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MATHEMATICAL FRONTIERS

Mathematics of the Electric Grid

Sean Meyn, Steven Low, Mark Green,
University of Florida Caltech UCLA (moderator)
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MATHEMATICAL FRONTIERS

Mathematics of the Electric Grid

Professor and Robert C. Pittman Eminent
Scholar Chair in the Department of
Electrical and Computer Engineering

Networks of Power
Today and Tomorrow

Sean Meyn,
University of Florida
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Networks of Power

Today and Tomorrow

COGNITION & CONTROL
IN COMPLEX SYSTEMS

Department of Electrical and Computer Engineering
University of Florida

Thanks to to our sponsors: NSF, Google, DOE, ARPA-E

See also:

National Academies Workshop: https://vimeo.com/album/3275353

NREL AEG Workshop: https://www.nrel.gov/grid/autonomous-energy.html

Simons Center Bootcamp:
https://simons.berkeley.edu/workshops/realtime2018-boot-camp

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers
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Networks of Power

Outline

1) Motivation

2) Network Today

3) Network Tomorrow: New Balancing Resources
4) Conclusions

5) References

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 6 '




Motivation: Grid in Transition

What's the Big Deal?

e Revolution in energy and communication technologies
=revolutionary thinking about how to manage the power grid

e Solar and wind energy bring variability and uncertainty
=opportunities and challenges

e Research challenges in
e networks, control & communication
e creative modeling, such asPDE and mean-field models
e statistics, optimization and “machine learning”
e economics (new viewpoints are needed!)
e and of course, all aspects of power systems

These lectures focus on large-scale systems questions, leaving out
e New technologies: power electronics, solar cells, electric storage
e Cyber-security
e Detection and response to cascading failures, ...
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Network Today: Balancing Energy, Frequency, and Phase
View of the Balancing Authority
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The ISO grid

The ISO manages the flow of electricity for about 80 percent of California and a small part of LADWP wm.c—?
Nevada, which encompasses all of the investor-owned utility territories and some municipal \g
utility service areas. There are some pockets where local public power companies manage ¥
their own transmission systems.

The ISO is the largest of about 38 balancing authorities in the western interconnection, handling an
estimated 35 percent of the electric load in the West. A balancing authority is responsible for operating a
transmission control area. It matches generation with load and maintains consistent electric frequency of
the grid, even during extreme weather conditions or natural disasters.
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Network Today: Balancing Energy, Frequency, and Phase
View of the Balancing Authority

Balancing Frequency

Frequency deviation of 0.1 Hz = Panic!

NERC report 2002

60.010 Hz

Rockport Incident - 23 April 2002

Initial Trigger 14:50:20 EST, 13:50:20 CST
Frequency Change 95 mHz

Generation Loss 2600 MW

Frequency recorded at Rochester, N.Y.

L/O 765 kV transmission Rockport — Jefferson along with
Rockport Bus 1 was followed by L/O Rockport Units 1 and 2 and
765 kV transmission Rockport — Sullivan

Generation Loss: 2,600 MW

59.915 Hz

1 2sec

+—

Breaker failure = transients = two generators tripped
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Network Today: Balancing Energy, Frequency, and Phase
View of the Balancing Authority

Balancing Frequency

Frequency is continuous across interconnected regions
FNET/GridEye Web Display
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Network Today: Balancing Energy, Frequency, and Phase
View of the Balancing Authority

Balancing Frequency

Phase angle is also continuous
FNET/GridEye Web Display

About FNET/GridEye  Table Display

QUEBEC

aaaaaaaaaaaa
o

Go-gle Map data 2018 Google, INEGI Terms of Use

nueNIVERSITY of OAK
‘TENNESSEE " gl@ﬂ

N

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 11 '




Network Today: Balancing Energy, Frequency, and Phase
View of the Balancing Authority

Balancing Frequency

Frequency floats more freely in other regions of the globe
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en.wikipedia.org/wiki/2012_India_blackouts i yp J
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A disturbance in Agra appears to spread instantly to Mumbai and Calcutta.
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Network Today: Balancing Energy, Frequency, and Phase
View of the Balancing Authority

Ducks, Peaks, Ramps, Voltage, Power, Energy ...

Dreaded Duck Curve in the South West

Ramp limitations cause price-spikes "I Load and Net-load
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Network Today: Balancing Energy, Frequency, and Phase
View of the Balancing Authority

Ducks, Peaks, Ramps, Voltage, Power, Energy ...

BPA Balancing Authority Load & Total Wind, Hydro, and Thermal Generation, Last 7 days
18Aug2015 - 25Aug2015 (last updated 24Aug2015 16:23:00)
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Network Today: Balancing Energy, Frequency, and Phase
Secondary Control

Balancing Authority Broadcasts to Resources

Generators and other resources ramp up and down power output

October 20-25 October 27 - November 1

Generation and Laod GW

Balancing

zfLﬂMWWMN%\WLJWMWWMFW\F‘ w‘“}[‘w,wm iésfl"e“

-1
Sun Mon Tue Wed Thur Fri Sun Mon Tue Wed Thur Fri

. e

Regulation GW
& GW o

Analogy: ailerons on an airplane
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New Balancing Resources

Balancing Authority Ancillary Services

b

A -
Y

Measurements:
Voltage
Frequency
Phase

Brains
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Network Tomorrow: New Balancing Resources
Secondary Control

Balancing Authority: In need of Balancing Services

Where do they find Ancillary Services to provide needed actuation?

Many generalized storage solutions. If weare stuck with generators, then gas-
combustion or hydro generation are best in terms of responsiveness.

Also, compressed air, flywheels, molten salt, trains pulled up a hill, ...

https://en.wikipedia.org/wiki/Grid energy storage

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 17
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Network Tomorrow: New Balancing Resources
Secondary Control

Balancing Authority: In need of Balancing Services

Where do they find Ancillary Services to provide needed actuation?

Many generalized storage solutions. If weare stuck with generators, then gas-
combustion or hydro generation are best in terms of responsiveness.

Also, compressed air, flywheels, molten salt, trains pulled up a hill, ...

https://en.wikipedia.org/wiki/Grid energy storage

California believes the
_ l answer is massive batteries

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers
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Network Tomorrow: New Balancing Resources

Demand Dispatch & Virtual Energy Storage

Demand Dispatch:
battery services from inherent flexibility of |oads

W

Powev- Deviation
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Network Tomorrow: New Balancing Resources

Demand Dispatch & Virtual Energy Storage

Demand Dispatch: battery services from inherent flexibility of | oads

Example: Tracking balancing reserves with 100,000 water heaters =
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Network Tomorrow: New Balancing Resources

Demand Dispatch & Virtual Energy Storage

Demand Dispatch: battery services from inherent flexibility of loads

Example: Tracking with 104 residential swimming pools
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Simulation using 10,000 pool pumps that
consume on average 5SMW
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Network Tomorrow: New Balancing Resources

Demand Dispatch & Virtual Energy Storage

Point of view at UF/Inria Local Intelligence at each load
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Mean-field model of large population of loads
Aggregate dynamics: passive, predictable input-output system
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Network Tomorrow: New Balancing Resources

Demand Dispatch & Virtual Energy Storage
DER Flexibility Assessment & Valuation

Ongoing GMLC project— PNNL/ORNL/UF

Virtual Battery-Based Characterization and Control of Flexible
Building Loads Using VOLTTRON

Siskipou [ el

Energy Regulation Regulation Spinning
Arbitrage $/ Up Down Reserve
year $/year $/year $/year

Total
$/year

Siskiyou 10,983 150,501 25,651 2,559 189,696

11,764 42,447 0 55,746

San Diego 1,534

Value in Siskiyou vs San Diego

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 23 '




Conclusions

Today: managing the grid is an enormous distributed control problem
The future: new communication and control architectures are required

Questions:

o Will frequency remain the global information signal?

o What is the impact of further increased decentralized resources?
(power and storage)

o How will markets evolve to provide incentives for zero marginal-
cost resources?

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 24




Thank You
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Grid

Steven Low,
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Autonomous Grid

Steven Low

SOUTHERN CALIFORNIA

EDISON (&)

0 Cisco SYSTEMS
RESNICKINSTITUTE .
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Watershed moment

Energy network will undergo similar architectural
transformation that phone network went through
in the last two decades to become the world’s
largest and most complex loT

deregulation

> loT
Tesla: multi-phase AC started

1888 both started as natural monopolies 1980-90s

m— both provided a single commodity —

both grew rapidly through two WWs
1876 1980-90s
Bell: telephone deregulation
started
\ convergence
1969: DARPAnet —_—> to Internet
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active DERs introduce rapid random Opportunity: active DERs enables realtime
fluctuations in supply, demand, power quality dynamic network-wide feedback control,
increasing risk of blackouts improving robustness, security, efficiency

SMART GRID
A future — a network

ision for the

ouses

‘‘‘‘‘

 Foundational theory, practical algorithms, concrete
applications

* Integrate engineering and economics

e Active collaboration with industry

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




Autonomous Energy Grids
op#mized for secure, resilient and economic opera#ons

Solar Arrays
Power Plant 1
| & Communications
\ [ Smart -~
Loy Substation ®
Rooftop PV

A Smart Grid » 9 |
| ‘Jﬁu Sensor/ o %,
h’[‘ ' Control | 5
Wind Farm
Ultra High \ Monitor
Efficiency | 5 1 Energy Use
Building / o
eat
‘} _\ Water
Energy \ .
Storage Industry Ben Kroposki

NREL workshop 2017

https://www.nrel.gov/grid/autonomous-energy.html
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Autonomous grid

Computational challenge

B nonlinear models, nonconvex optimization
Increased volatility

® in supply, demand, voltage, frequency
Scalability challenge

B Dbillions of intelligent DERs
Limited sensing and control

B design of/constraint from cyber topology
Incomplete or unreliable data

B |ocal state estimation & closed-loop system identification
Data-driven modeling and control

B real-time learning at scale

many other important problems, inc. economic, regulatory, social, ...
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Autonomous grid

Computational challenge

B nonlinear models, nonconvex optimization
Increased volatility

® in supply, demand, voltage, frequency
Scalability challenge

B Dbillions of intelligent DERs
Limited sensing and control

B design of/constraint from cyber topology
Incomplete or unreliable data

B |ocal state estimation & closed-loop system identification
Data-driven modeling and control

B real-time learning at scale

many other important problems, inc. economic, regulatory, social, ...
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Autonomous energy grid

Two examples as illustration
B dealing with nonconvexity
B dealing with volatility

... close with a research challenge in each

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




Optimal power flow (OPF)

OPF is solved routinely for
— state estimation, stability analysis, topology reconfiguration
— generator commitment and dispatch
— pricing electric services
— at timescales of mins, hours, days, ...

Non-convex and hard to solve
— Huge literature since 1962
— Common practice: DC power flow (linear program)
— Also: Newton-Raphson, interior point, ...

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




Relaxations of OPF

dealing with nonconvexity

Bose (UIUC) Chandy Farivar (Google) Gan (FB)

many others at & outside Caltech ...

Low, Convex relaxation of OPF, 2014
http://netlab.caltech.edu
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Optimal power flow

min tr (CVVH ) gen cost, power loss

over (V S, [) power flow equation

subjectto s, = tr (Y.HVVH) line flow

ly =1tr (B;}:VVH) injection limits

nonconvex . S 3 S SJ
QCQP =J J
[, < Ijk < ljk line limits

V. < |V.| < I_/j voltage limits
J

Challenges
1. Nonconvexity: Kirchhoff’s laws ( Y_Hnot positive semidefinite)
2. \Volatility: time-varying optimizatio“r’1
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Optimal power flow
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Dealing with nonconvexity

Linearization
— DC approximation

Convex relaxations
— Semidefinite relaxation (Lasserre hierarchy, ....)

— QC relaxation (van Hentenryck, Michigan)
— Strong SOCP (Sun, GATech)

Realtime OPF

— Online algorithm, as opposed to offline
— Also tracks time-varying OPF

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




Semidefinite relaxation

X (SOCP)

OPF: min f (x) "
relaxation: min f(x)

xeXt

aH
I
o4

If optimal solution j?*satisfies easily checkable conditions, then
. . %
optimal solution »~ of OPF can be recovered
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Is OPF really hard?

For tree networks, sufficient conditions on
— power injections bounds, or
— voltage upper bounds, or
— phase angle bounds

[¥.],

upper bounds lower bounds
on P4 Ped] [P, (@], ON P;.q;: Pty

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




Is OPF really hard?

For tree networks, sufficient conditions on
— power injections bounds, or
— voltage upper bounds, or
— phase angle bounds

For mesh networks: observations
— no guarantee for general mesh networks (complexity: NP-hard)
— vyet, relaxations often exact for practical networks
— ... and local algorithms often produce global solutions
— Do practical networks have special structure that make OPF easy ?

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




Realtime OPF

dealing with volatility

Gan (FB) Tang (Caltech) Dvijotham (DeepMind)

Gan & L, JSAC 2016
Tang et al, TSG 2017
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Realtime OPF

min  f,(x,y(x); &)
over x e X,

Quasi-Newton algorithm:

x(t+1) = [x(t) — U(H(t))l%(x(l))} active control

1

y(t) = P(x(2)) law of physics

Gan & Low 2016; Dall’/Anese et al 2016; Arnold et al 2016; Hauswirth et al 2016
DalllAnese & Simonetto 2016; Wang et al 2016; Tang et al 2017; Simonetto 2017
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Realtime OPF

error = %i”x‘mﬁne(t)—x*(t)u
=1

Theorem: tracking performance

error < NG /(ZM iy ; 1(Hx )—x (¢t— 1)H+A)

e rate of OPF drifting
e approximation of Hessian
e conditioning of Hessian

Tang, Dj, & Low, TSG 2017
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Learning + control ?

New challenges:
Strategic agents (human,
organizations) in the loop
hard to model

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




Learning + control ?

closed-loop ID+state est+control N .
o . min — > x*" (1) —x" ()|
(u',y) = (f,,&,x(@),u(r)) r';
control measurement
u(t) y(t)
y New challenges:
Network model __— Strategic agents (human,
x(+1) = fO(0),u(t), W) o medl
() =g(x(1), u(t), w(t))

Classical joint identification and control
Astrom & Wittenmark 1971; Gevers & Ljung 1986; Gu & Khargonekar 1992; ...
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Learning + control ?

closed-loop ID+state est+control S . .
o . min — > x*" (1) —x" ()|
(l/l >y )H (ﬁagtax(t)au(t)) thl
A
control measurement
u(t) y(t) How to integrate new tools ?
\ e Statistical learning
Network model theory; advances in ML
 Learning high-dim data
x(t+1)= f(x(2),u(t), w(r))|  Diversity of data
D)= g(x(0), u(®). (1)) " Alsorithms & computing

Classical joint identification and control
Astrom & Wittenmark 1971; Gevers & Ljung 1986; Gu & Khargonekar 1992; ...

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




MATHEMATICAL FRONTIERS
Mathematics of the Electric Grid — Q&A

Sean Meyn, Steven Low, Mark Green,
University of Florida Caltech UCLA (moderator)
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MATHEMATICAL FRONTIERS

Mathematics of the Electric Grid

Recent
Relevant = | SEREEGN b g
BMSA & L R . MATHEMATICAL

Analytic Research SCIENCES RESEARCH

: CHALLENGES FOR THE
Reports Foundations for the i

y ] NEXT-GENERATION
Next-Generation ~. ELECTRIC GRID

Electric Grid

% SUMMARY OF A WORKSHOP

- — g
. - e e — -
by ¢ \ l,‘_ .._. - 2
> -~
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MATHEMATICAL FRONTIERS

Mathematics of the Electric Grid

February 13: July 10: Topology
Mathematics of the Electric Grid
August 14:
March 13: Algorithms for Threat Detection

Probabilit People and Pl
robability for People and Places September 11:

April 10: Mathematical Analysis

Social and Biological Network
oclatang siofogical Networks October 9: Combinatorics

May 8:

Mathematics of Redistricting November 13:

Why Machine Learning Works

June 12:
Number Theory: The Riemann December 11:
Hypothesis Mathematics of Epidemics
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