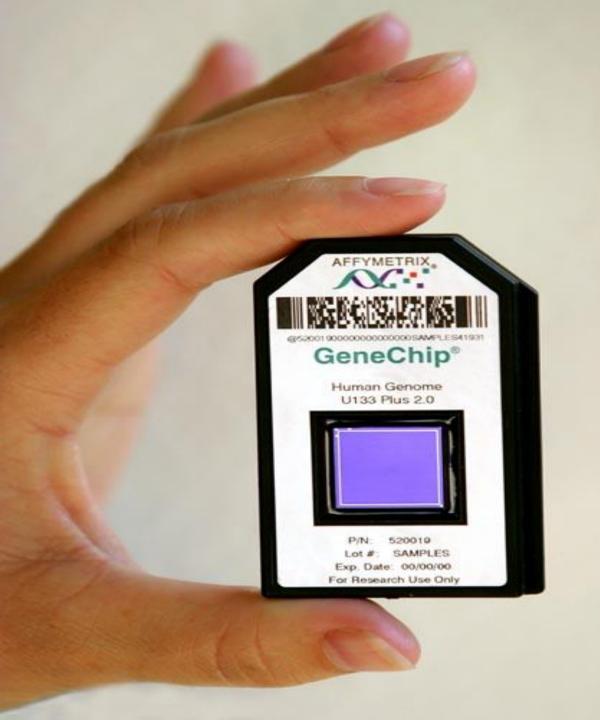
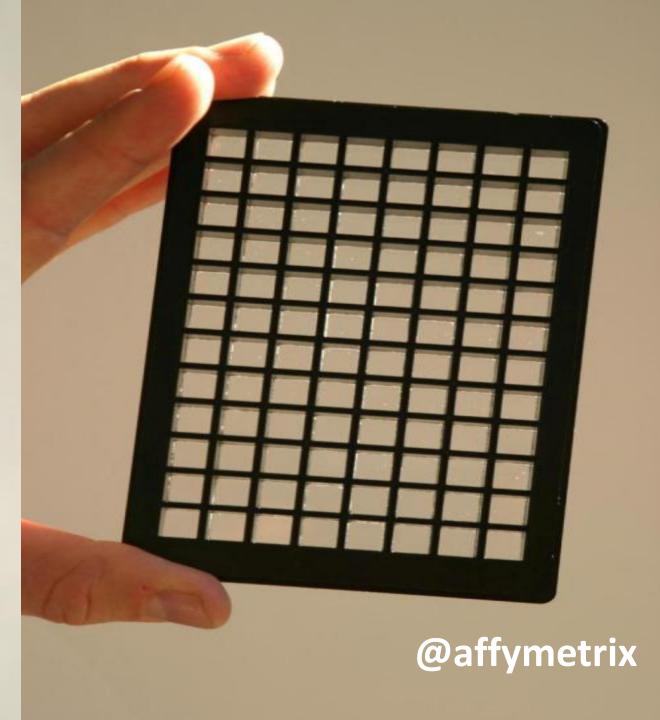


Translating a Trillion Points of Open Data into Diagnostics, Therapies and New Insights in Health and Disease

Atul Butte, MD, PhD


Chief Data Scientist, University of California Health (UC Health)
Director, Bakar Computational Health Sciences Institute, UCSF
Priscilla Chan and Mark Zuckerberg Distinguished Professor


Conflicts of Interest

- Scientific founder and advisory board membership
 - Genstruct
 - NuMedii
 - Personalis
 - Carmenta
- Honoraria for talks
 - Lilly
 - Pfizer
 - Siemens
 - Bristol Myers Squibb
 - AstraZeneca
 - Roche
 - Genentech
 - Warburg Pincus
 - CRG
 - AbbVie
 - Westat
- Past or present consultancy
 - Lilly
 - Johnson and Johnson
 - Roche
 - NuMedii
 - Genstruct
 - Tercica

- Ecoeos
- Helix
- Ansh Labs
- uBiome
- Prevendia
- Samsung
- Assay Depot
- Regeneron
- Verinata
- Pathway Diagnostics
- Geisinger Health
- Covance
- Wilson Sonsini Goodrich & Rosati
- Orrick
- 10X Genomics
- GNS Healthcare
- Gerson Lehman Group
- Coatue Management
- Corporate Relationships
 - Northrop Grumman
 - Genentech
 - Optum
 - Aptalis
 - Allergan
 - Astellas
 - Thomson Reuters

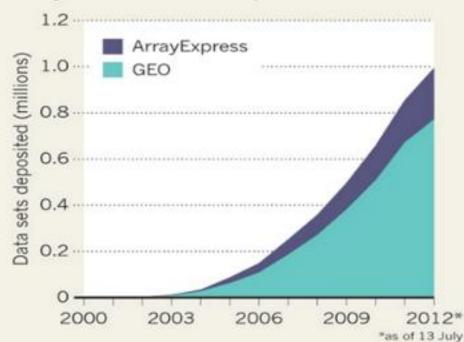
- Intel
- SAP
- SV Angel
- Progenity
- Illumina
- Speakers' bureau
 - None
- Companies started by students
 - Carmenta
 - Serendipity
 - Stimulomics
 - NunaHealth
 - Praedicat
 - MyTime
 - Flipora
 - Tumbl.in
 - Polyglot
 - lota Health
 - Ongevity Health

DNA microarrays allow researchers to analyse the expression of a huge number of genes simultaneously.

GENOMICS

Gene data to hit milestone

With close to one million gen researchers can identify dise The number of gene-expression data sets in

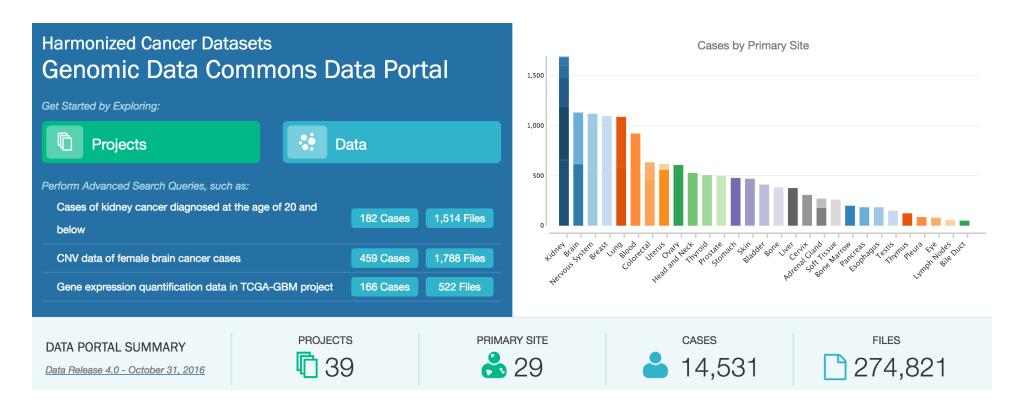

BY MONYA BAKER

urvesh Khatri sits in front of an oversize computer screen, trawling for treasure i a sea of genetic data. Entering the searc term 'breast cancer' into a public repositor called the Gene Expression Omnibus (GEO the postdoctoral researcher retrieves a list (1,170 experiments, representing nearly 33,00 samples and a hoard of gene-expression dat that could reveal previously unseen patterns

That is exactly the kind of search that le Khatri's boss, Atul Butte, a bioinformatician a the Stanford School of Medicine in California to identify a new drug target for diabetes. After downloading data from 130 gene-expressio studies in mice, rats and humans, Butte looke for genes that were expressed at higher levels i

DATA DUMP

publicly available databases has climbed to nearly one million over the past decade.



ly accessible repositories, ter a laboratory.

ository at the European Bioinformatics titute (EBI) in Hinxton, UK. Some time in next few weeks, the number of deposited a sets will top one million (see 'Data dump'). The result is an unprecedented resource that mises to drive down costs and speed up pross in understanding disease. Gene-sequence a are already shared extensively, but expresn data are more complex and can reveal ich genes are the most active in, say, liver sus brain cells, or in diseased versus healthy ue. And because studies often look at many

bit.ly/genedata

Cancer researchers share data

The Cancer Genome Atlas

- 14 thousand cases
- 39 types of cancers
- 13 types of data: molecular, clinical, sequencing

+ Framingham SHARe

GAIN: Collaborative Association Study of Psoriasis

GAIN: International Multi-Center ADHD Genetics Project

GAIN: Genotyping the 270 HapMap samples for GAIN by Broad GAIN: Genotyping the 270 HapMap samples for GAIN by Perlegen

GAIN: Linking Genome-Wide Association Study of Schizophrenia

GAIN: Whole Genome Association Study of Bipolar Disorder

GAW16 Framingham and Simulated Data

Ischemic Stroke Genetics Study (ISGS)

NINDS Parkinson's Disease

NINDS Parkinsonism Study

ININ 🖹

MINI POP

NEI Age-Related Eye Disease Study (AREDS)

SEARCH GWA Study of Statin-Induced Myopathy

Study of Irish Amyotrophic Lateral Sclerosis (SIALS)

The Finland-United States Investigation of NIDDM Genetics (FUSION) study

Whole Conome Apposition Study of Systemic Lypus Enthematicus

NINDS Danacitary Carabrayaccular Dicasca/Straka Study

Genome-wide Association Studies in the Hutterites Genome-wide Association Study of Neuroblastoma

GAIN: Major Depression: Stage 1 Genomewide Association in Population-Based Samples

Genome-wide Study in Amyotrophic Lateral Sclerosis and Controls: First Stage Analysis

Mayo-Perlegen LEAPS (Linked Efforts to Accelerate Parkinson's Solutions) Collaboration

GAIN: Search for Susceptibility Genes for Diabetic Nephropathy in Type 1 Diabetes

CIDR: Genome Wide Association Study in Familial Parkinson Disease (PD)

dbGaP About dbGaP Browse dbGaP Controlled Access Email Alerts dbGaP Tutorial Security Procedures

Contact dbGaP Other Services

FTP Download

Publications

MeSH Browser Clinical Queries Browse dbGaP By Studies By Diseases Advanced Search

175

432

2335

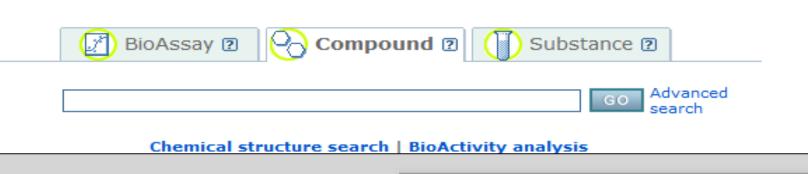
4651

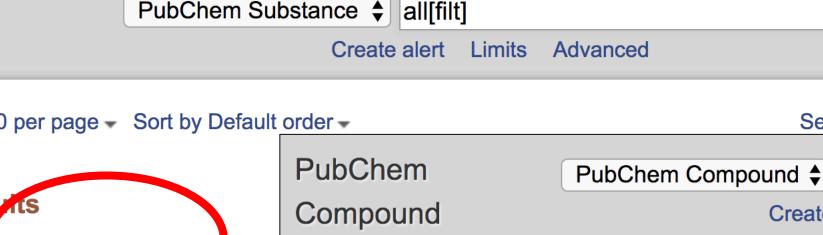
Study	€ Embargo Release	Details	Participants	Type of Study	Project
ation Study in Familial Parkinson Disease (PD)	Feb 13, 2009	VDA	1991	Case-control	CIDR
	Version 1: Oct 19, 2008 Version 2: Feb 01, 2009 Version 3: Jul 08, 2009	VDA	14277	Longitudinal	SHARe
tion Study of Psoriasis	Aug 13, 2008	VDA	2875	Case-control	GAIN
lapMap samples for GAIN by Broad			-	Parent-offspring trios	
apMap samples for GAIN by Perlegen		V D A	-	Parent-offspring trios	
nter ADHD Genetics Project	Mar 26, 2008	VDA	2835	Parent-offspring trios	GAIN
e Association Study of Schizophrenia	Version 1: Nov 07, 2008 Version 2: Dec 03, 2008	VDA	5066	Case-control	GAIN
age 1 Genomewide Association in Population-Based Samples	Jul 09, 2008	VDA	3741	Case-control	GAIN
lity Genes for Diabetic Nephropathy in Type 1 Diabetes	Jul 09, 2008	VDA	1825	Case-control	GAIN
ciation Study of Bipolar Disorder	Version 1: Nov 25, 2008 Version 2: Dec 01, 2008	VDA	3261	Case-control	GAIN
imulated Data	Oct 19, 2008	VDA	7130	Longitudinal, population-based	SHARe
Studies in the Hutterites		VDA	632	Population-based	University of Chicago
Study of Neuroblastoma		VDA	1032	Case-control	COG
otrophic Lateral Sclerosis and Controls: First Stage Analysis	Jun 26, 2008	VDA	544	Case-control	NINDS
tudy (ISGS)	Jun 26, 2008	VDA	485	Case-control	NINDS
ed Efforts to Accelerate Parkinson's Solutions) Collaboration	Mar 03, 2008	VDA	1550	Case-control	MJFF
se Study (AREDS)	Jun 11, 2007	VDA	600	Case-control	NEI
2	Oct 12, 2007	VDA	535	Case-control	NINDS
	Oct 12, 2007	VDA	1283	Case-set	NINDS
		W D	870	Case-set	NINDO
accular Dicagos/Straka Studu	lun 26, 2008		77.11	Case-set	NINDS
	_	_		Case-set	NINDS
Genetics research	_	_			

Case-control

Case-control

Case-control


Case-control


University of Oxford

NINDS

University of Michigan

227 million substances x1.3 million assays

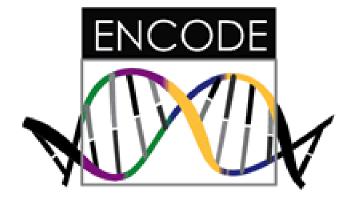
More than a billion measurements within a grid of 300 trillion cells

71 million meet Lipinski 5
1.2 million active substances

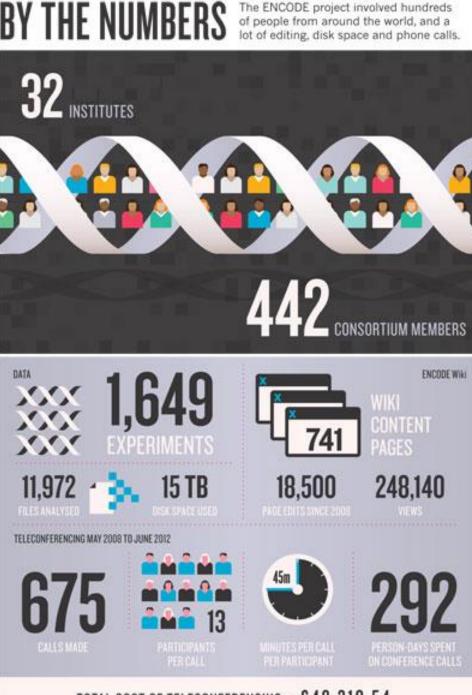
PubChem
BioAssay

Summary - 20 per page - Sort by Default of the state of the state

Chemical biologists share data


6-Hydroxypynua.
Source: Bide Pharm

of 227860939


Source: Bide Pharm Search results

Deposit Date: 2017-

Source: Keith Lab, Institute of Cancer Science Deposit Date: 2017/01/10 Hold-until Date: 2

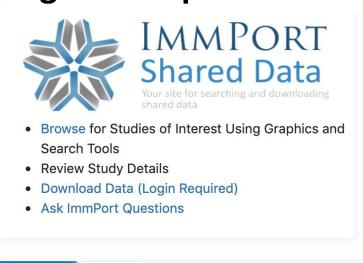
Molecular biologists share data

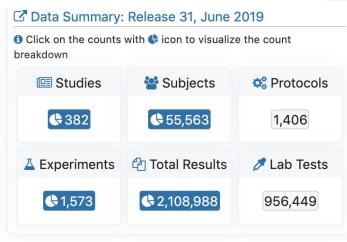
TOTAL COST OF TELECONFERENCING = £49,310.54

Even immunologists and trialists can share data!

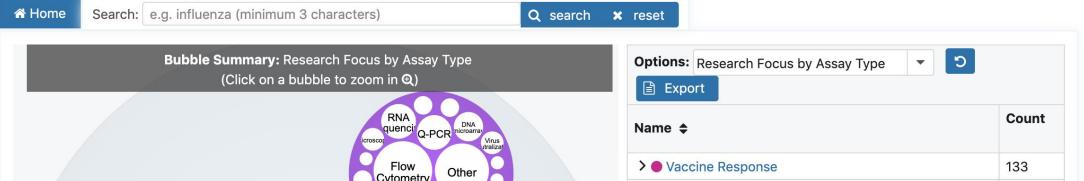
immport.org

NORTHROP GRUMMAN


Download 380+ studies today
Drug repositioning, new patient subsets,
digital comparative effectiveness, more!


Sanchita Bhattacharya
Zicheng Hu
Elizabeth Thomson
and many more

Announcements


June 19, 2019 - ImmPort Data

ImmPort redistributes data from major NIAID-funded programs and more

Data from 380+ trials and studies already released, involving:

- Immune Tolerance Network (ITN)
- Accelerating Medicines Partnership (AMP) in Rheumatoid Arthritis and Lupus (AMP)
- Human Immunology Project Consortium (HIPC)
- Atopic Dermatitis Research Network (ADRN)
- Clinical Trials in Organ Transplantation (CTOT) and in Children (CTOT-C)
- Population Genetics Analysis Program
- Protective Immunity for Special Populations
- HLA Region Genomics in Immune-mediated Diseases
- Modeling Immunity for Biodefense
- Reagent Development for Innate Immune Receptors
- Adjuvant Development Program
- Innate Immune Receptors and Adjuvant Discovery Program
- Maintenance of Macaque Specific Pathogen-Free Breeding Colonies
- Non-human Primate Transplantation Tolerance Cooperative Study Group

- Immunity in Neonates and Infants
- Consortium for Food Allergy Research
- Development of Sample Sparing Assays for Monitoring Immune Responses (U24)
- Asthma and Allergic Diseases Cooperative Research Centers
- HLA and KIR Region Genomics in Immune-Mediated Diseases
- Systems Approach to Immunity and Inflammation
- Immunobiology of Xenotransplantation
- Cooperative Study Group for Autoimmune Disease Prevention
- Informatics Methodology and Secondary Analyses for Immunology Data in ImmPort
- Centers for Medical Countermeasures against Radiation Consortium
- Inner City Asthma Consortium

Collaborations with NIAMS, NCI, Bill and Melinda Gates Foundation, and March of Dimes

Announcement Number	Related Announc.	Issuing Organization	Release Date	Opening Date (SF424 Only) ?	Expiration Date	Activity Code(s)	Title	
RFA-AI-18-042	See Related	NIAID	10/05/2018	01/02/2019	02/02/2019	U01	Fc-Dependent Mechanisms of Antibody-Mediated Killing (U01 Clinical Trial Not Allowed)	
RFA-AI-18-026	See Related	NIAID	06/19/2018	11/13/2018	12/14/2018	R01	Modeling and Simulation to Optimize HIV Prevention Research (MS OPR) (R01 Clinical Trial not allowed)	
RFA-AI-18-023	See Related	NIAID	06/14/2018	09/04/2018	10/05/2018	R01	Immune Mechanisms at the Maternal-Fetal Interface (R01 Clinical Trial Optional)	
RFA-AI-18-010	See Related	NIAID	04/05/2018	06/02/2018	07/03/2018	U01	Impact of Initial Influenza Exposure on Immunity in Infants (U01 Clinical Trial Not Allowed)	
PAR-18-712	See Related	NIAID	03/15/2018	05/05/2018	05/08/2021	R01	Investigations on Primary Immunodeficiency Diseases/Inborn Errors of Immunity (R01 Clinical Trial Not Allowed)	
RFA-AI-18-002	See Related	NIAID	03/08/2018	05/22/2018	06/23/2018	U19	Autoimmunity Centers of Excellence, Basic Research Program (U19 Clinical Trial Not Allowed)	
RFA-AI-18-003	See Related	NIAID	03/08/2018	05/22/2018	06/23/2018	UM1	Autoimmunity Centers of Excellence, Clinical Research Program (UM1 Clinical Trial Required)	
RFA-AI-17-040	See Related	NIAID	12/04/2017	02/28/2018	03/29/2018	U19	Cooperative Centers on Human Immunology (U19 Clinical Trial Optional)	
RFA-AI-17-037	See Related	NIAID	10/25/2017	01/22/2018	02/23/2018	R01	Immunity in the Elderly (R01) Clinical Trial Optional	
RFA-AI-17-034	See Related	NIAID	10/20/2017	01/21/2018	02/22/2018	U01	Maintaining Immunity After Immunization (U01 - Clinical Tri Optional)	
RFA-AI-16-078	See Related	NIAID	11/28/2016	02/15/2017	03/16/2017	U01	Limited Competition: Clinical Trials in Organ Transplantation in Children (CTOT-C): Mechanistic Ancillary Studies (U01)	
RFA-AI-16-027	See Related	NIAID	09/07/2016	02/03/2017	03/04/2017	U19	T Cell Reagent Resource for the Study of Allergic Diseases (U19)	

Department of Health and Human Services

Part 1. Overview Information

Participating Organization(s)	National Institutes of Health (NIH)
Components of Participating Organizations	National Institute of Allergy and Infectious Diseases (NIAID)
Funding Opportunity Title	Informatics Methodology and Secondary Analyses for Immunology Data in ImmPort (UH2 Clinical Trial Not Allowed)
Activity Code	UH2, Exploratory/Developmental Cooperative Agreement Phase I
Announcement Type	Reissue of PAR-16-253
Related Notices	April 08, 2019 - Notice of Change in Expiration Date of PAR-19-229. See Notice NOT-Al-19-055.
Funding Opportunity Announcement (FOA) Number	PAR-19-229

Santiago Ramón y Cajal, 1897

Explore Data

Help

Login

Why use our service?

Straightforward compliance. Submit your data to satisfy publisher and funder requirements for preservation and availability with a minimum of effort. Optionally link data to the article and funding organization.

Any field. Any format. Submit data in any file format from any field of research. Share all of the data from a project in one place.

Get discovered. Each landing page and dataset is optimized for search engines. Include any relevant geo-location information to take advantage of our built-in geospatial search.

Credit for your work. Get an informative landing page to facilitate re-use of your data and a citable DOI so you can get credit. Add your ORCID identifier and we will automatically send the information to your ORCID profile.

Google Cloud Public Datasets

Uncover new insights with high-demand public datasets.

View one-pager

Explore public datasets

Explore public datasets in Google Cloud

Google Cloud Public Datasets facilitate access to highdemand public datasets, making it easy for you to access and uncover new insights in the cloud. By analyzing thes datasets hosted in BigQuery and Cloud Storage, you can seamlessly experience the full value of Google Cloud wire ease.

Google Dataset Search Beta

Search for Datasets

Q

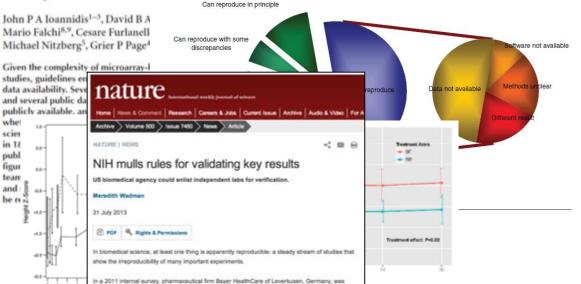
Try boston education data or weather site:noaa.gov

Learn more about including your datasets in Dataset Search.

University of California Announces Collaboration with Janssen to Expand Data Science Research in Healthcare

New Fellowship Program Facilitated by Johnson & Johnson Innovation to Recruit Data Scientists for High-Impact, Data-Driven Healthcare Research

By Laura Kurtzman

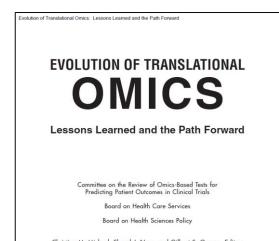

The University of California, Berkeley (UC Berkeley), and the University of California, San Francisco (UCSF), today announced a collaboration with Janssen Research & Development, LLC, part of the Janssen Pharmaceutical Companies of Johnson & Johnson (Janssen), to launch a new data science fellowship program that will explore innovative data-driven approaches to improve human health and train the next generation of leaders in the healthcare data sciences. This program will be the first of its kind in the San Francisco Bay Area, which already serves as a worldwide hub for the tech and

10 reasons why to archive and share study data openly

- Reproducibility
- Transparency
- Support public policy
- Return data to the community
- Visibility into failed trials
- Speed results reporting
- Enable learning
- Enable new ventures
- New science
- Trust and Believability

Reproducibility

Repeatability of published microarray gene expression analyses



Return data to the community

Then, in 2012, scientists at Arrgen, a drug company based in Thousand Claks, California, reported Support public policy

Transparency

code — in protecting patient confidentiality, for example. In such cases, authors should justify the omission and assure independent reproducibility by alternative means.

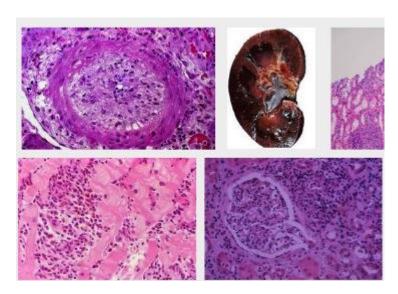
The quality of scientific output will benefit from setting these standards. As a community, we owe it to patients and to the public to do what we can to ensure the validity of the research we publish.

Keith Baggerly on behalf of 7 co-authors*, The University of Texas MD Anderson Cancer

Visibility into failed trials

BMJ

RESEARCH


BMJ 2013;347:f6104 doi: 10.1136/bmj.f6104 (Published 29 October 2013)

Non-publication of large randomized clinical trials: cross sectional analysis

© 08 OPEN ACCESS

Christopher W Jones attending physician¹, Lara Handler school of medicine liaison librarian², Karen E Crowell clinical information specialist², Lukas G Keil research assistant³, Mark A Weaver assistant professor⁴, Timothy F Platts-Mills assistant professor³

Enable learning

Speed results reporting

Scientists voice fears over ethics of drug trials remaining unpublished

Almost a third of large clinical trials in the US still not published five years after being finished, scientists write in BMJ

Sarah Boseley The Guardian, Tuesday 29 October 2013 19.30 EDT

Enable new ventures

New Science

An APOBEC cytidine deaminase mutagenesis pattern widespread in human cancers

Steven A Roberts¹, Michael S Lawrence², Leszek J Klimczak³, Sara A Grimm³, David Fargo³, Petar Stojano Adam Kiezun², Gregory V Kryukov^{2,4}, Scott L Carter², Gordon Saksena², Shawn Harris⁵, Ruchir R Shah⁵, Michael A Resnick¹, Gad Getz^{2,6–8} & Dmitry A Gordenin^{1,8}

Recent studies indicate that a subclass of APOBEC cytidine deaminases, which convert cytosine to uracil during RNA editing and retrovirus or retrotransposon restriction, may induce mutation clusters in human tumors. We show here that throughout cancer genomes APOBEC-mediated mutagenesis is pervasive and correlates with APOBEC mRNA levels. Mutation

clusters in whole-genome and exome of to the stringent criteria indicative of a pattern. Applying these criteria to 954 exomes from 14 cancer types, mostly Atlas (TCGA), showed a significant pre mutation pattern in bladder, cervical, and lung cancers, reaching 68% of all samples. Within breast cancer, the HE was clearly enriched for tumors with pattern, suggesting that this type of m linked with cancer development. The A pattern also extended to cancer-associ

Genome instability triggers the develor cancers 1.2. Radiation and chemical dama as culprits in theories of carcinogeni normal enzymatic activities can also be and mutation. Cytidine deaminases, who uracil, likely contribute to DNA dat cytidine deaminase (AID), a key enzyme only initiates the hypermutation and claimmunoglobulin genes but also can mu a limited number of secondary targets,

1 Laboratory of Molecular Genetics, National Insti Sciences, Durham, North Carolina, USA. ²The Br Harvard, Cambridge, Massachusetts, USA. ³Integ Institute of Environmental Health Sciences, Durh Harvard Medical School, Boston, Massachusetts Durham, North Carolina, USA. ⁶Massachusetts of Boston, Massachusetts of Boston, Massachusetts of Boston, Massachusetts, USA. ⁸These at work. Correspondence should be addressed to D./ G.G. (gadgetz@broadinstitute.org).

Received 28 January; accepted 20 June; publish doi:10.1038/ng.2702

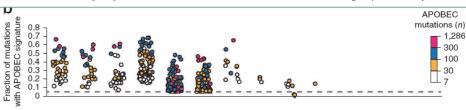
NATURE GENETICS VOLUME 45 | NUMBI

implicated in carcinogenesis 5 . In addition to AID, the human encodes several homologous APOBEC (apolipoprotein B editing enzyme, catalytic polypeptide-like) cytidine deamir function in innate immunity as well as in RNA editing 5 . human cell culture studies showed that a subclass of APOB mutational specificity for 7 C motifs (with the mutated bas

Figure 2 Presence of an APOBEC mutation pattern in exome data sets from different cancer types. (a,b) Fold enrichment (a) and mutation load (b) of the APOBEC mutation pattern were determined in each of 2,680 whole exome-sequenced tumors representing 14 cancer types. Samples were categorized by the statistical significance of the APOBEC mutation pattern and the magnitude of enrichment. The significance of the APOBEC mutation pattern was calculated by one-sided Fisher's exact test comparing the ratio of the number of C-to-T or C-to-G substitutions and complementary G-to-A or G-to-C substitutions that occur in and out of the APOBEC target motif (TCW or WGA) to an analogous ratio for all cytosines or guanines that reside inside and outside of the TCW or WGA motif within a sample fraction of the genome (Benjamini-Hochberg-corrected q value < 0.05). The number of tumor samples in each category

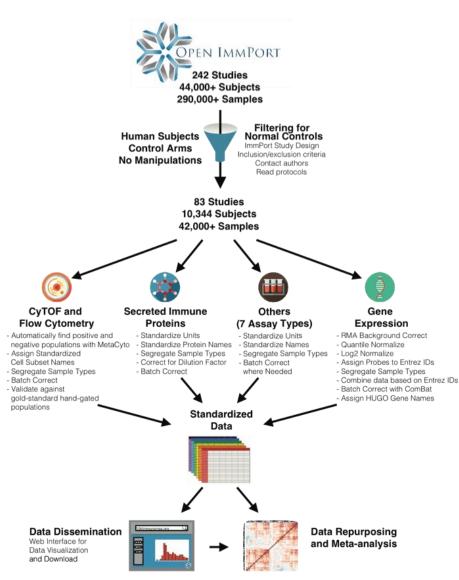
Methods

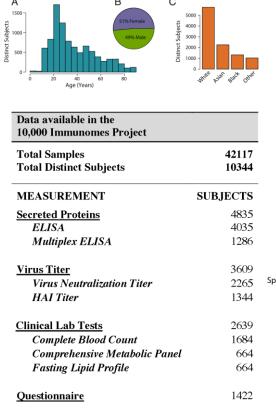
Abstract • Introduction • Results • Discussion • Methods • References • Acknowledgments • Author information • Supplementary information


Genome and exome data sets.

Genome and exome data sets were obtained from publications^{20, 21} or from the TCGA data portal (see URLs; Controlled Data Access HTTP Directory). The catalog of base substitutions identified by whole-genome sequencing in 21 breast cancers was downloaded from the website provided in ref. 12 (seeURLs).

Hyperlinks to TCGA data sets and references to published mutation lists are provided in Supplementary Table 3.


Cluster analysis.


Clusters and colocalization between clusters and rearrangement breakpoints in whole-genome data sets were identified as described in ref. 13. Analysis of mutation clustering in exomes was conducted similarly to that in whole-genome data sets. Briefly, we first filtered out mutations identical to variants in dbSNP. These SNPs generally constituted a small percentage (0.9–12.1%) of all exome mutations for a given cancer type. However, LUSC, KIRC, PRAD and STAD samples contained somewhat higher numbers of mutations identical to variants in dbSNP (19.5–25.1%). Notably, each prefiltered mutation was included in the total number of mutations in the genome, which would thereby only increase the *P* values of clusters. We next identified groups of closely

is presented in each pie chart in a. Samples with q value > 0.05 are represented in black. These samples are excluded from the scatter graphs in a,b. Color scales indicate the magnitude of enrichment in a and the number of APOBEC signature mutations in b for samples with q < 0.05. Dashed lines indicate effects expected with random mutagenesis. Cancer types are abbreviated as in TCGA: cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), bladder urothelial carcinoma (BLCA), head and neck squamous cell carcinoma (HNSC), breast invasive carcinoma (BRCA), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), uterine corpus endometrioid carcinoma (UCEC), ovarian serous cystadenocarcinoma (OV), stomach adenocarcinoma (STAD), rectum adenocarcinoma (READ), colon adenocarcinoma (COAD), prostate adenocarcinoma (PRAD), kidney renal clear-cell carcinoma (KIRC) and acute myeloid leukemia (LAML).

The 10,000 Immunome Project: From the control groups of 242 manually curated experiments

Cytometry

HLA Type

Whole Blood

PBMC

Flow Cytometry (PBMC)

Flow Cytometry (Whole Blood)

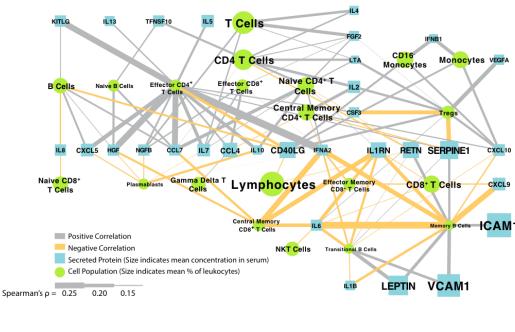
CvTOF (PBMC)

Gene Expression Array

1415

907

583

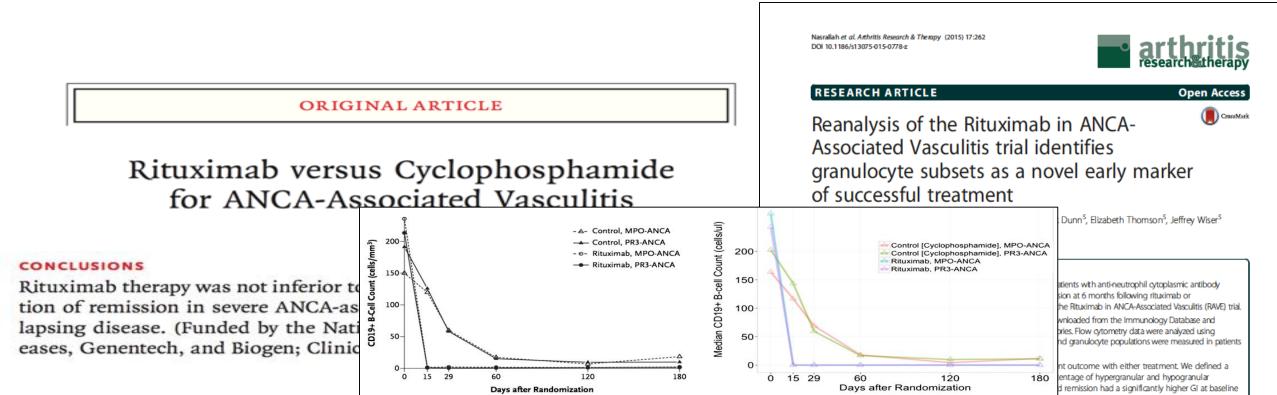

164

1093

476

311

165



Kelly Zalocusky
Sanchita Bhattacharya
@ImmPortDB

Cell Reports bit.ly/10kimmunome http://10kimmunomes.org/

Share successful, failed, and so-so data

- Rituximab in ANCA-Associated Vasculitis (RAVE) trial of new approach to the induction of remission
- But even though rituximab was found to be non-inferior than cyclophosphamide, which drug is the right one to use?

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Once-Daily Plazomicin for Complicated Urinary Tract Infections

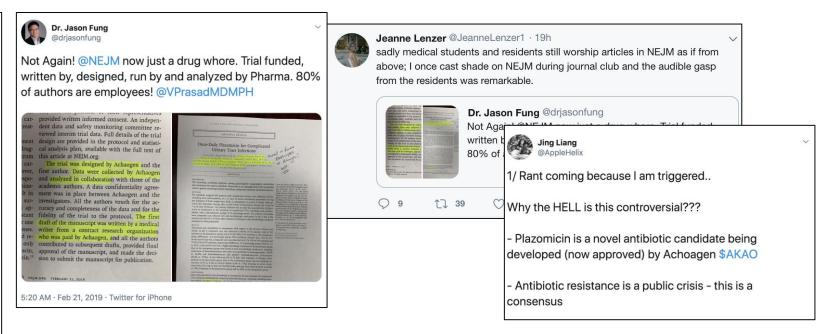
Florian M.E. Wagenlehner, M.D., Daniel J. Cloutier, Pharm.D., Allison S. Komirenko, Pharm.D., Deborah S. Cebrik, M.S., M.P.H., Kevin M. Krause, M.B.A., Tiffany R. Keepers, Ph.D., Lynn E. Connolly, M.D., Ph.D. Loren G. Miller, M.D., M.P.H., Ian Friedland, M.D., and Jamie P. Dwyer, M.D., for the EPIC Study Group*

ABSTRACT

The increasing multidrug resistance among gram-negative uropathogens necessitates From the Justus Liebig University, Gies new treatments for serious infections. Plazomicin is an aminoglycoside with bactericidal sen, Germany (F.M.E.W.); Achaogen, South activity against multidrug-resistant (including carbapenem-resistant) Enterobacteriaceae.

We randomly assigned 609 patients with complicated urinary tract infections (UTIs), including acute pyelonephritis, in a 1:1 ratio to receive intravenous plazomicin (15 mg ical Research Institute at Harbor-UCLA per kilogram of body weight once daily) or meropenem (1 g every 8 hours), with optional oral step-down therapy after at least 4 days of intravenous therapy, for a total of Medical Center, Nashville (J.P.D.). Address 7 to 10 days of therapy. The primary objective was to show the noninferiority of plazo-reprint requests to Dr. Wagenlehner at the micin to meropenem in the treatment of complicated UTIs, including acute pyelonephritis, with a noninferiority margin of 15 percentage points. The primary end points Rudolf-Buchheim Str. 7, 35392 Giessen were composite cure (clinical cure and microbiologic eradication) at day 5 and at the Germany, or at florian.wagenlehner@ test-of-cure visit (15 to 19 days after initiation of therapy) in the microbiologic modified hiru.med.uni-giessen.de.

Plazomicin was noninferior to meropenem with respect to the primary efficacy end at NEIM.org. points. At day 5, composite cure was observed in 88.0% of the patients (168 of 191 N Engl J Med 2019;380:729-40 patients) in the plazomicin group and in 91.4% (180 of 197 patients) in the meropenem DOI: 10.1056/NEJMoa180146 group (difference, -3.4 percentage points; 95% confidence interval [CI], -10.0 to 3.1). Copyright © 2019 Massachusetts Medical Society At the test-of-cure visit, composite cure was observed in 81.7% (156 of 191 patients) and 70.1% (138 of 197 patients), respectively (difference, 11.6 percentage points; 95% CI, 2.7 to 20.3). At the test-of-cure visit, a higher percentage of patients in the plazomicin group than in the meropenem group were found to have microbiologic eradication, including eradication of Enterobacteriaceae that were not susceptible to aminoglycosides (78.8% vs. 68.6%) and Enterobacteriaceae that produce extended-spectrum β-lactamases (82.4% vs. 75.0%). At late follow-up (24 to 32 days after initiation of therapy), fewer patients in the plazomicin group than in the meropenem group had microbiologic recurrence (3.7% vs. 8.1%) or clinical relapse (1.6% vs. 7.1%). Increases in serum creatinine levels of 0.5 mg or more per deciliter (≥40 µmol per liter) above baseline occurred in 7.0% of patients in the plazomicin group and in 4.0% in the meropenem group.


Once-daily plazomicin was noninferior to meropenem for the treatment of complicated UTIs and acute pyelonephritis caused by Enteropacteriaceae, including multidrug-resis tant strains. (Funded by Achaogen and the Biomedical Advanced Research and Develop ment Authority; EPIC Clinical Trials.gov number, NCT02486627.)

N ENGL J MED 380;8 NEJM.ORG FEBRUARY 21, 2019

The New England Journal of Medicine Downloaded from neim.org at SAN FRANCISCO (UCSF) on February 24, 2019. For personal use only, No other uses without permission Copyright © 2019 Massachusetts Medical Society. All rights reserved.

geles (L.G.M.), and Los Angeles Biomed-Medical Center. Torrance (L.G.M.) - all Clinic for Urology, Pediatric Urology and

gators in the EPIC Study is provided in

Journal reputation is at a critical moment

- How are journals going to respond to professional skeptics?
- How does a journal respond to another journal's editor criticizing approval?
- How will journals respond to health systems (like University of California) who will now look at drug efficacy in real world clinical data? Will the data match?
- How will journals respond to payers incentivized to challenge expensive drug approvals, who will now want to see the raw data? \$Billions riding on these papers.
- How will journals address the family ready to sell their house to pay for a drug for their family member?
- How will journals counter when government officials label them "fake news"?

"Trust us, it works, we've looked at the data"?! Really?

Preeclampsia: large cause of maternal and fetal death

Incidence

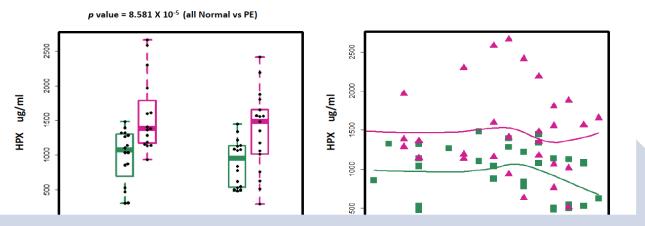
- 5-8% of all pregnancies in the U.S. and worldwide
- 4.1 million births in the U.S. in 2009
- Up to 300K cases of preeclampsia annually in the U.S.

Mortality

- Responsible for 18% of all maternal deaths in the U.S.
- Maternal death in 56 out of every 100,000 live births in US
- Neonatal death in 71 out of every 100,000 live births in US

Cost

- \$20 billion in direct costs in the U.S annually
- Average hospital stay of 3.5 days



Linda Liu Bruce Ling Matt Cooper

Page 1 2 3 4	5 6 11	Sh wing 1 - 25	of 266 experim	ents		
Accession	Title	Туре	Organism	Assays~	Released	F
E-GEOD-32472	Oxygen induced complication of prematurity: from experimental data to prevention strategy	transcription profiling by array	Homo sapiens	299	01/11/2011	
E-GEOD-27976	Calvarial osteoblast transcriptome analysis identifies genetic targets and extracellular matrix-mediated focal adhesion as potential biomarkers for single-suture craniosynostosis	transcription profiling by array	Homo sapiens	249	04/03/2012	
E-GEOD-46510	New whole blood gene expression profile predictve of preterm birth	transcription profiling by array	Homo sapiens	154	15/05/2014	
E-GEOD-37210	The application of nonsense-mediated mRNA decay inhibition to the identification of breast cancer susceptibility genes	transcription profiling by array	Homo sapiens	143	11/04/2012	
E-TABM-682	Transcription profiling of human decidua basalis to identify pre-eclampsia susceptibility genes	transcription profiling by array	Homo sapiens	104	07/04/2009	
E-GEOD-35574	Differentially expressed microRNAs revealed by molecular signatures of Preeclampsia and IUGR in human placenta	transcription profiling by array	Homo sapiens	94	07/02/2012	
E-GEOD-41336	Cultured Cyto and Syncytio-trophoblast samples exposed to varying degrees of hypoxia (methylation)	methylation profiling by array	Homo sapiens	90	18/01/2013	
E-GEOD-5999	Transcription profiling of human 27 non-	transcription	Homo sapiens	72	07/11/2008	

Need a diagnostic for preeclampsia

Public big data available

March of **Dimes Center** for Prematurity Research

Data analyzed, diagnostic designed

SPARK grant (\$50k)

Life Science Angels, other seed investors (\$2 million)

Acquired by **Progenity** (La Jolla)

STOCK WATCH

Express, Wet Seal, Avago Jump

Carmenta Bioscience Secures Over \$2 Million in Oversubscribed Seed Financing

Camille Samuels Accepts Seat on Carmenta Board of Dig

Búsiness Wire

Progenity Acquires Carmenta Bioscience for Proprietary Preeclampsia Technology; Appoints Matthew Cooper Chief Scientific Officer

@CarmentaBio progenity.com bit.ly/carm prog

Matthew Herper Forbes Staff

FOLLOW

How Much Does Pharmaceutical **Innovation Cost? A Look At** 100 Companies

+ Comment Now + Follow Comments

Company	Ticker		Spending To Drug (\$Mil) 199	al R&D Spending 7-2011 (\$Mil)
<u>AstraZeneca</u>	AZN	5	11,790.93	58,9
<u>GlaxoSmithKline</u>	GSK	10	8,170.81	81,7
<u>Sanofi</u>	SNY	8	7,909.26	63,2
Roche Holding AG	RHHBY	11	7,803.77	85,8
<u>Pfizer</u> Inc.	PFE	14	7,727.03	108,1
Johnson & Johnson	JNJ	15	5,885.65	88,2
Eli Lilly & Co.	LLY	11	4,577.04	50,3
Abbott Laboratories	ABT	8	4,496.21	35,9
Merck & Co Inc	MRK	16	4,209.99	67.3
Bristol-Myers Squibb Co	. BMY	11	4,152.26	
Novartis AG	NVS	21	3,983.13	@Matt
Amgen Inc.	AMGN	9	3,692.14	•
Sources: InnoThink Center I Fundamentals via FactSet R	For Resear Lesearch Si	ch In Biomedical Ini ystems	tovation; Tho	bit.ly

@MatthewHerper bit.ly/newdrug1

58,955 81,708 63,274 85,841 108,178 88,285 50,347 35,970 67.260

NIH LINCS

LIBRARY OF INTEGRATED NETWORK-BASED CELLULAR SIGNATURES

10 ME ABO

ABOUT CEN

CENTERS

DATA ASSAYS

CELL TYPES

PUBLICATIONS

NEWS

CONTACT

LINCS aims to create a network-based understanding of biology by cataloging changes in gene expression and other cellular processes that occur when cells are exposed to a variety of perturbing agents

LINCS aims to create a network-based understanding of biology by cataloging changes in gene expression and other cellular processes that occur when cells are exposed to a variety of perturbing agents, and by using computational tools to integrate this diverse information into a comprehensive view of normal and disease states that can be applied for the development of new biomarkers and therapeutics. By generating and making public data that indicates how cells respond to various genetic and environmental stressors, the LINCS project will help us gain a more detailed understanding of cell pathways and aid efforts to develop therapies that might restore perturbed pathways and networks to their normal states.

5,178 compounds

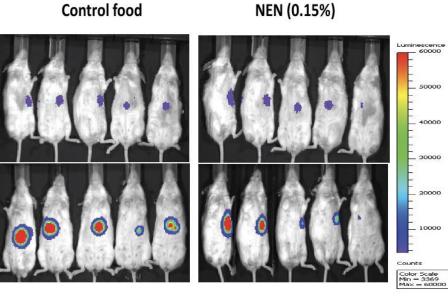
- 1,300 off-patent FDA-approved drugs
- 700 bioactive tool compounds
- 2,000+ screening hits (MLPCN and others)

3,712 genes (shRNA + cDNA)

- targets/pathways of FDA-approved drugs (n=900)
- candidate disease genes (n=600)
- community nominations (n=500+)

15 cell types

- Banked primary cell types
- Cancer cell lines
- Primary hTERT immortalized
- Patient derived iPS cells
- 5 community nominated



Before treatment

After treatment

control food

niclosamide

NEN

Drinking water 1 2 3 4 5 6 7 8 9 NEN NEN trafinition had an hall when the land and a land a sorafenib 1 2 3 4 5 6 7 NEN & sorafenib

Bin Chen Wei Wei Li Ma **Bin Yang** Mei-Sze Chua **Samuel So** Gastroenterology, 2017

Need more drugs for more diseases **Public big data** available

NIH funding

Data analyzed, method designed Company launched, ARRA, StartX, Stanford license, first deal

- U.S. Economy Contracted

Last Quarter

Claremont Creek, Lightspeed (\$3.5 million)

@NuMedii

Venture capital

NuMedii
Translating Big Data into new medicines 'Digital drug development' company NuMedii snags \$3.5 million

Ron Leuty Reporter-San Francisco Business Times Email | Twitter | Google+ | Twitter

NuMedii Inc., the Palo Alto startup looking to convert pages of drug safety data into faster drug-development times, lined up \$3.5 million in a Series A round.

Enlarge NuMedii CEO Gini Deshpande: Tapping old data drugs.

The oversubscribed round was led by Claremont Creek Ventures and Lightspeed Ve Partners and included Life Science Angels and others.

NuMedii's data-into-gold approach rolls a wide range of data — from public scientific data bases and other sources — into an algorithm to predict if a compound will trans

Topics: R&D

Allergan taps NuMedii's digi platform for psoriasis R&D

October 5, 2015 | By Nick Paul Taylor

NuMedii has landed a deal that could val SHARE

discovery. Allergan (\$AGN) is the compa tments fo

Astellas hooks up with NuMedii to continue drug repurposing deal drive

January 15, 2016 | By Nick Paul Taylor

Researchers Show Gains in Finding Reus

SHARE The scientists ha

THE WALL STREET JOURNAL. ≡ | U.S.

VA Scandal Is

Shinseki's Latest

Email A Print

By AMY DOCKSE

In a bit of high-te

already-approve

August 18, 2011

combat.

NuMedii, Inc. Announces New Partnership To Discover And Advance New Treatments For Idiopathic Pulmonary Fibros

@nanopore@wiredWhitehead Institute

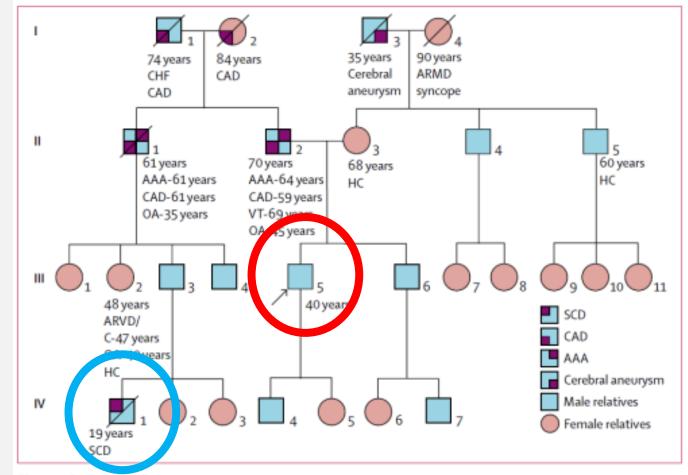


Figure 2: Patient pedigree

The arrow shows the patient. Diagonal lines show relatives who are deceased. Years are age at death or diagnosis. AAA=abdominal aortic aneurysm. ARMD=age-related macular degeneration. ARVD/C=arrhythmogenic right-ventricular dysplasia or cardiomyopathy. CAD=coronary artery disease. CHF=congestive heart failure. HC=hypercholesterolaemia. HTN=hypertension. OA=osteoarthritis. SCD=sudden cardiac death (presumed). VT=paroxysmal ventricular tachycardia.

Credit: Euan Ashley, Russ Altman, Steve Quake, Lancet

Important genome differences "locked up" in publications

ORIGINAL ARTICLE

Association of IL23R, TNFRSFIA, and HLA-DRBI*0103 Allele Variants with Inflammatory Bowel Disease Phenotypes in the Finnish Population

Maarit Lappalainen, MSc, *1 Leena Halme, MD, PhD, ¹ Ulla Turunen, MD, ⁵ Pāivi Saavalainen, PhD, *1 Elisabet Einarsdottir, PhD, * Martti Färkkilä, MD, PhD, * Kimmo Kontula, MD, PhD, * and Paulina Paavola-Sakki, MD, PhD^{t.5}

major forms of inflaminatory bowel disease (IBD), are complex disorders with significant genetic predisposition. The first CD-assoseveral reports on newel IBID candidate genes have emerged. We phenotypic variation in IBD. investigated disease phenotype association to genetic variations in IL23R ATGIGLI, DLG5, ABCBIMDR1, TLR4, TNFRSFIA, chiomosome 5 risk hopkitype including SEC22A4 and SEC22A5, and HLA-DRB1*0103 affele among Finnish IBD patients.

Methods: A total of 699 IBD patients were genotyped for diseaseassociated variants by polymerase chain reaction (PCR) and restriction enzyme digestion or Sequenom dPLEX method.

Results: Five markers spanning the #238 gene were associated with CD. The SNP (single nucleotide polymorphism) rs2301841 gave the strongest association (P = 0.002). The rare HLA-DRB1*0103 allele was found to associate with UC (P = 0.008), and the TNFRSFIA A36G variant was associated with familial UC (P = 0.007). Upon phenotypic analysis we detected association between familial UC and rare-TNFRSF1A alleles 36G and IVS6+10G (P = 0.001 and P = 0.042, respectively). In addition, ILLSR markers were associated with strictusing CD (P = 0.010-0.017), and ileocolonic CD was more prevalent in that the SLC224 genes represent the actual disease genes 6-13 the corners of the same 2 TNFRSFIA vertices (P = 0.02) and P Most of the studies have confirmed the association of CD = 0.028, respectively). Less significant genotype-phenotype associations were observed for the TLRF and HLA variants.

Received for publication lumary 23, 2008; Accepted lummy 26, 2008. From the "Research Program for Molocular Medicine, Biomedican Helsinki, Finland, 'Department of Methcine, University of Helsinki, Helsinki, Finland, "Department of Transplantation and Lover Surgery, Hebiaki University Hospital, Hebirki, Firfand, *Department of Gastosmionology, Helsinks University Hospital, Helsinks, Finland, Department of Medical Genetics, Biomedicum Helsinki, Finland.

Supported by a great from the Special State Funds of the Helsinki. University Central Hospital (EVO), University of Helsinki, the Hunish Academy, and the EU commission (MEXT-CT-2005-025270).

Reprint: Kimmo Kontala, Department of Medicine, University of Helsinki, Huartmaninkata 4, FIN-00200 Holsinki, Finland to mult. Kimmo kontalo Situs (1).

Copyright © 2008 Crehe's & Colitis Foundation of America, Inc.

Published online 13 March 2008 in Wiley InterScience (www.interscience.

Conclusions: We were able to replicate the association of the Background: Crohn's disease (CD) and ulcerative colids (UC), 2 #22# variants with CD as well as 18.A-DRB1*0103 with UC; confirmation of TNFRSF1A association with UC needs additional studies. Our findings also suggest that polymorphisms at IL23R and ciated gene, CARD15/NOD2, was recently identified and since then TNFRSFIA, and purolbly HLA and TLR4, loci may account for

(Inflamm Bowel Dia 2008:14:1118-1124)

Key Words: Finish, inflammatory bowel disease, HLA-DRB1*0103, IL23R, TNFRSF1A

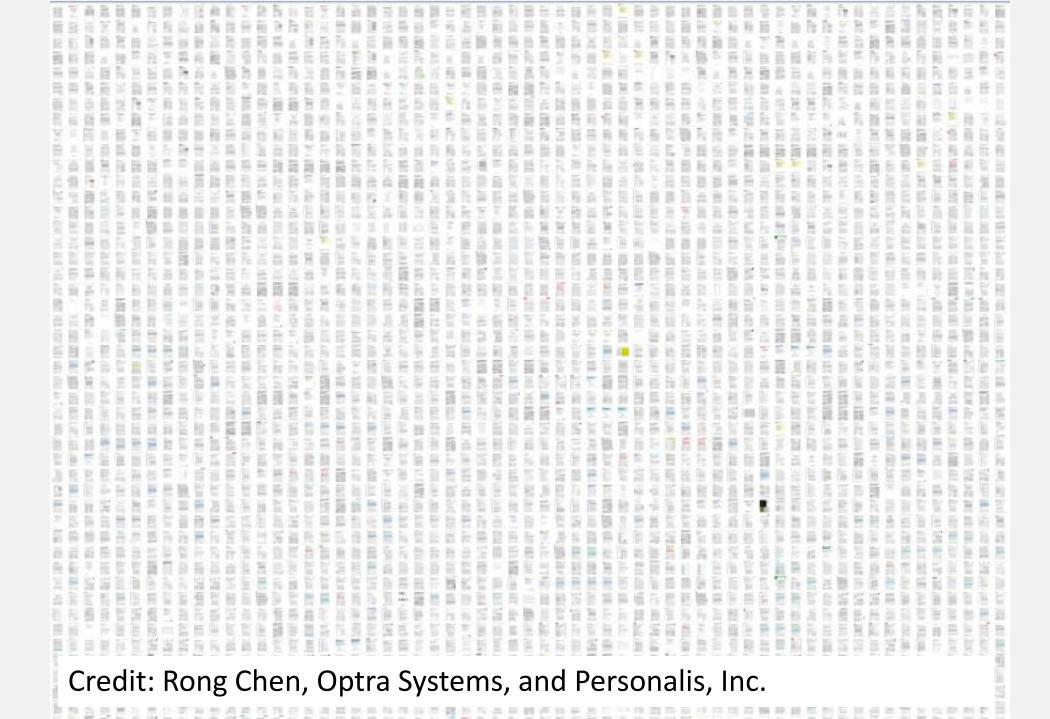
C ince the initial discovery of the association of CARD15/ NOD2 gene variants with Crohn's disease (CD),1-3 several new susceptibility genes for inflammatory bowel disease (IBD) have been reported. In 2004 the positional cloning approach led to the identification of the associated variants in solute carrier family 22 (SLC22A members 4 and 5)4 and the discs large homolog 5 (DLG5)8 genes that are implicated in fatty acid oxidation and in maintaining epithelial integrity, respectively. It has not however, been unequivocally proved with the SLC22A gene variants or with the chromosome 5 risk handstyne: however, a study of more than 981 Relatan IRD patients could not replicate the association with IBD, CD, or ulcerative colitis (UC),14 A recent study by Silverberg et al15 using a large cohort of IBD trios excluded the SLC22A5 gene variant as the potential causal variant. The association of genetic variations in the DLG5 gene with IBD and CD was initially described in 2 large European study samples.5 The haplotype A, tagged by SNP DLG5 e26 ins/delA, was significantly undertransmitted in IBD and CD, whereas haplotype D, tagged by the SNP G113A (R30Q), was significantly overtransmitted in both IBD and CD, Several groups have not been able to replicate the association since the original report.18,18,18 However, in 1 case gender-specific analysis revesled an association 17

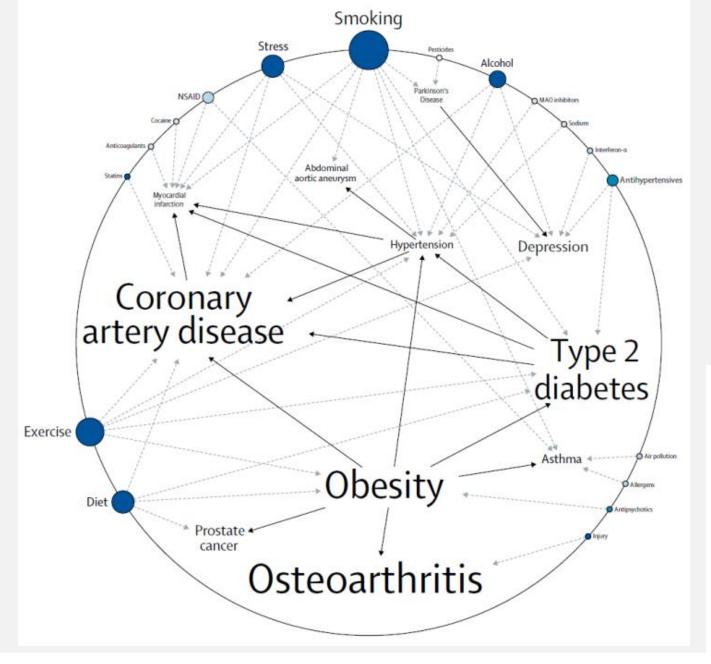
The association of IBD with genetic variation in the Toll-like receptor 4 (TLR4) gene has been investigated by many groups but the results have been controversial, which

Inflamm Bowel Dis + Volume 14, Number 8, August 2006

1118

Collect the "big data" of findings across publications to analyze the "big data" of the genome





Credit: Rong Chen, Optra Systems, and Personalis, Inc.

Credit: Rong Chen, Optra Systems, and Personalis, Inc.

Maybe the genome can be used to suggest (promote?) preventative health strategies?

Credit: Rong Chen, Alex Morgan, Joel Dudley, Lancet

Need to use genomes to predict disease (2008)

Publications available for curation

Stanford donor funding

Company launched, **Stanford** license

MDV, Lightspeed, Abingworth (\$20 million)

Same 3 plus Wellington Shields (\$22 million)

Series C (\$33 million)

IPO (2019, \$141 million)

STOCK WATCH

Express, Wet Seal, Avago Jump

Personalis Awarded Contract From VA Million Veteran Program – Whole Genome Sequencing and Data Analysis for Over 1,000 Individuals

Press Release: Personalis, Inc. - Tue, Mar 12, 2013 12:02 AM EDT

MENLO PARK, Calif .-- (BUSINESS WIRE) --

The US Department of Veterans Affairs (VA) has awarded its first co sequencing and data analysis to Personalis, Inc., of Menlo Park, CA. samples from several VA sources, including from the Million Veterar secure computing facility and proprietary algorithms, Personalis wil against an advanced human reference sequence, annotate both SNV genetic analyses to help confirm sample / data chain of custody. Pers laboratory genetic analysis, including both DNA sequencing and gene Illumina, Inc., of San Diego, CA.

Personalis Announces Closing of Initial Public Offering and Exercise in Full of Over Allotment Option

June 24, 2019

A PDF Version

MENLO PARK, Calif.--(BUSINESS WIRE)--Jun. 24, 2019-- Personalis, Inc. (Nasdag: PSNL), a leader in advanced genomics for cancer, today announced the closing of its initial public offering of 9,109,725 shares of common stock at a public offering price of \$17.00 per share, which includes the exercise in full by the underwriters of their option to purchase up to 1188 225 additional shares of common stock. All of the shares

Four Big Lessons Learned in Building Big Data Ecosystems

- Sufficient data already exists to impact medicine
 - Diagnostics and drugs from public big data
 - More data is better, but never a reason to wait for more
 - "Retroactive crowdsourcing": robust findings come from integrated data sets
 - Real success use-cases get data storers, data users, and data contributors excited
- Public and open data is already extremely high quality
 - Should never wait for perfect data, experiment, conditions
- Sticks seem to work better than carrots for sharing
 - Continue exponential growth, ask grantees to share more
- Need more question askers, train students to initiate science with data
 - High school → higher education → career changers