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Each model is taking more Ops (training and inference)

We are also deploying more models

for more applications
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Trends driving increased deployment of AI

Larger LLMs

More applications: medicine, education, science, 
entertainment, engineering, software corporate productivity

Multiple-pass inference (chain-of-thought, eg., GPT4-o1)



AIEnergy Value



Huge increase in demand has been offset by large increase in 
efficiency
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Gains from

• Number Representation
• FP32, FP16, Int8, FP4
• (TF32, BF16)
• ~16x, 32x

• Complex Instructions
• DP4, HMMA, IMMA
• ~12.5x

• Process 
• 28nm, 16nm, 7nm, 5nm, 4nm
• ~2.5x, 3x

• Sparsity  ~2x

• Die Size 2x

• Model efficiency has also improved – 
overall gain > 1000x
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Specialized Instructions Amortize Overhead

Operation Energy** Overhead*

HFMA 1.5pJ 2000%

HDP4A 6.0pJ 500%

HMMA 110pJ 22%

IMMA 160pJ 16%

*Overhead is instruction fetch, decode, and operand fetch – 30pJ
**Energy numbers from 45nm process



Structured Sparsity

NVIDIA A100 Tensor Core GPU Architecture whitepaper

Mishra, Asit, et al. "Accelerating sparse deep neural networks." arXiv preprint arXiv:2104.08378 (2021)

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf


Blackwell B200
The Two Largest Dies Possible—Unified as One GPU

10 PetaFLOPS FP8  |  20 PetaFLOPS FP4
192GB HBM3e  |  8 TB/sec HBM Bandwidth  |  1.8TB/s NVLink

2 reticle-limited dies operate as One Unified CUDA GPU

NV-HBI 10TB/s High Bandwidth Interface

Full performance. No compromises

4X Training | 30X Inference | 25X Energy Efficiency & TCO

Fast Memory
192GB HBM3e



GB200 NVL72
Delivers New Unit of Compute

36 GRACE CPUs
72 BLACKWELL GPUs
Fully Connected NVLink Switch Rack

GB200 NVL72

Training 720 PFLOPs
Inference 1.4 EFLOPs
NVL Model Size 27T params
Multi-Node All-to-All 130 TB/s
Multi-Node All-Reduce 260 TB/s



Energy-efficient DL Inference accelerator 
Transformers, VS-Quant INT4, TSMC 5nm

• Efficient architecture
• Used MAGNet [Venkatesan et al., ICCAD 2019] to design a 

low-precision DL inference accelerator for Transformers
• Multi-level dataflow to improve data reuse and energy efficiency

• Low-precision data format: VS-Quant INT4 
• Hardware-software techniques to tolerate quantization error
• Enable low cost multiply-accumulate (MAC) operations
• Reduce storage and data movement

• Special function units

• TSMC 5nm
• 1024 4-bit MACs/cycle (512 8-bit)
• 0.153 mm2 chip
• Voltage range: 0.46V – 1.05V
• Frequency range: 152 MHz – 1760 MHz

• 95.6 TOPS/W with 50%-dense 4-bit input matrices 
with VSQ enabled at 0.46V

• 0.8% energy overhead from VSQ support with 50%-
dense inputs at 0.67V

[Keller, Venkatesan, et al., “A 95.6-TOPS/W Deep Learning Inference Accelerator with Per-Vector Scaled 4-bit Quantization in 5nm”, JSSC 2023]



More efficient models
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Inference Memory cost Long context

Transformer
Slow
(scales 

quadratically with 
seq length)

Large
(scales linearly with 

seq length)

Great
(memory storage)

State-Space 
Models 
(Mamba)

Fast
(scales linearly 

with seq length)

Small
(Grows linearly)

Bad 
(everything in 
fixed memory)

Hymba (Our)
Fast

(approximately 
linear)

Small 
(fixed memory + tiny 

linear memory)

Great
(because of 

hybrid memory)

Hymba: Hybrid-Head Architecture for Small Language Models
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Minitron: Compact Models via Pruning and Distillation

Methodology:

Details: “LLM Pruning and Distillation in Practice: The Minitron Approach”, NVIDIA, arxiv: https://arxiv.org/abs/2408.11796, 2024

Frozen Trainable

Distillation:

Teacher:
Large Language 

Model
Input text 

sequence:
The car is 

Student:
Compressed 

Language Model

Logits

Logits

Distribution 
matching loss

moving
stopping
turning

Benchmark LLaMa-3 Mistral 7B Gemma 7B MN-Minitron 8B

Training tokens 15T 8T 6T 0.4T

General 
knowledge 65 64.1 64 69.5

Summarization 31 4.8 17 32

Reasoning 78 78.5 78 80.4

Coding 28 28.7 32 36.2



Conclusion



Conclusion

• Energy demands of deep learning are growing rapidly
• Larger models, more data – training cost growing 40x/year
• More applications, wider deployment
• Deeper inference – chain of thought

• Demand partially offset by improved efficiency

• 1250x Improvement in hardware efficiency
• Number representation
• Sparsity
• Complex instructions (MMA)

• Large gains in software efficiency
• Hybrid state-space/transformer models
• Distillation to smaller models, specialized models

• Efficiency will continue to improve
• Better sparsity, number representation, data movement (10x)
• More efficient, specialized models (10-100x)
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