What Is It Going To Cost And What Is In It For Me?

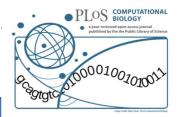
Philip E. Bourne PhD, FACMI
Stephenson Chair of Data Science
Director, Data Science Institute
Professor of Biomedical Engineering

peb6a@virginia.edu

https://www.slideshare.net/pebourne



@pebourne



My Perspective

The cost to replicate the contents of the PDB archive is estimated at \$14 billion

PLOS' New Data Policy: Public Access to Data

Why This Title –

What Is It Going To Cost And What Is In It For Me?

Because whomever is considering questions of data management/preservation/access these are the only questions that seem to matter

Consider the problem from the perspective of stakeholders in a supply chain

Stakeholders in **Supply Chains**

The cost to replicate the contents of the PDB archive is estimated at \$14 billion

Publishers

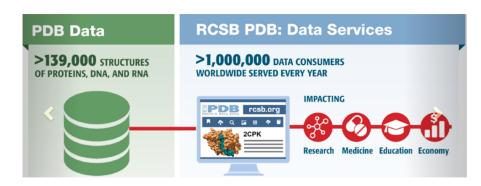
rectors

• PLOS COMPUTATIONAL BIOLOGY

Readers

Authors

When it comes to data ...

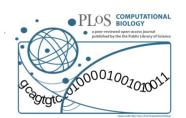

None of these supply chains is sustainable in its current form

Funders

Resource Developers

The cost to replicate the contents of the PDB archive is estimated at \$14 billion

- Even for a resource so heavily used 5-year funding cycles are not assured
- There is little international cooperation at the funder level
- Funders have ownership issues too
- Developers are reluctant to seek private funding as they fear it will impact their federal funding


Publishers

PLOS' New Data Policy: Public Access to Data

- Only large publishers have the means to sustain a data ecosystem – they are large because they are profit making
- Lack of expertise

- Authors want to publish their next paper not deposit high quality data because there is little reward
- Data are only accessed a small fraction of the time
- Data are move valuable in aggregate

NIH Directors Congress

Researchers

- The distinction between data science and data management is not clear
- Experimental mindedness
- Need to support alternative business models
- Need to put teeth into data management plans

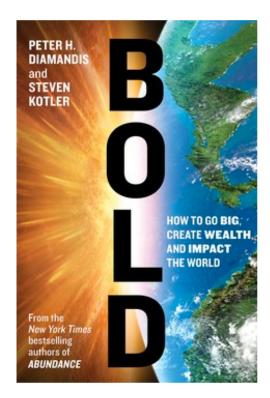
- Need to think business models
- Need to move beyond a sense of entitlement

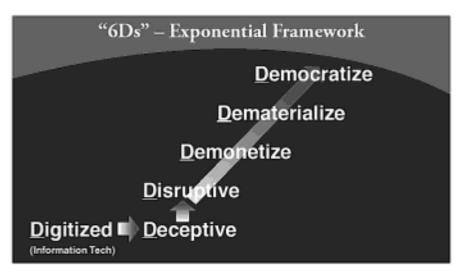
Deans Presidents

Faculty Students

- May not appreciate the value of data – think its free
- Have yet to realize how data are critical to the future of the institution

 Lack appropriate access even to their own data

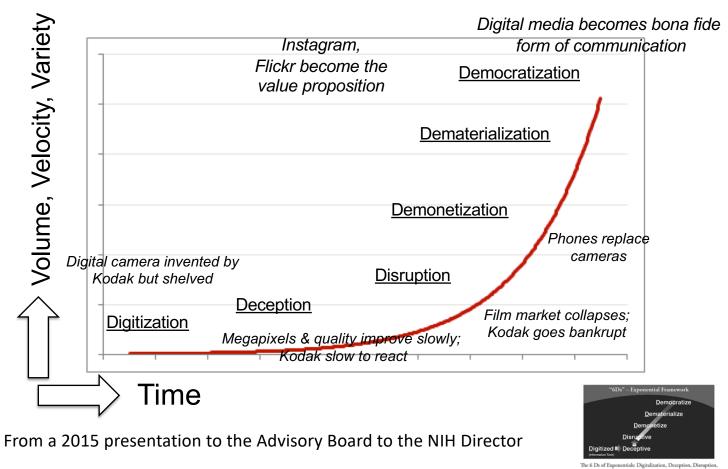

Moreover, "Forecasting Costs" whether you believe the system is sustainable or unsustainable is very difficult...


Here is why ...

Story of the Trauma Surgeon ...

- What does this story tell us?
 - It's the promise of things to come
 - Data integration by new types of researchers leading to important biomedical outcomes
 - Suddenly biomedical data is only part of the story to be told
 - That data must be preserved collectively if the story is to be reproduced
 - There is no repository as suitable support for this story
 - It's the tip of an iceberg

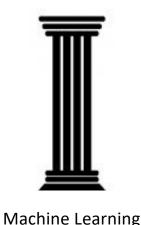
How Disruptive Could this Be? (with Apologies)



The 6 Ds of Exponentials: Digitalization, Deception, Disruption, Demonetization, Dematerialization, and Democratization

Source: Peter H. Diamandis, www.abundancehub.com

From a 2015 presentation to the Advisory Board to the NIH Director

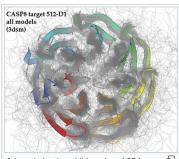

Example - Photography

Yet Another Wake Up Call

Edit View history Search Wikipedia Q

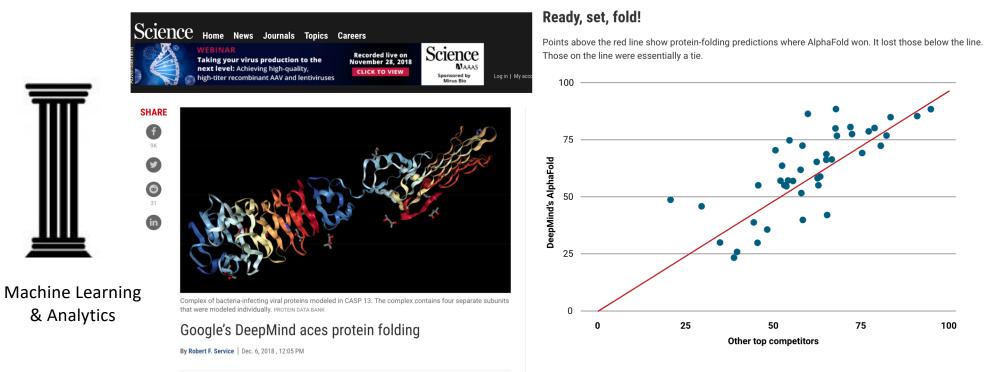
Not logged in Talk Contributions Create account Log in

& Analytics


Upload file

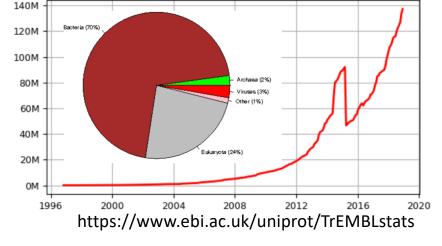
Special pages Permanent link CASP
From Wikipedia, the free encyclopedia
Critical Assessment of protein St

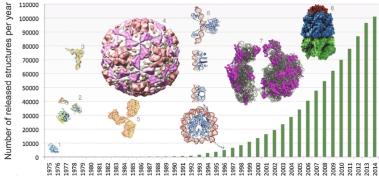
Critical Assessment of protein Structure Prediction, or CASP, is a community-wide, worldwide experiment for protein structure prediction taking place every two years since 1994.^[1] CASP provides research groups with an opportunity to objectively test their structure prediction methods and delivers an independent assessment of the state of the art in protein structure modeling to the research community and software users. Even though the primary goal of CASP is to help advance the methods of identifying protein three-dimensional structure from its amino acid sequence, many view the experiment more as a "world championship" in this field of science. More than 100 research groups from all over the world participate in CASP on a regular basis and it is not uncommon for entire groups to suspend their other research for months while they focus on getting their servers ready for the experiment and on performing the detailed predictions.


Contents [hide] 1 Selection of target proteins 2 Evaluation 3 See also

4 References5 External links5.1 Result Ranking

A target structure (ribbons) and 354 template-based predictions superimposed (gray Calpha backbones); from CASP8


Yet Another Wake Up Call


https://www.sciencemag.org/news/2018/12/google-s-deepmind-aces-protein-folding https://moalquraishi.wordpress.com/2018/12/09/alphafold-casp13-what-just-happened/

Further Drivers of Change (ELSI Notwithstanding)

- Training data is doubling every two years
- Robust and reusable tools in Python and R
- More advanced tools e.g., Deep Artificial Neural Networks (DNNs)
- New computing power e.g., GPUs, the cloud
- Advances coming from the private sector NOT academia
- Successful integration into lifestyles
 patients will demand it

Number of entries in UniProtKB/TrEMBL

Contents of the Protein Data Bank

Pastur-Romay et al. 2016 doi:10.3390/ijms17081313

Lets summarize with respect to our original questions...

What is it going to cost?

As much as you are willing to spend

What is in it for me?
A significant part of the future of biomedical research proportional to your spend

These answers are not very satisfactory to say the least...

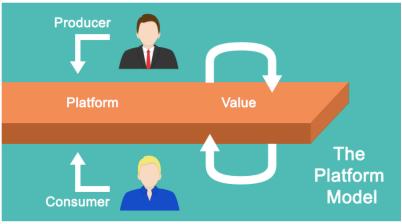
Let us consider possible solutions at least at the academic institution level

One institution with an important opportunity

UVA FACULTY SENATE VOTES TO ESTABLISH SCHOOL OF DATA SCIENCE

We would not exist if not for open data

May 01, 2019 • Fariss Samarrai, farisss@virginia.edu

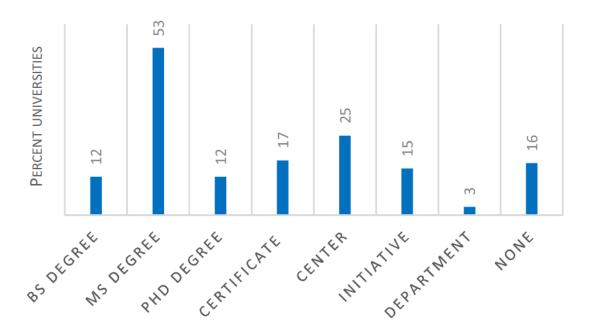


We Need to Change the Institutional Culture Surrounding Data

- We need use cases of "eat your own dog food" to show value
- We need to embrace the institutional libraries role as one beyond data preservation to that of analyst
- We need to reward reproducible science and open science where data plays a major role:
 - Part of the faculty/staff handbook
 - Part of the hiring process
 - Part of the promotion process
- We need better data governance

We need the institutional infrastructure for data ...

We need to move from pipes to platforms


https://blog.lexicata.com/wp-content/uploads/2015/03/platform-model-750x410.png

We Need a Realistic Business Model

- Tuition
 - Students use and reuse data and hence should pay for that quality data
- Federal Funding
 - It's a part of the solution, but not the whole solution, it will not scale
- Philanthropy
 - Most philanthropists are not aware of the importance of data in what they give money to support – Advancement offices need to be educated first
- Public Private Partnership
 - Funding agencies should encourage this it is more than SBIRs witness capstones

We Are Not Alone

Data Science Offerings at Research Universities (n=116)

Source: Moore Foundation, 2017.

2019 N> 160

What Should be Done?

- A data deluge and opportunities lost are what happens when you are forecasting costs
- Demand (science) far outweighs supply (data resources) support those resources that make the most strategic sense
- Broaden the responsibility for data to include academic institutions and the private sector
 - Develop incentives to support institutional data resources that impact the culture
 - Resource institutional/biomedical libraries
 - Foster public private partnerships that support public data

My answers to the original questions...

What is it going to cost?

Less if we consider data as part of a broader ecosystem with many stakeholders

What is in it for me? Improved research and healthcare outcomes

Conversation Cards

- What role do you think institutions should play in support of data?
- Does the emergence of data as a science data science present opportunities?
- What role should the private sector play?