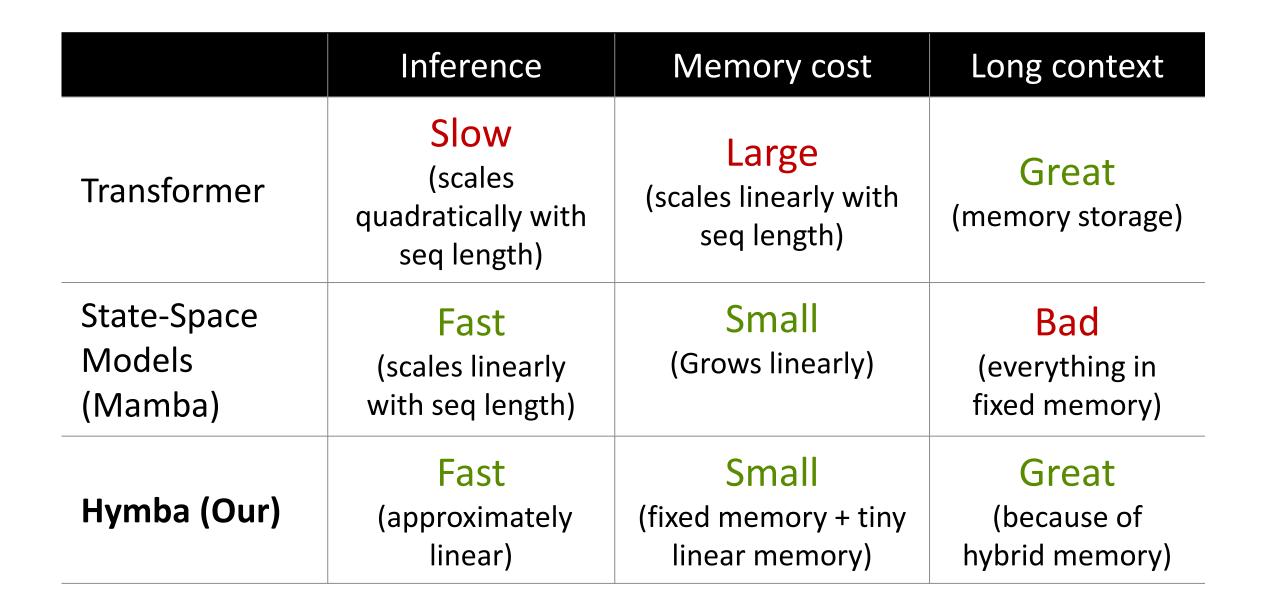
- TSMC 5nm
- 1024 4-bit MACs/cycle (512 8-bit)
- 0.153 mm² chip
- Voltage range: 0.46V − 1.05V
- Frequency range: 152 MHz 1760 MHz

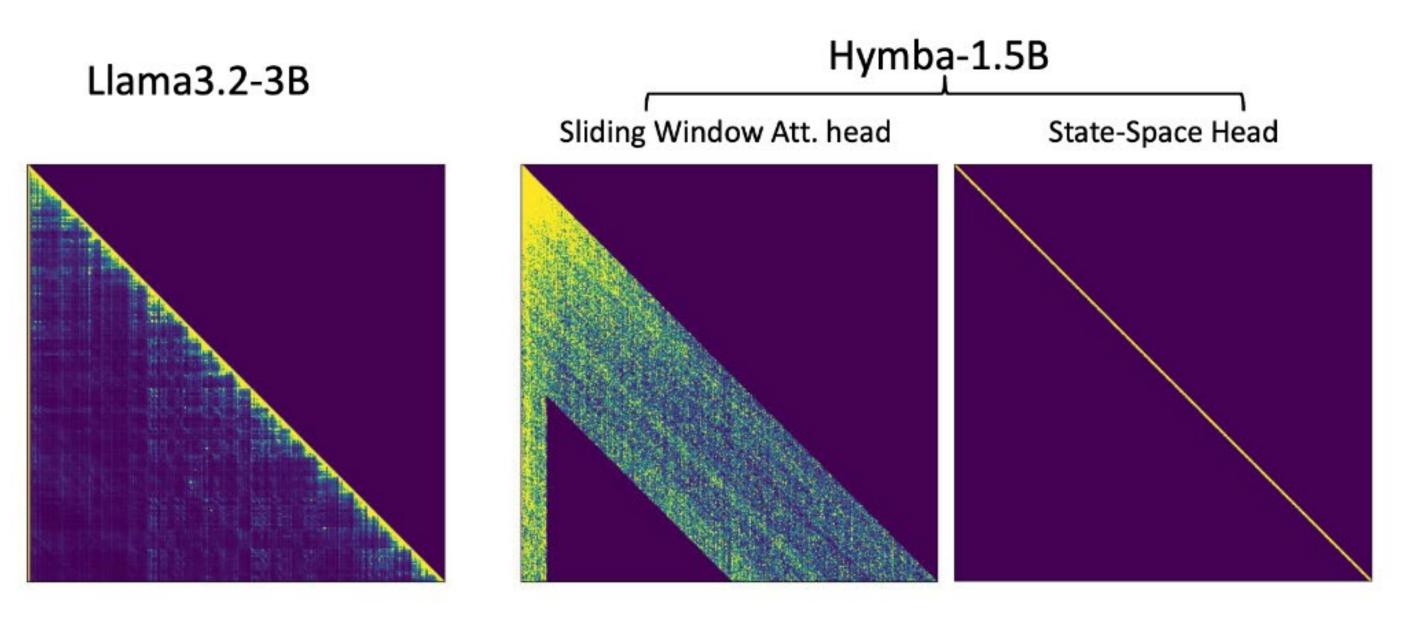
More efficient models

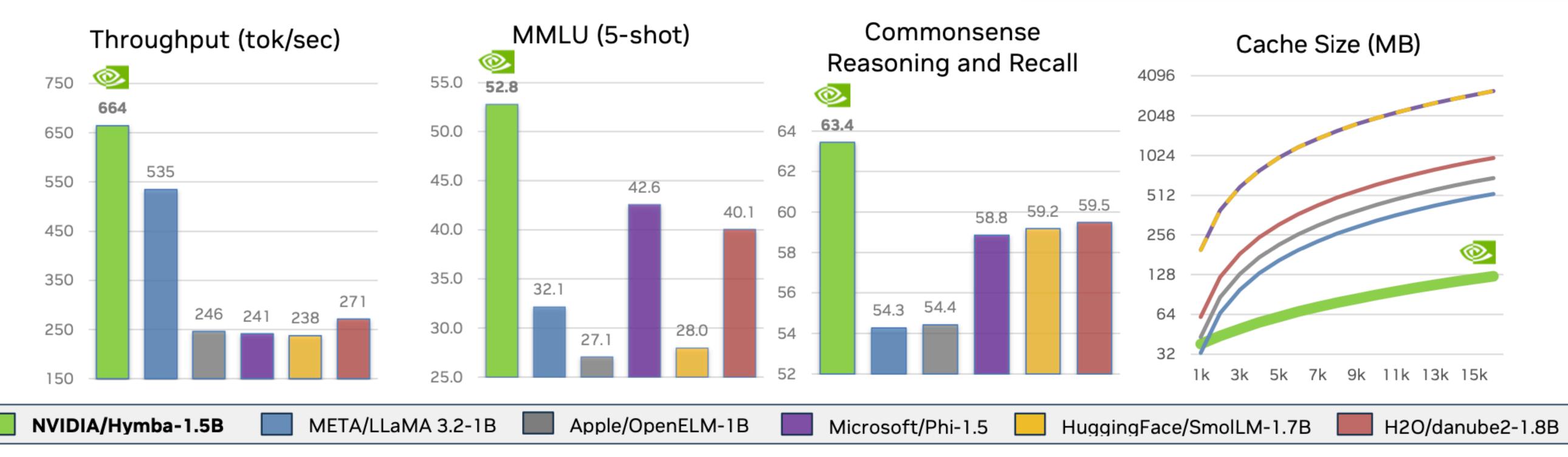
Hymba: Hybrid-Head Architecture for Small Language Models



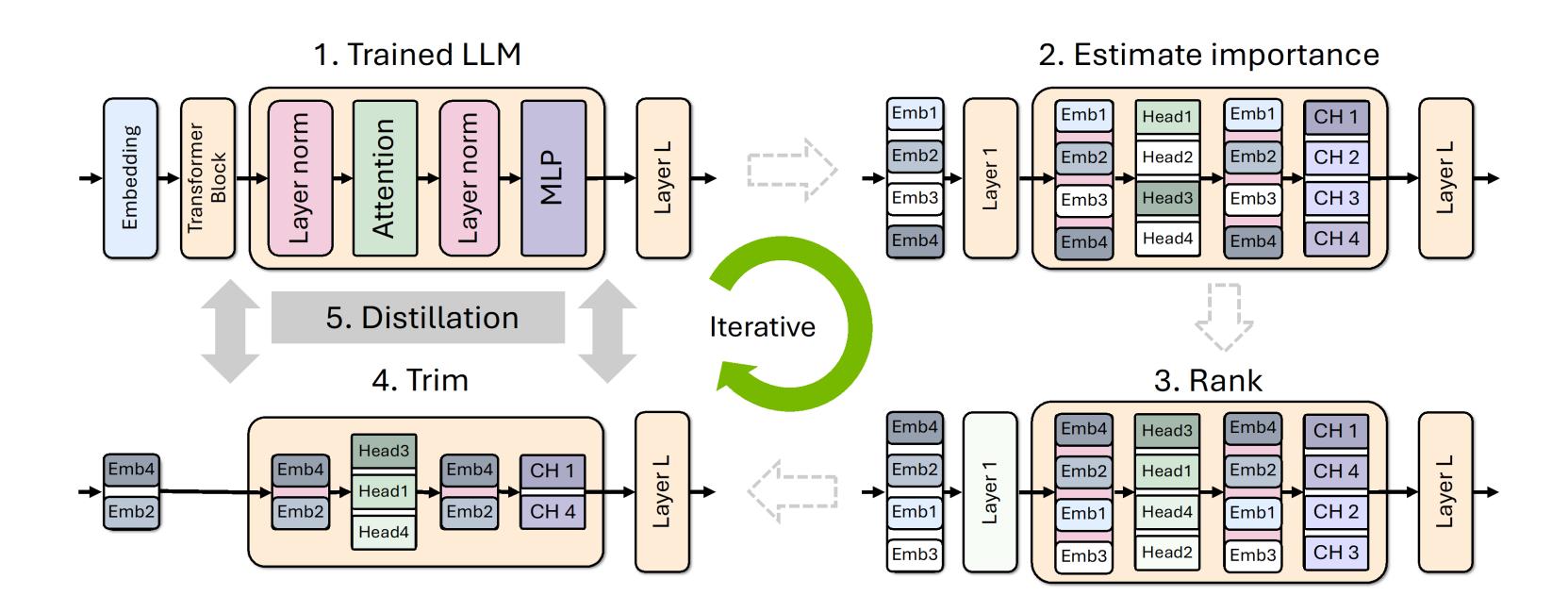


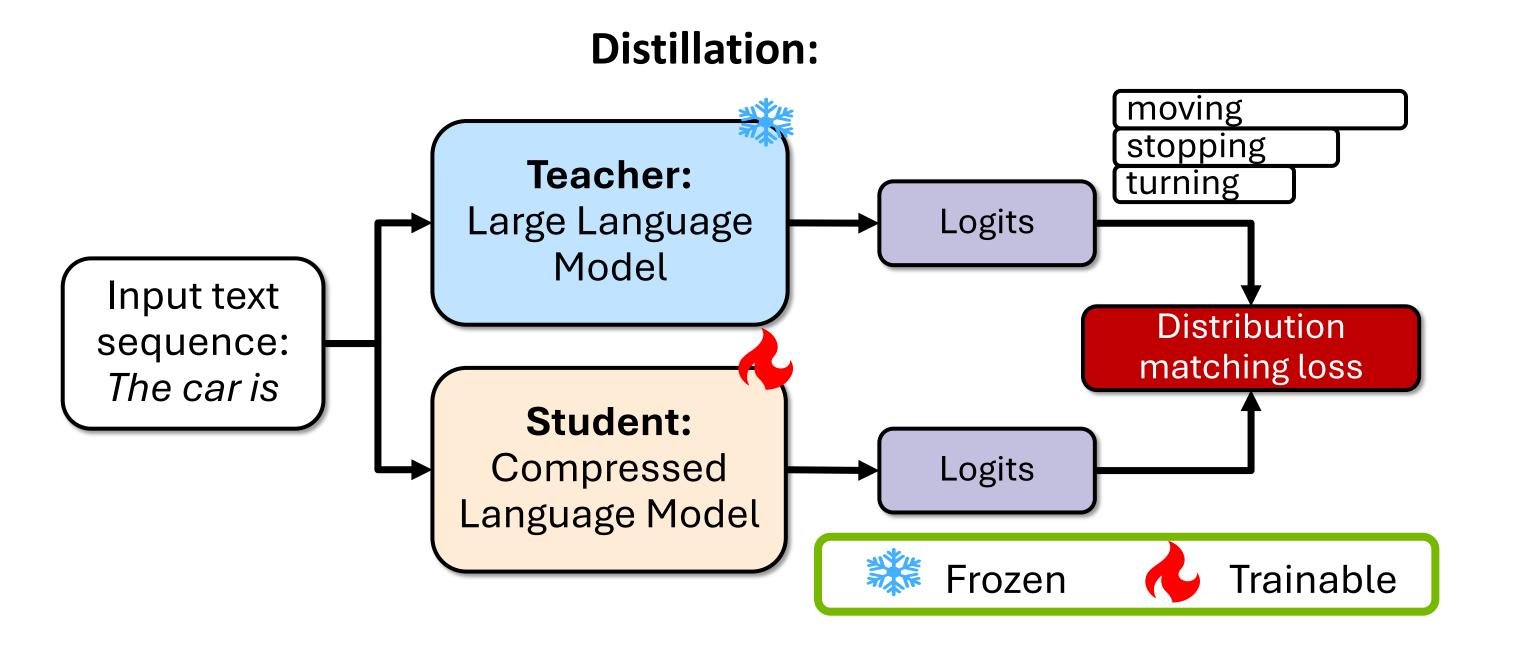


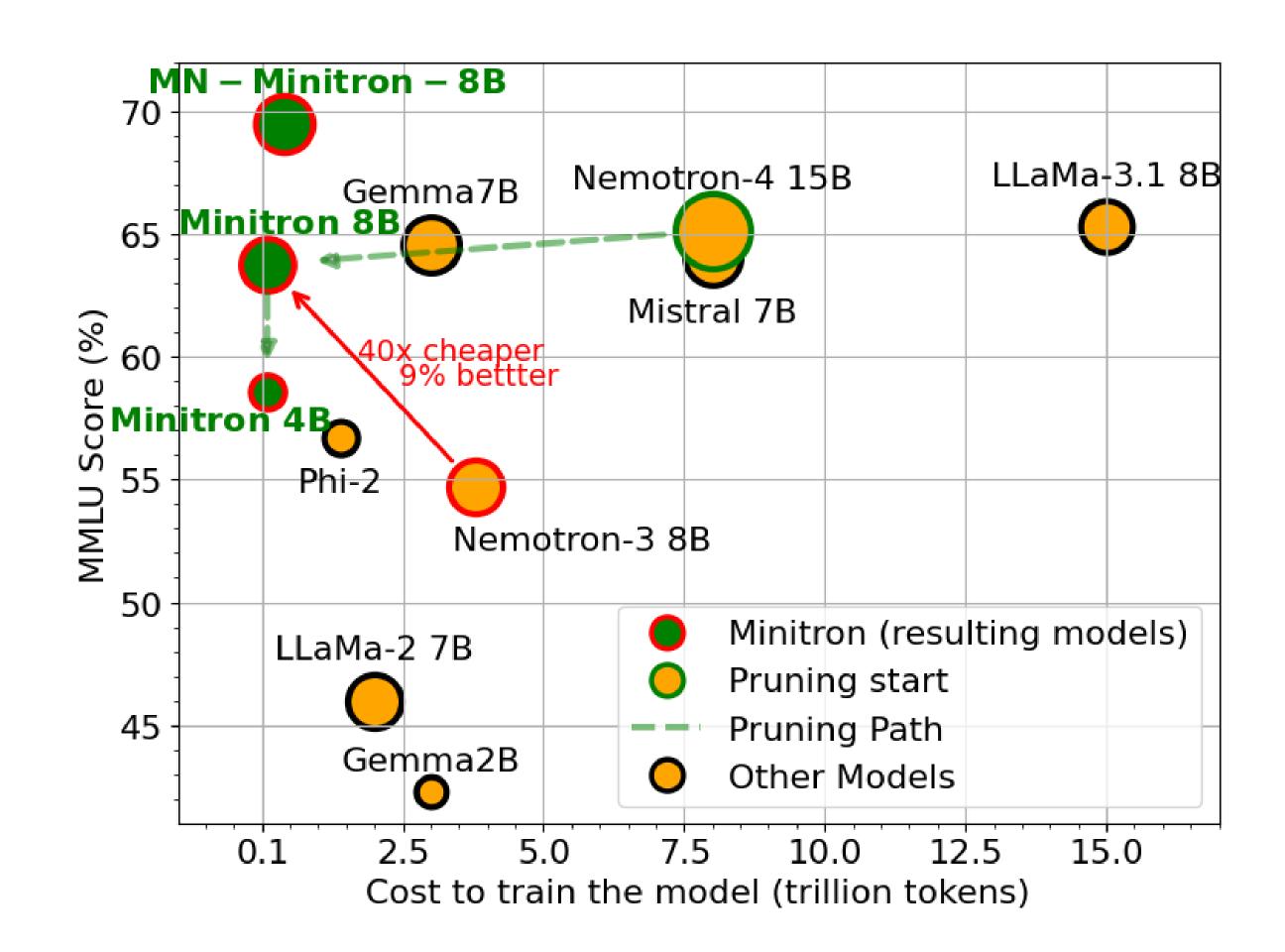




Minitron: Compact Models via Pruning and Distillation







Benchmark	LLaMa-3	Mistral 7B	Gemma 7B	MN-Minitron 8B
Training tokens	15T	8T	6T	0.4T
General knowledge	65	64.1	64	69.5
Summarization	31	4.8	17	32
Reasoning	78	78.5	78	80.4
Coding	28	28.7	32	36.2

Conclusion

Conclusion

- Energy demands of deep learning are growing rapidly
 - Larger models, more data training cost growing 40x/year
 - More applications, wider deployment
 - Deeper inference chain of thought
- Demand partially offset by improved efficiency
- 1250x Improvement in hardware efficiency
 - Number representation
 - Sparsity
 - Complex instructions (MMA)
- Large gains in software efficiency
 - Hybrid state-space/transformer models
 - Distillation to smaller models, specialized models
- Efficiency will continue to improve
 - Better sparsity, number representation, data movement (10x)
 - More efficient, specialized models (10-100x)

