

National Institutes of Health (NIH) Bethesda Campus Central Utility Plant (CUP) Data-Driven Operational Excellence

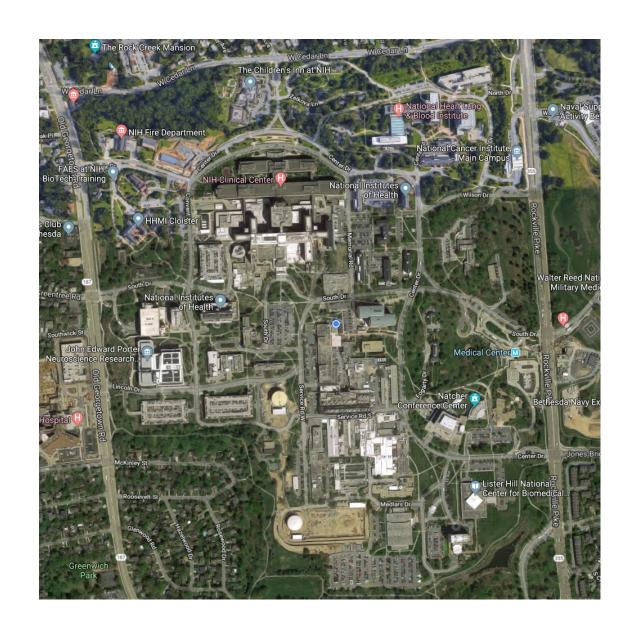
Dan Wheeland, P.E.

Director, Office of Research Facilities

National Institutes of Health

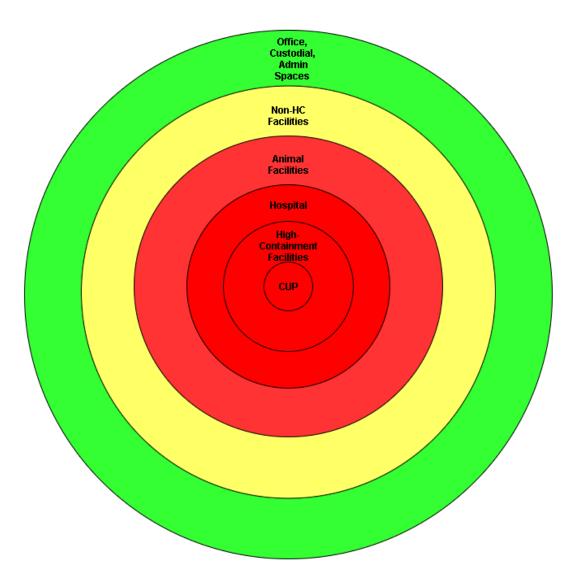
National Institutes of Health

- An Operating Division of the U.S. Department of Health and Human Services, NIH is the nation's medical research agency — making important discoveries that improve health and save lives.
- Annual funding ~ \$37 billion
- 27 biomedical research institutes
- Sites in Maryland, Montana and North Carolina



NIH's Bethesda Campus

- 75 buildings over 300 acres
- Total area~12 million sf, many stateof-the-art biomedical research facilities
- 240-Bed Research Hospital, including Special Clinical Studies Unit
- Research Labs, some housing infectious disease research
- Research Animal Housing
- One-pass air for biosafety
- Clean rooms for cell therapy, drug compounding, intravenous admixtures tailored to unique patient needs
- High Performance Data Center



What Makes NIH CUP So Special?

- Reliability is crucial for the <u>mission</u> <u>critical spaces</u> served
 - High Containment Facilities
 - Research Labs
 - Animal facilities
 - World Renowned Research Hospital

NO CUP = NO FUNCTIONING NIH

- Prior to 2014, the CUP was managed by the Division of Facilities Operation, which placed
 pressure on Building Maintenance leadership to balance the needs of customers with the
 needs of the CUP; over time, customer demands were causing the CUP to be neglected.
- In 2014, we reorganized in a manner that Building Maintenance was led by one division and the CUP was managed by another; this seems to work better for NIH. It does, however, require that the two Divisions work well together. In practice, this resembles a typical utility provider building owner relationship utilities are provided up to the 5' line or meter.
- Pride, performance, professionalism and accountability seem to be enhanced when managers effectively align the workforce to the real property assets; alignment could be by building, building system, or a combination/matrix.
- Related: prior to 2014, the primary focus of the CUP was on meeting the cooling/heating demand (at any cost); there were no tangible goals regarding efficiency, a behavior which was reinforced by the budgetary environment that treated utilities as a non-discretionary bill that is not as heavily scrutinized as other budget areas. For example, on a hot day, 12 chillers were energized. Now, with new alignment, efficiency is a high priority.
- While the rest of this presentation is technical in nature, the organizational alignment, organizational priorities and performance measurement aspects are heavily related with these technical advances.

Division of Facilities Planning (DFP) Rick Herring

Office of Acquisitions (OA)

Division of Facilities Operations & Maintenance (DFOM) Donna Phillips

Division of Technical Resources (DTR) Farhad Memarzadeh

Division of Environmental Protection (DEP) Kenny Floyd

Chief Engineer Tony Clifford

Chief Architect
Dan Cushing

Division of Budget and Financial Management (DBFM) Victoria Ward

Division of Design and Construction Management (DDCM) Jeff McCoy

Division of Facilities Stewardship (DFS) Bob McDonald

Office of Hospital
Physical
Environment
(OHPE)
Rozario (Tony)
Francis

CUP Organizational Structure

	Utility Systems Design and Technical Service Branch (HI	IAM967)		
	Main Phone: 301-594-7123			
Haghjou, Marty	Branch Chief	301-402-7811		
Abdelsalam, Amir	Mechanical Engineer	301-594-0118		
ear, Brenda*	Divsion of Technical Resources	301-881-3500		
Bhuiyan, Abdul, PhD, PE	Supvervisory General Engineer - Branch Chief USDTSB, DTR	301-451-4954		
Blatzheim, Michael*	Division of Technical Resources	703-533-0039		
gan, John J.	Project Officer	301-451-6361		
ratangelo, John	General Engineer	301-451-1949		
assise, Kevin*	Division of Technical Resources	301-881-5120		
ee, Shawn, PE	Electrical Engineer	301-402-3765		
uccese, Joseph*	Division of Technical Resources	717-814-5498		
luise, Ryan*	Divsion of Technical Resources	703-533-0039		
Oberholzer, Raymond*	Division of Technical Resources	240-543-5724		
Smalls, Wayne P.	Electrical Engineer	301-402-8135		
/iering, Arthur*	Division of Technical Resources	301-339-5480		
Vodka, Brian*	Division of Technical Resources	410-576-0505		
	Utilities Engineering Branch (HNAM965)			
	Main Phone: 301-443-5680			
Guan, Don, PhD, PE	Branch Chief	301-443-5585		
Battick, Kevin*	Division of Technical Resources	703-932-5261		
Brugh, Timothy*	Division of Technical Resources	574-339-7310		
Clifford, Brian	General Engineer	301-435-7335		
Corey, Kayla		301-451-4469		
Hu, Ping	Maximo Data Support	301-451-4478		
luang, Alex	Mechanical Engineer	301-451-1328		
ohn, Brendan*		631-338-5338		
Greenivasan, Ram		301-443-5585		
Гао, Ye*	Division of Technical Resources	269-982-2414		
Forkashvan, Kayvan	General Engineer	200 502 2121		
rang, Andrew	School Engineer	240-204-1210		
J.	Utilities Generation Branch (HNAM964) Main Phone: 301-451-4478			
Nieves, Joseph D.	Fax: 301-402-0401 Branch Chief	301-451-4478		
Varren, Sharon	Program Assistant	301-451-4469		
Bentley, Bob	Trogram Assistant	301-451-4995		
Cooley, Robert		301-451-4469		
Deng, Curtis	Student Trainee (Admin Support)	301-402-0375		
ox, Johnnie	Central Utility Plant Operation (Leader)	301-402-03/3		
•	Division of Technical Resources	301-429-1533		
Gordon, Joseph				
Gumapas, Leo, PE	Environmental Compliance Officer	301-832-4320 301-496-9040		
till, Terrance	Boiler Plant Operator			
lughes, Casey*	Administrative Assistant - Technician - Clerk	301-827-6505		
yon, Chris *		301-451-1188		
1a, Haitao	Engineer civil, mechanical	301-594-1124		
Madden, Brian*	Division of Technical Resources	301-451-9398		
Dormazdi, Armin		301-451-3998		
Ramcharan, Shivan*	Purchaser, Inventory Control	301-451-4576		
Ramcharan, Tiffany	Student Trainee (Admin Support)	301-402-0375		
Showe, James		301-451-4494		
homas, Ahmon	High Voltage Electrician	301-451-4469		
/elazquez-Cruz, Daniel				
Visehart, Eric	Maximo Administrator	301-402-0375		

CUP Organizational Structure (Continued)

	Central Utility Plant Operation & Mainte	nance
Mayberry, Donald	Chief (CUP) Operation and Maintenance	301-451-3593
Sadler, Dax	Mechanical Maintenance Supervisor	301-451-1188
Brewer, Anthony	Maintenance Mechanic (Boiler Leader)	301-451-4475
Cannon, Paul E.	Maintenance Mechanic	301-451-1188
Clark, Jamie	Maintenance Mechanic	301-451-1188
Duong, Cuong	Maintenance Mechanic	301-451-1188
Harrod, Anthony	Maintenance Mechanic	301-451-3593
Hawkins, Darrell	Maintenance Mechanic (Chill Leader)	301-451-1188
Martin, James M.	Maintenance Mechanic	301-451-4475
Messer, Timothy	Maintenance Mechanic	301-451-1188
	Cogeneration Plant Operation	
	Main Phone: 301-402-5522	
Prideaux, Michael*	(CRO) Control Room Operator	301-402-5522
Weibert, Scott*	Plant Manager	301-402-5522
	CUP Operation & Maintenance (Shift	A)
England, Milton	Boiler Plant Operator (Supervisor)	301-451-4489
Pickens, Benjamin C.	Boiler Plant Operator (Leader)	301-451-4489
	CUP Operation & Maintenance (Shift	B)
Jones, Brian	Boiler Plant Operator (Supervisor)	301-451-4493
	CUP Operation & Maintenance (Shift	
Reid, Darius	Boiler Plant Operator (Supervisor)	301-451-4492
Washington, Edward	Boiler Plant Operator (Leader)	301-451-4494
Cooke, Kelvin E.	Central Utility Plant Operation	301-451-4475
Fuqua, Larry A.	Boiler Plant Operator Supervisor	301-451-3593
	Utilities Control & Instrumentation Se	ection
	Main Phone: 240-507-3290	
Vergara, Andres	Chief Utilities Control and Instrumentation Section	301-451-3527
Belcher, John	Instrument Lab (Supervisor)	301-451-4476
Armstrong, Joseph	High Voltage Electrician	301-451-3527
Asano, Tiyo	Division of Technical Resources	301-451-3527
Foye, Glenwood	High Voltage Electrician (Leader)	301-496-2719
Gomes, Andrew, PhD	Physical Scientist	301-435-2107
Hooks, Nicholas		301-451-4469
Huffman, Kevin	High Voltage Electrician	301-451-4487
Lawrence, Thomas M.	Instrument Technician	301-451-4488
Meyer, David	Program Support, Asset Manager	301-451-2454
Mundy, James	High Voltage Electrician	301-451-4488
Pajardo, Joseph	High Voltage Electrician	301-451-3527
Taluckder, Mohammed	Shift Electrician	301-451-4488
Tolbert, Brandon	Electrical Supervisor	301-496-2719
Wagner, Brandon D.	Instrument Technician	301-451-3527
Young, William	Facility Operations and Maintenance staff	301-451-4487

CUP Organizational Structure (Continued)

	Utilities Distrib	ution Branch (HNAM966)		
Main Phone: 301-402-2848				
Moses, Daniel, PE	Branch Chief	301-402-2848		
Biser Jr. Donald	General Engineer	30 1-44 3-8124		
Daniels, Michael	Electrical Engineer	301-402-5593		
Goughnour, Mark	Engineering Technician	301-443-1567		
Leas, Douglas	Engineering Technician	301-451-4473		
Rand, Presley	Engineering Technician	301-451-4479		
Rendall, Frederick	Maintenance Mechanic	301-451-4469		
Sudek, George	Engineering Technician	301-594-0677		
Tran, William * indicates Contractor or Consultant	General Engineer	301-480-9872		

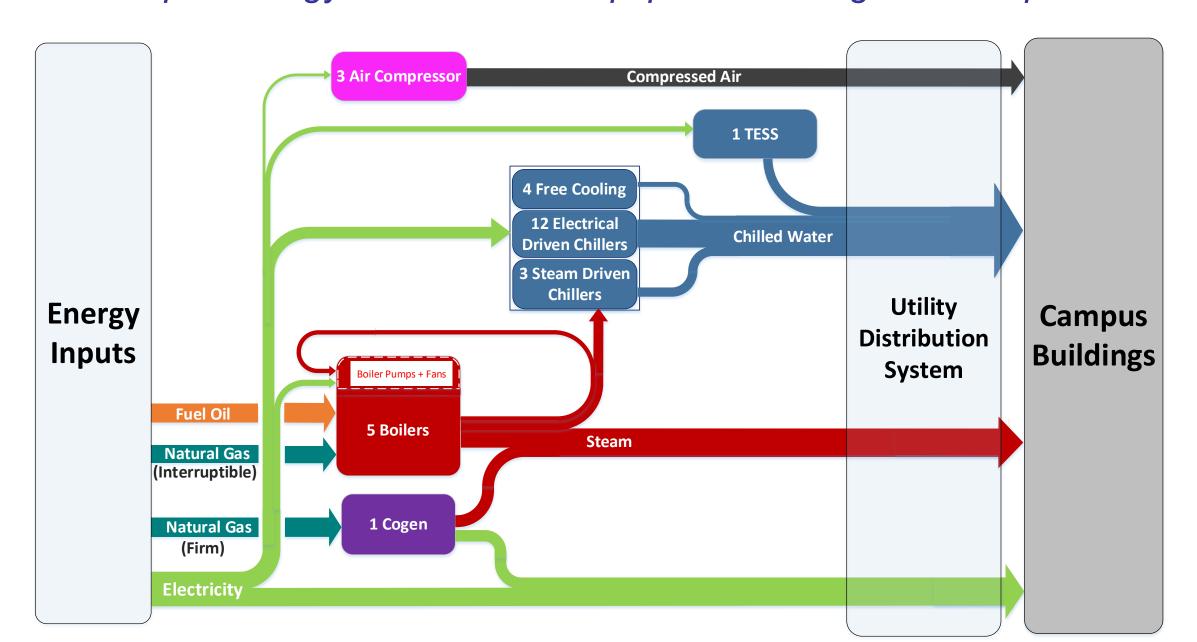
NIH Central Utility Plant (CUP) Overview



- One of the largest CUPs under one roof
 - Provides campus with chilled water, steam, electricity, and compressed air

CUP Components

- Twelve 5,000 Ton capacity chillers
- 7.9 million gal CHW thermal storage tank
- 5 million gal Industrial Water System
- Five gas/ diesel dual fuel fired boilers
 - 800 KPPH, 980 KPPH with Cogen
- Cogeneration Power Plant
- - One of the largest US government Cogen plants
 - 23 MW, 180KPPH steam (40% of campus demand)



Multiple Energy Sources and Equipment Configuration Options

Cogeneration Plant

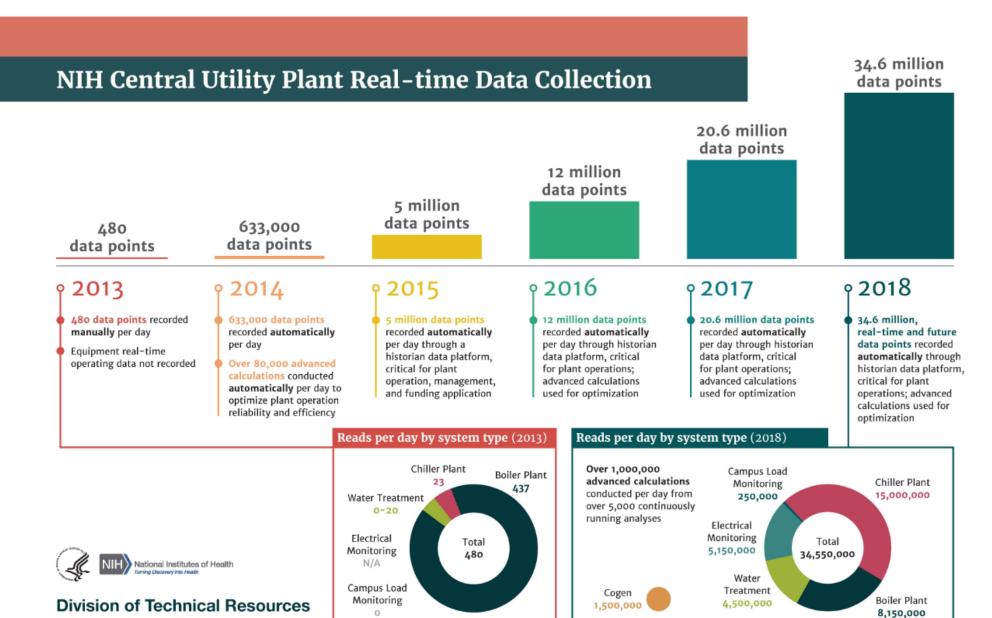
Cogeneration Plant Benefits

- One of Lowest Emission Cogen in the world!!
- ~ \$12 Million Per Year Savings in Energy
- Cogeneration Energy Savings is Equivalent to Energy Usage
 of ~ 5,000 typical homes
- Reduce CO₂ Emissions Equivalent to Emissions from 10,000 typical cars.

Data Platform Leads Operational Paradigm Shift

To collect over 34 Million Data Point per Day

Sufficient/reliable data support decision making

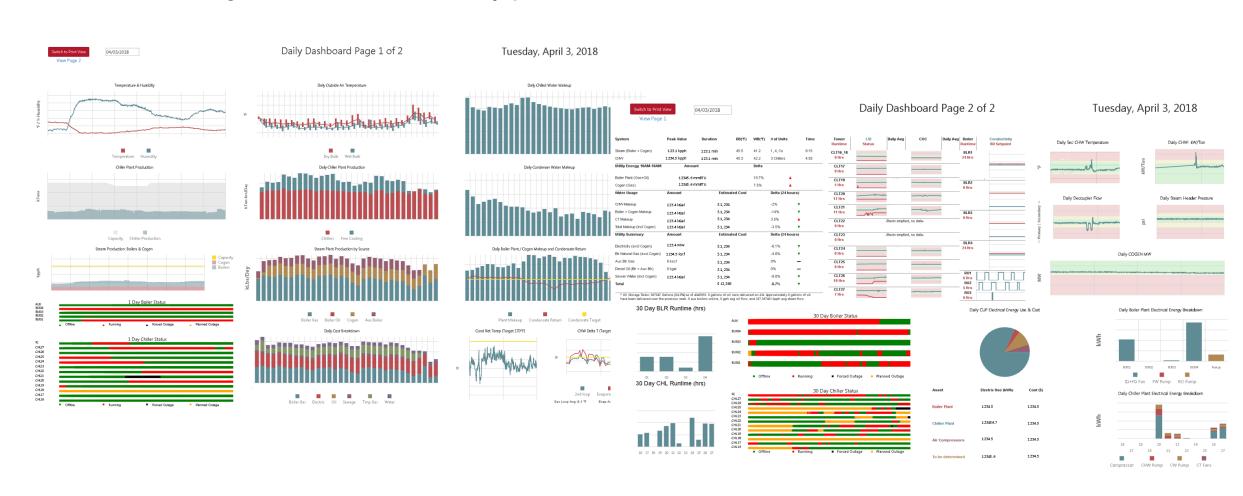

Live dashboard reporting; automatic fault detection → High Reliability

Predictive maintenance
Fully trained staff
Operation/Maintenance using fully documented SOPs
Load forecasting and optimization program

Data is the foundation for operating the plant safely, reliably, efficiently and as cost effectively as possible.

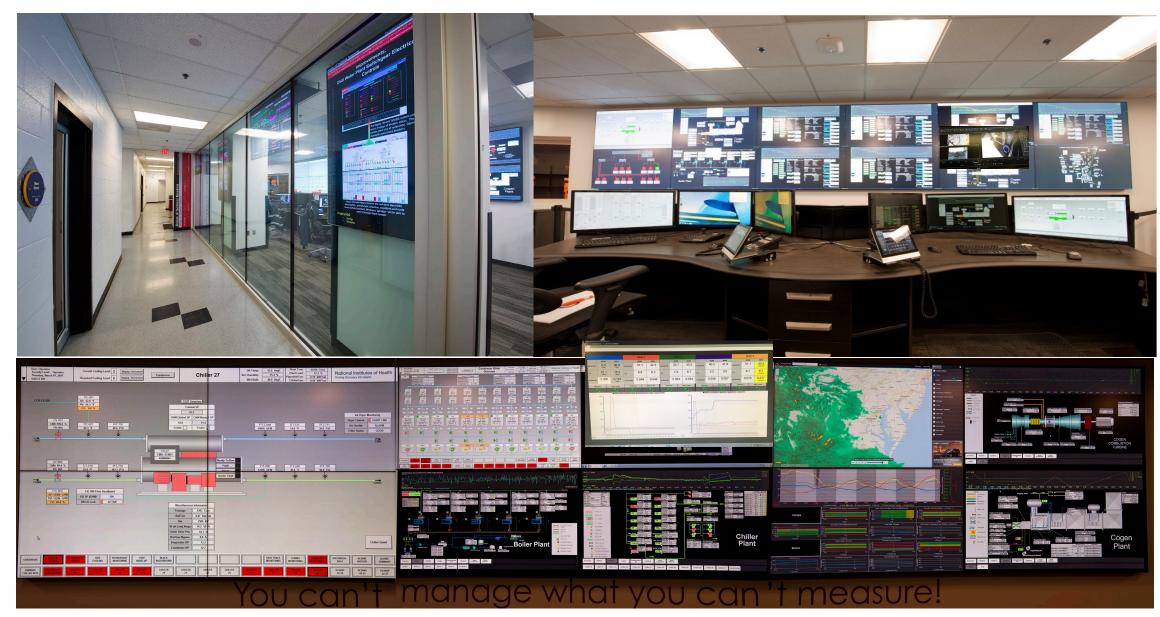
You can't manage what you can't measure!

Evolving Use of Data


Office of Research Facilities

Web-based Executive Level Summaries and Reporting

High level, executive daily performance data accessible with 1 click



Data Platform Powers the CUP Control Room

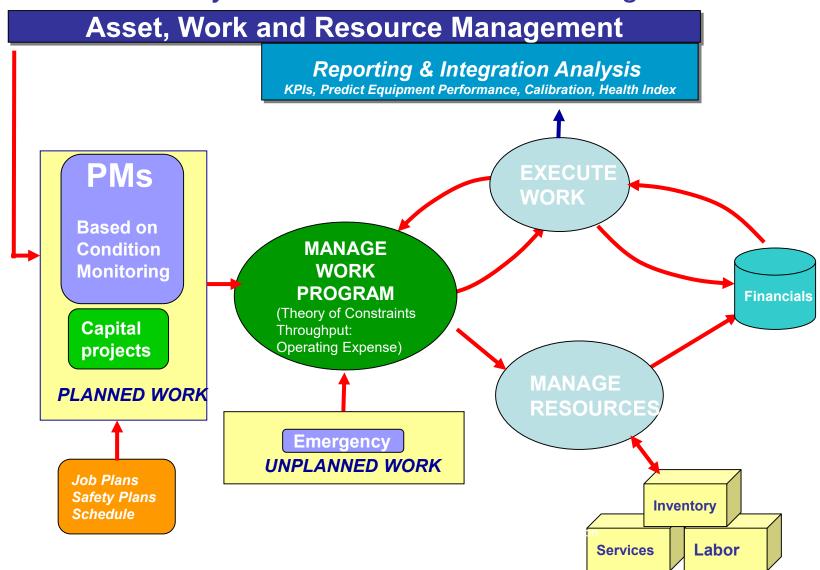
Actionable Operational Intelligence & Fault Detection

Data Platform provides operators **actionable** intelligence, in-time Root Cause Analysis, and Shift performance

Operation 96 Hour Event Log

Start Time	Duration	System	Description	Recommendation	Current Reading	Event Link
4/2/2018 101:00:22 PM	Active Event	Chiller_Plant/Chl27/Oper	ationsChiller Load HiHi Alarm (>105%)	Chiller Load Above HiHi Alarm (>105%)	Load: 0%	ClickHere
4/6/2018 2:18:21 PM	52 minutes	Chiller_Plant/Chl24/Oper	ationsChl_Load_HiHi	Chiller Load Above HiHi Alarm (>105%)	Load: 64.1%	ClickHere
4/5/2018 101:57:43 PM	Active Event	Chiller_Plant/Chl17/Oper	ationsChiller Load HiHi Alarm (>105%)	Chiller Load Above HiHi Alarm (>105%)	Load: 0%	ClickHere
4/3/2018 102:18:36 PM	Active Event	Chiller_Plant/Chl21/Oper	ationsChiller Load Lo Warning (<65%)	Chiller Load Below LoLo Alarm (<60%)	Load: 0%	ClickHere
4/4/2018 100:09:22 AM	Active Event	Chiller_Plant/Chl27/Oper	ationsChiller Load HiHi Alarm (>105%)	Chiller Load Above HiHi Alarm (>105%)	Load: 0%	ClickHere
4/4/2018 100:02:36 PM	Active Event	Chiller_Plant/Chl20/Oper	ationsChiller Load HiHi Alarm (>105%)	Chiller Load Above HiHi Alarm (>105%)	Load: 0%	ClickHere
4/6/2018 2:15:52 PM	54 minutes	Chiller_Plant/Chl25/Oper	ationsChl_Load_HiHi	Chiller Load Above HiHi Alarm (>105%)	Load: 69.5%	ClickHere
4/6/2018 2:13:36 PM	56 minutes	Chiller_Plant/Chl21/Oper	ationsChl_Load_Lo	Chiller Load Below LoLo Alarm (<60%)	Load: 0%	ClickHere
4/6/2018 8:25:51 AM	5 hours	Chiller_Plant/Chl24/Oper	ationsChl_Load_HiHi	Chiller Load	Load: 64.1%	ClickHere
4/6/2018 6:00:52 AM	8 hours	Chiller_Plant/Chl25/Oper	ationsChl_Load_HiHi	Chiller Load Above Hilli	Load: 69.5%	ClickHere

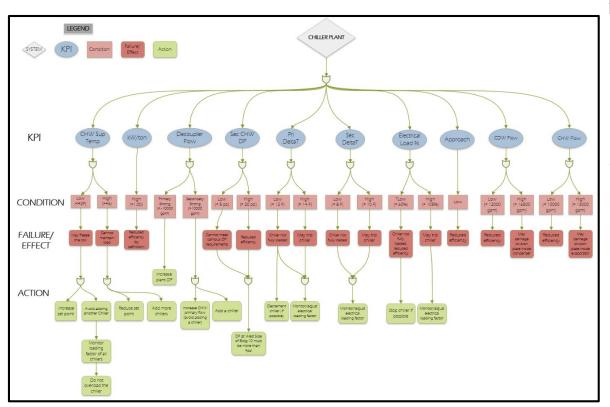
Reliability-Centered Maintenance Program

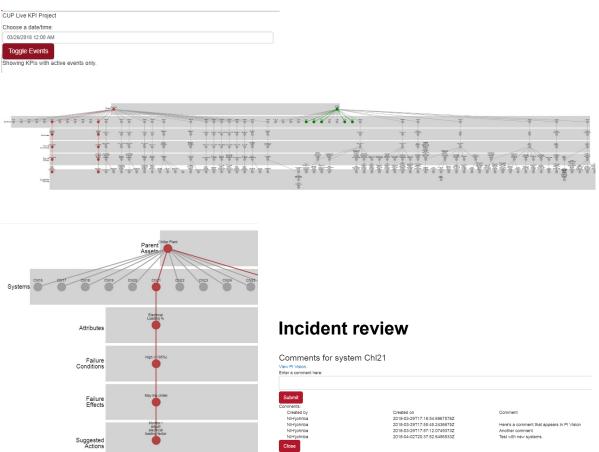


Vision for Maximo and

Reliability-Centered Maintenance Program

Moving Assets Management Forward! Major 6 Elements


- 1. Digitization of all major assets using Internet of Things (IoT)
- 2. Distributed Database No single point of failure
 - Users will not interfere with each other when accessing / manipulating data
 - Every node is an "administrator"
 - Speed—Files are retrieved from nearest location
 - If one site fails-system can still run
 - Need to work on synchronization of multiple database
- 3. Transparent data and none corruptible
- 4. Authentication- Trend analysis and crowdsourcing on assets conditions
- 5. Audit Performance is transparent and verified
- 6. Benchmarking



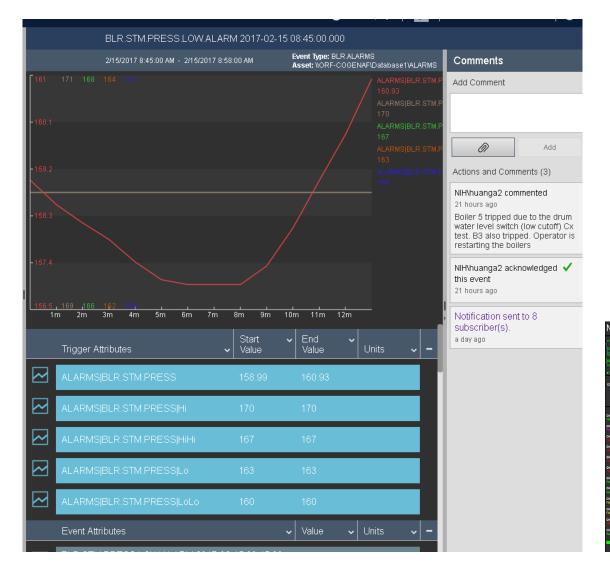
Reliability-Centered Maintenance Program Operational KPIs and Automatic Early Fault Detection

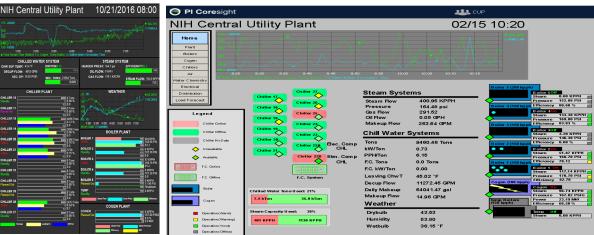
 Data should flag the issues - our website can identify the dynamic events and potential problems for Operators and Engineers to respond and review



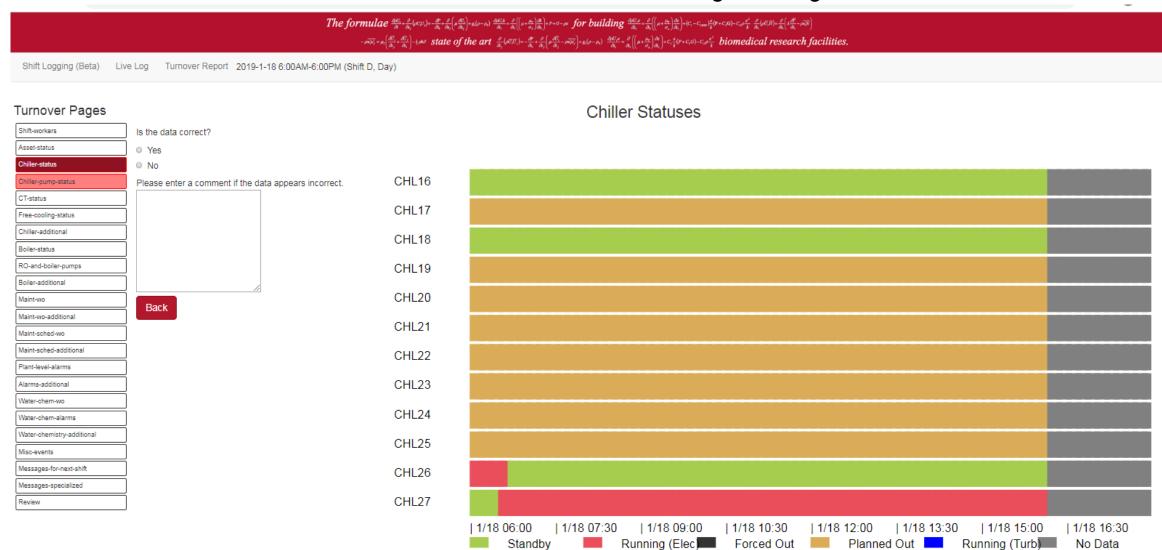
Calibration Program

- To avoid GIGO, Calibration and online cross platform validation improve the data quality
- Allows for visual reporting and status checks on calibration program
- Strides are being made on error propagation and more rigorous standards



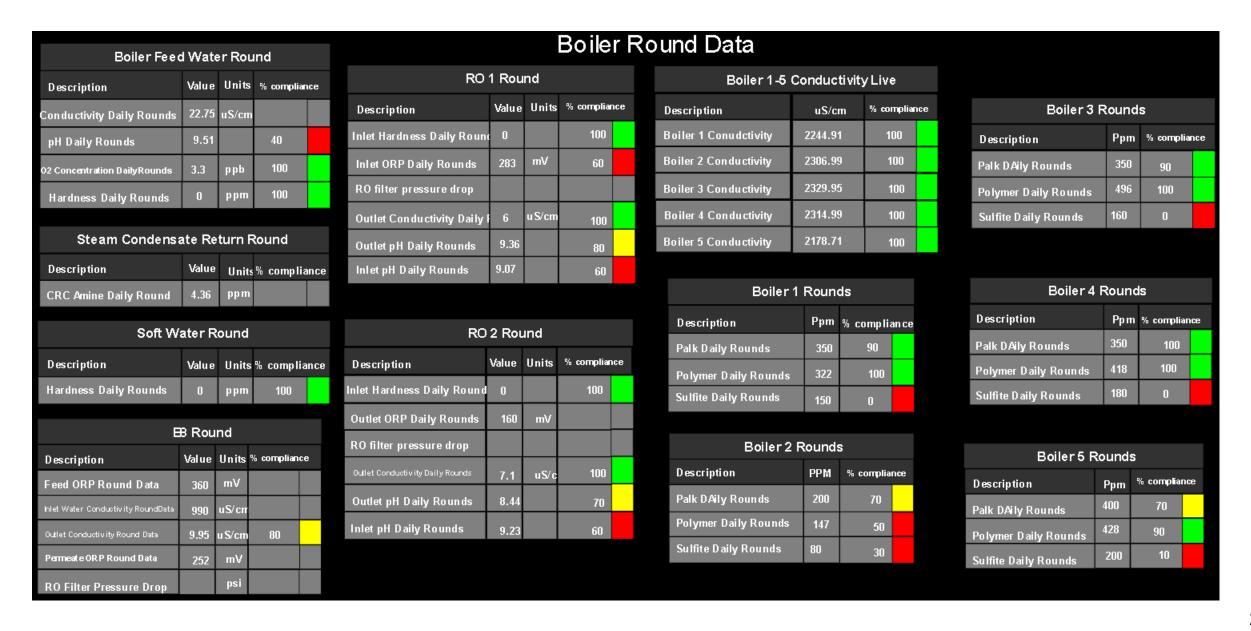


Alarm/Operation Notification and Mobility



Digitization of Plant Operations - Operator Shift Turnover Website

Asset status, work orders closed and submitted, alarms, live log, message to the next shift



NIH National Institutes of Health Office of Management

Digitization of Plant Operations

Digitization of Plant Operations – Steam Turbine Readiness Checklist

Chiller 22/23

Operator

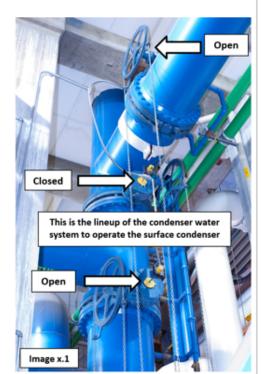
Ensure that the three condenser and surface condenser isolation valves are **properly lined up**

The surface condenser water inlet valve (SCIV-22) and the surface condenser outlet valve (SCOV-22) should be **Open**, and the condenser outlet valve (COV-22) from the chiller condenser should be **Closed**.

Operator

Ensure that the chiller and condenser barrels have been properly vented.

Operator

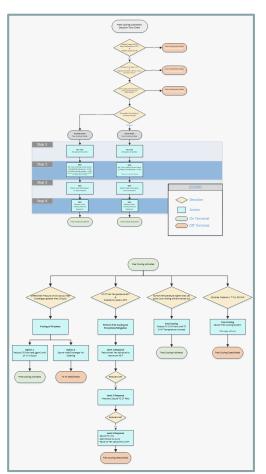

Ensure that the emergency stop button is pulled out.

CT roof level

Chiller 22/ 23

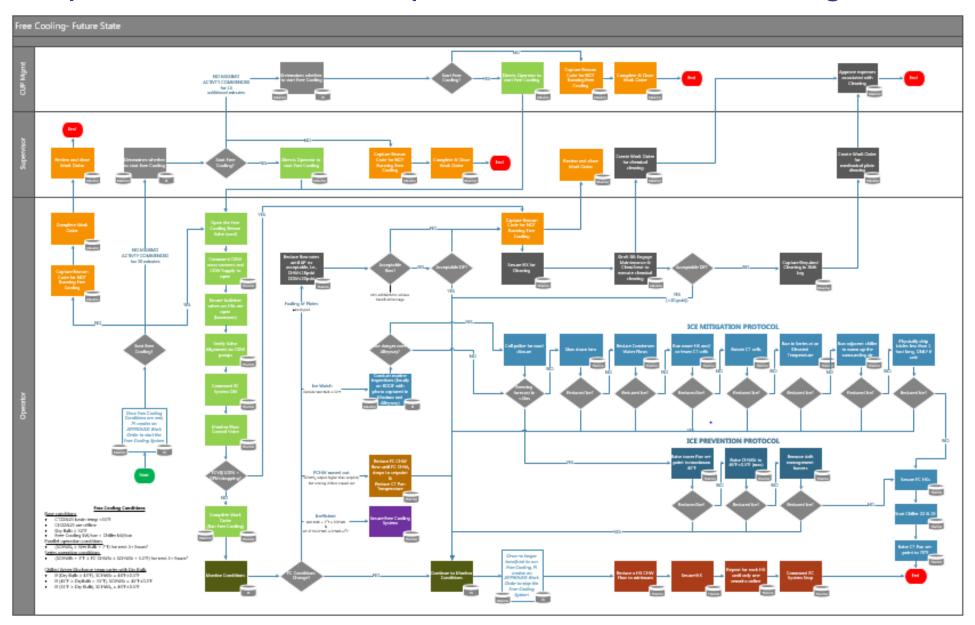
Chiller MCC

Surface condenser

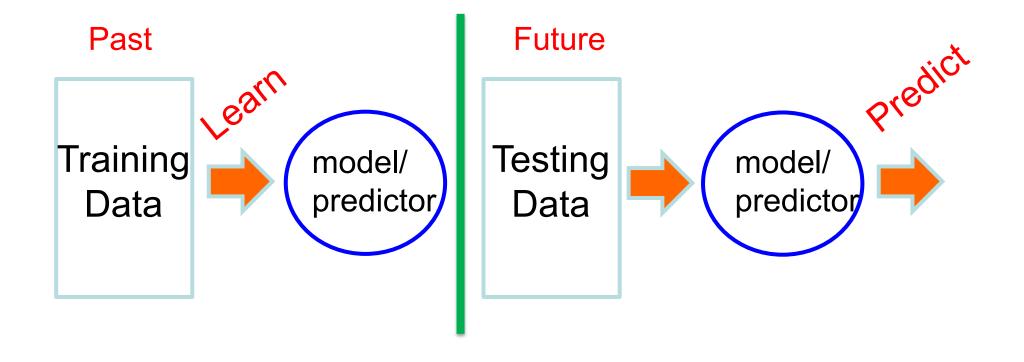


Plant Operations – Free Cooling

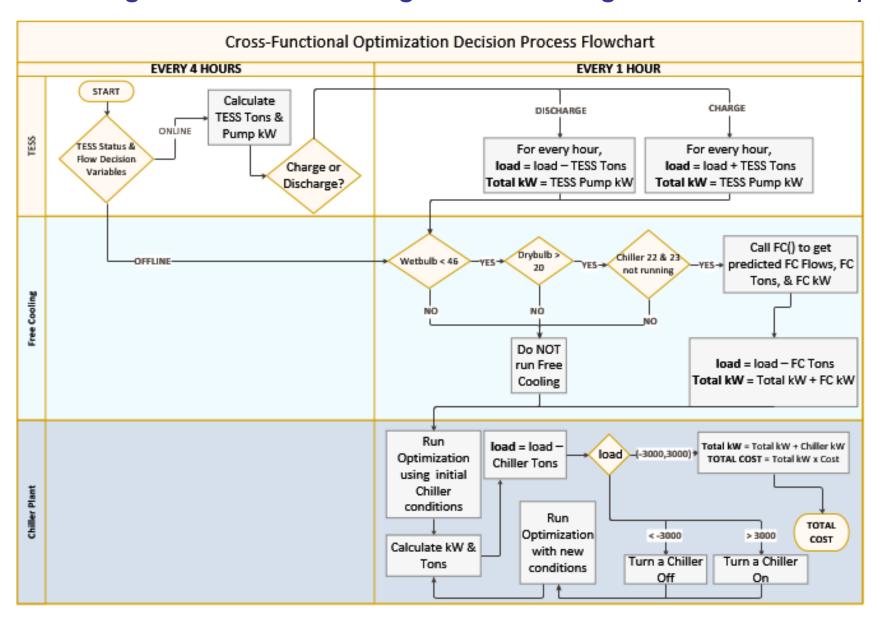
• The Weather Forecaster model gives Plant Operators 12 hours advance notice of **when** to operate the Free Cooling system based on anticipated ambient conditions and projected campus chilled water loads.

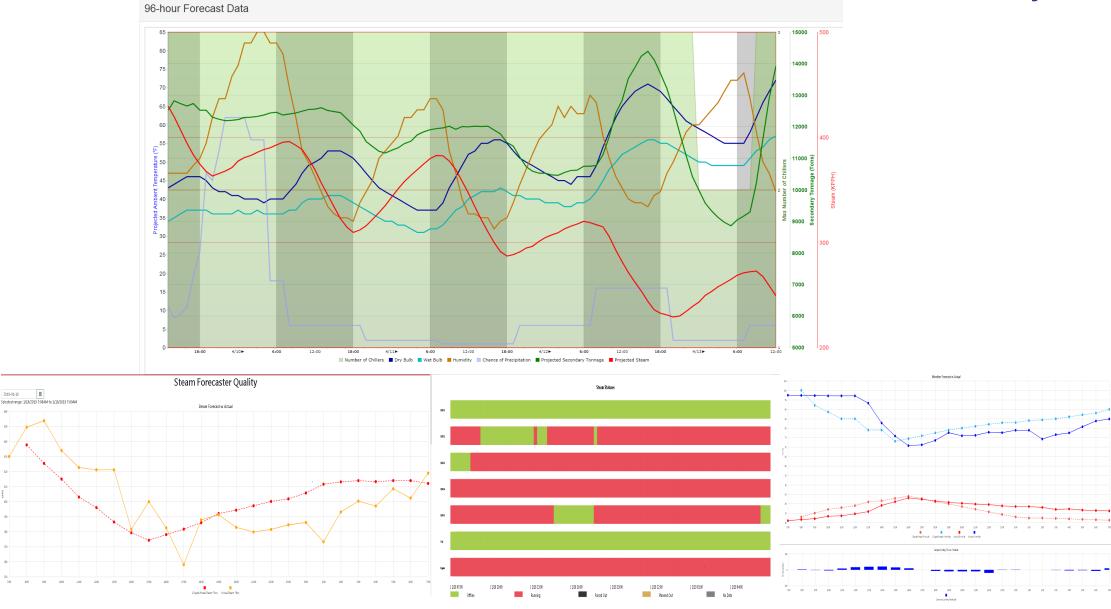


Optimize Processes/Operation with Lean Six Sigma

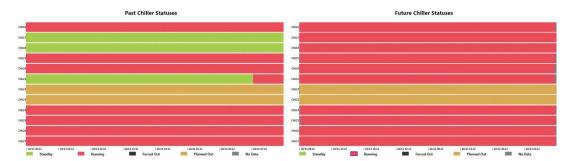


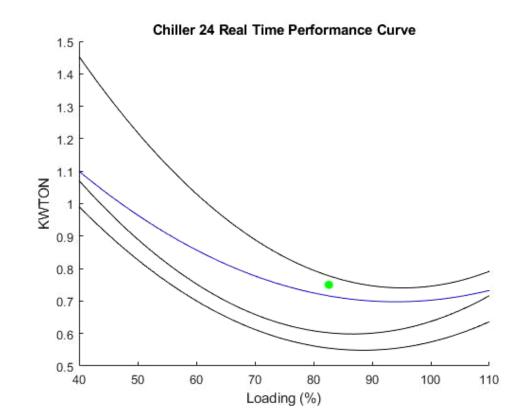
Application Supervised Machine Learning (ML)


We use ML probability to make decisions or predictions with a reasonable degree of certainty.


Optimization Using Machine Learning - Mixed Integer Non-Linear Optimization

Artificial Neural Network Based Load Forecaster and Error Analysis




Plant Optimization

NIH National Institutes of Health Office of Management

Asset Availability Website

Optimization Animation

Constraints:

- Chiller/Boiler run time and availability
- Natural gas prices
- Electrical feeder load balance
- Limits of the individual chiller /free cooling capacity, flow, temp, etc.
- TES tank status and capacity
- Load Forecasting and Energy Balance
- PJM Electricity Price
 - PJM Interconnection is a regional transmission organization (RTO) that coordinates the movement of wholesale electricity in all or parts of Delaware, Illinois, Indiana, Kentucky, Maryland, Michigan, New Jersey, North Carolina, Ohio, Pennsylvania, Tennessee, Virginia, West Virginia and the District of Columbia.

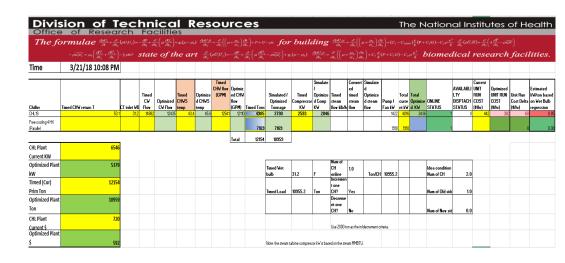
Decision Variables:

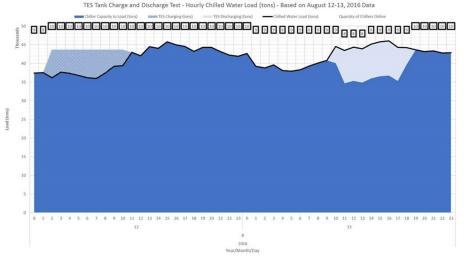
- The chiller condenser evaporator flow, temp
- The load distribution among the chillers
- Free cooling flow, number of heat exchangers
- TES charge / discharge dispatch decision and flow

Prescriptive Analytics by Machine Learning Chiller Plant Optimization & Operation Recommendations

The objective: Minimize the total equivalent cost

The constraints:

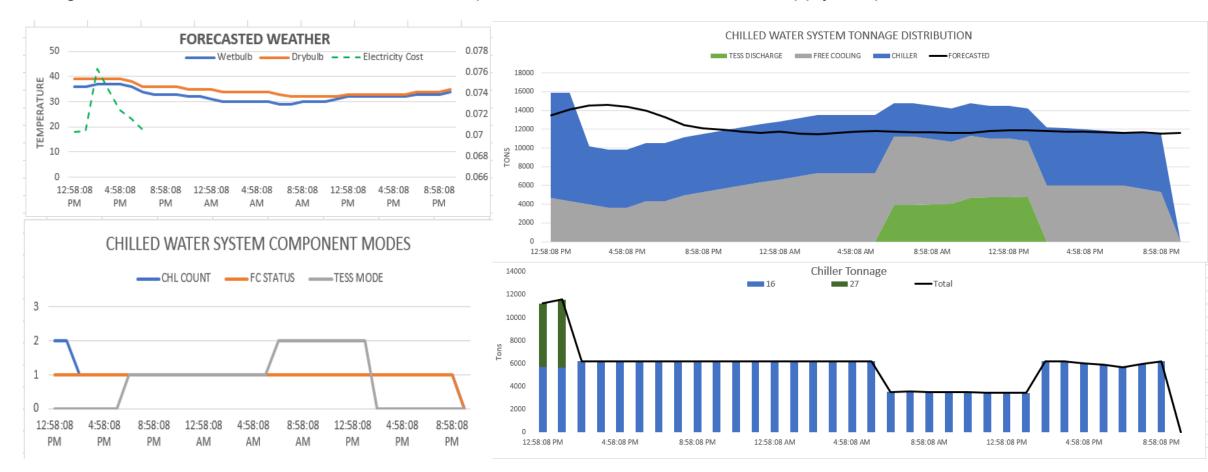

- Chiller run time and availability
- Limits of the individual chiller /free cooling capacity, flow, temp
- Load Forecasting and Energy Balance
- Future PJM Electricity Price


The variables:

- The chiller condenser evaporator flow, temp
- The load distribution among the chillers

Typical Suggestions:

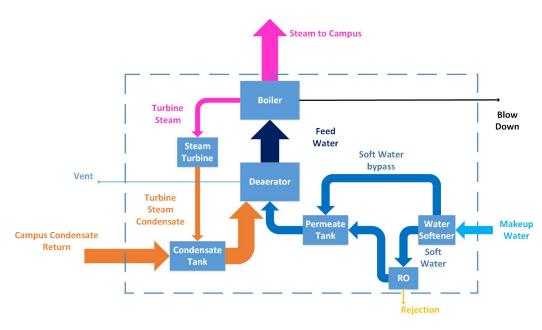
 Run minimum number of chillers, shift more load to the more efficient chillers or the steam turbine chiller, run more cooling tower cells to reduce the tower return temp, or increase the chilled water supply temp.



Optimization Results and Recommendations

Typical Suggestions:

• Run minimum number of chillers, shift more load to the more efficient chillers or the steam turbine chiller, run more cooling tower cells to reduce the tower return temp, or increase the chilled water supply temp.


Data Quality Management

Data Generation

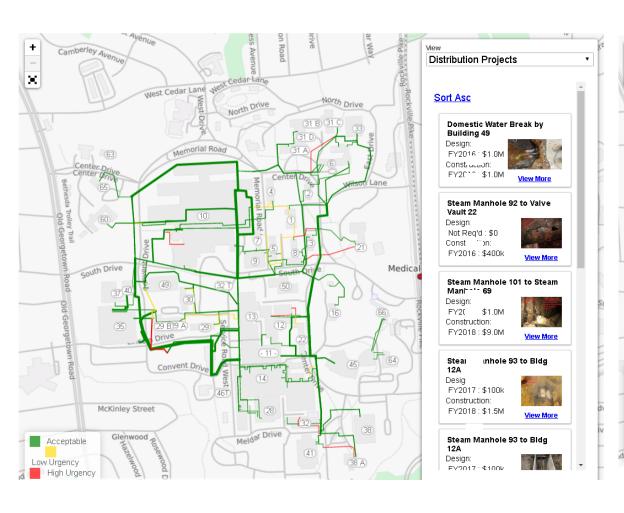
DQ Dimensions		Metric functions		
Accuracy		Acc	=	(Ncv/N)
Completeness		Comp	=	(Nmv/N)
Consistency		Cons	=	(Nvrc/N)
Ncv	Number of correct values			
Nmv	Number of missing values			
Nvrc	Number of values that respects the constraints			
N	Total number of values (rows) of the sample Dataset			

Online statistic scan
Identify the incorrect and missing data
Clean and update the data
Calibrate and maintain the sensors
Fix the data / interface communication errors
Error propagation and metrological standards

Data Utilization

Calculation Handbook and Change Management SOP
Daily / Monthly Dashboard Review SOP
Machine baseline and health check
Energy / mass/ cost balance and cross disciplinary
check
Text message & emails notifications

Real-time Data Quality Dashboard

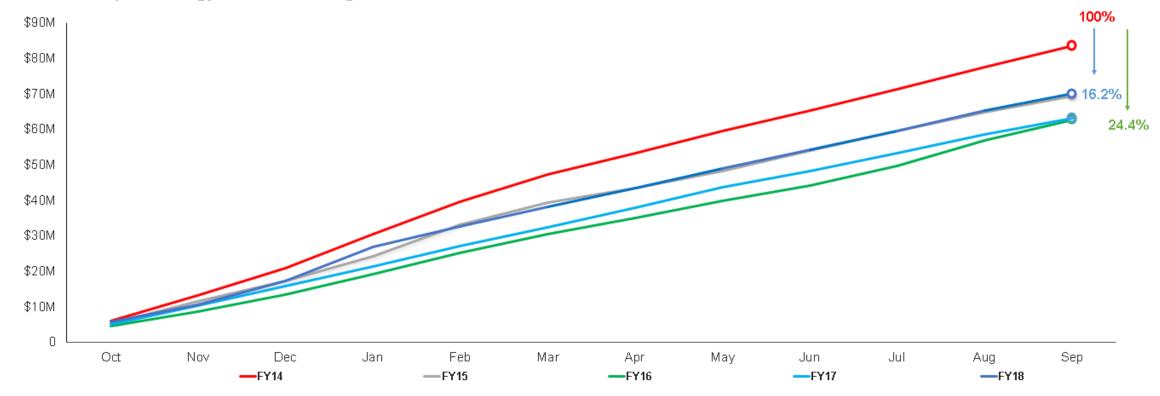


Using GIS for Visualizing Campus Building Automation System Data

Integrate real-time data with open-source GIS to visualize real-time utility distribution information

CUP Simulator

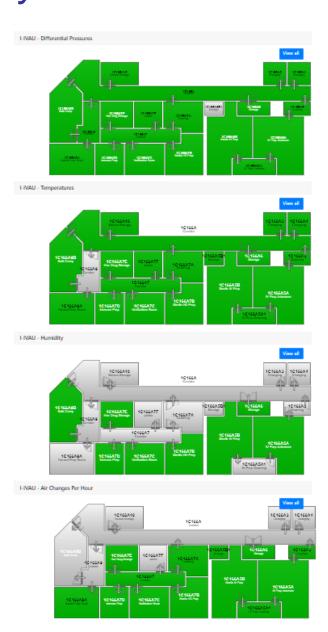
Operator training on normal and emergency scenarios, situation playback, evaluate innovative control strategy and optimize the process



Tangible Results – Financial

Millions of dollars saved despite increased utility costs & demand!

Bethesda Campus Energy & Water Billing



- Since FY14, no loss of control, no need for early dismissal of office buildings
- No impacts to patient safety or patient comfort
- No impacts to cGMP space temperature, humidity, differential pressures and air change rates
- No impacts to research animals
- No impacts to biospecimens stored in ultralow temperature freezers
- Scientists able to focus on science, vice distractions associated with building issues

