
Robert W Williams PhD University Tennessee

My background:

Neuroscience and statistical genetic. Studies of eye, brain, metabolism, addiction, aging.

Methods: Imaging, stereology, DNA sequence, transcriptome, phenomes Web apps for systems biology, genetics, neuroscience: GeneNetwork.org, Mouse Brain Library (MBL.org), Addiction genomics (OPAR.io) Statistical methods for better genome-phenome modeling, translation to human

Research Interests: Resources, data, workflows for experimental and quantitative P4 medicine

What types of data:

Mainly quantitative phenotype data (usually poorly and non-uniform metadata), 180 matched genomes. Wide range of omics data: BXD family of isogenic strains is the most deeply quantified cohort. Data to 1973 rescued and in GeneNetwork with all new data.

Data coupled with a statistical

genetics web stack.

Funded by UT, NIDA, NIGMS, NIAAA, NIA, NEI, NCI, NIMH

Reaction to Task Statement

Tools & Practices to improve data capture, quality, management, preservation, and access, while reducing risk and cost:

- Establish low-cost secure enclaves of PHI, EHR, genomes
- Develop encrypted but computable file structure for human
- Data loss and cost is NOT the core problem. Challenge is initial data and metadata capture. Genomic commons success.

Methods to get researchers to manage data and costs:

- Motivate use of IPFS, GUIX-Docker, Galaxy, OSF, blockchain
- Push against static publication to Jupyter, R/shiny, and other publication methods that support data that breathes & breeds

Implementation barriers:

- I. Great OSS tools, but as volatile as ever
- 2. Focus on narratives rather than data and analysis