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Networks of Power 
Today and Tomorrow

Department of Electrical and Computer Engineering 
University of Florida

Thanks to to our sponsors: NSF, Google, DOE, ARPA-E

See also:

National Academies Workshop: https://vimeo.com/album/3275353

NREL AEG Workshop: https://www.nrel .gov/gr id/autonomous-energy.html

Simons Center Bootcamp:
https://simons.berkeley.edu/workshops/realt ime2018-boot-camp
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Networks of Power
Outline

1) Motivation 

2) Network Today 

3) Network Tomorrow: New Balancing Resources

4) Conclusions

5) References
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Motivation: Grid in Transition
What’s the Big Deal?

• Revolution in energy and communication technologies
⇒revolutionary thinking about how to manage the power grid

• Solar and wind energy bring variability and uncertainty
⇒opportunities and challenges

• Research challenges in
• networks, control & communication
• creative modeling, such as PDE and mean-field models 
• statistics, optimization and “machine learning” 
• economics (new viewpoints are needed!)
• and of course, all aspects of power systems

These lectures focus on large-scale systems questions, leaving out 
• New technologies: power electronics, solar cells, electric storage 
• Cyber-security
• Detection and response to cascading failures, … 
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Network Today: Balancing Energy, Frequency, and Phase
View of the Balancing Authority

Home > About Us > Our Business > The ISO grid

The ISO grid
The ISO manages the flow of electricity for about 80 percent of California and a small part of 
Nevada, which encompasses all of the investor-owned utility territories and some municipal 
utility service areas. There are some pockets where local public power companies manage 
their own transmission systems.

The ISO is the largest of about 38 balancing authorities in the western interconnection, handling an
estimated 35 percent of the electric load in the West. A balancing authority is responsible for operating a 
transmission control area. It matches generation with load and maintains consistent electric frequency of 
the grid, even during extreme weather conditions or natural disasters.

BPA
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Frequency deviation of 0.1 Hz ⇒ Panic!

Breaker failure ⇒ transients ⇒ two generators tripped

Network Today: Balancing Energy, Frequency, and Phase
View of the Balancing Authority

Balancing Frequency
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Frequency is continuous across interconnected regions

Network Today: Balancing Energy, Frequency, and Phase
View of the Balancing Authority

Balancing Frequency
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Phase angle is also continuous

Network Today: Balancing Energy, Frequency, and Phase
View of the Balancing Authority

Balancing Frequency
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Frequency floats more freely in other regions of the globe

A disturbance in Agra appears to spread instantly to Mumbai and Calcutta.

Network Today: Balancing Energy, Frequency, and Phase
View of the Balancing Authority

Balancing Frequency
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Dreaded Duck Curve in the South West

Ramps in net-load stress equipment and markets

Network Today: Balancing Energy, Frequency, and Phase
View of the Balancing Authority

Ducks, Peaks, Ramps, Voltage, Power, Energy ...
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Network Today: Balancing Energy, Frequency, and Phase
View of the Balancing Authority

Ducks, Peaks, Ramps, Voltage, Power, Energy ...
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Generators and other resources ramp up and down power output

Network Today: Balancing Energy, Frequency, and Phase
Secondary Control

Balancing Authority Broadcasts to Resources
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New Balancing Resources
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Where do they find Ancillary Services to provide neededactuation?

Many generalized storage solutions. If we are stuck with generators, then gas-
combustion or hydro generation are best in terms of responsiveness.

Also, compressed air, flywheels, molten salt, trains pulled up a hill, ...
h t t p s : / / e n .w i k i p e d i a . o r g / w i k i / G r i d _ e n e r g y _ s t o ra g e

Network Tomorrow: New Balancing Resources
Secondary Control

Balancing Authority: In need of Balancing Services 
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Where do they find Ancillary Services to provide neededactuation?

Many generalized storage solutions. If we are stuck with generators, then gas-
combustion or hydro generation are best in terms of responsiveness.

Also, compressed air, flywheels, molten salt, trains pulled up a hill, ...
h t t p s : / / e n .w i k i p e d i a . o r g / w i k i / G r i d _ e n e r g y _ s t o ra g e

Network Tomorrow: New Balancing Resources
Secondary Control

Balancing Authority: In need of Balancing Services 

California believes the
answer is massive batteries
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Demand Dispatch:
battery services from inherent flexibility of loads

Network Tomorrow: New Balancing Resources
Demand Dispatch & Virtual Energy Storage
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Demand Dispatch: battery services from inherent flexibility of l oads

Example: Tracking balancing reserves with 100,000 water heaters
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Network Tomorrow: New Balancing Resources
Demand Dispatch & Virtual Energy Storage
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Example: Tracking with 104 residential swimming pools

Range of services provided by 
the one million residential 
pools in California

From Yue Chen’s thesis [3]

Demand Dispatch: battery services from inherent flexibility of loads

Network Tomorrow: New Balancing Resources
Demand Dispatch & Virtual Energy Storage

21

Simulation using 10,000 pool pumps that 
consume on average 5MW



View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers

Network Tomorrow: New Balancing Resources
Demand Dispatch & Virtual Energy Storage

22

Point of view at UF/Inria Local Intelligence at each load

Mean-field model of large population of loads
Aggregate dynamics: passive, predictable input-output system
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Ongoing GMLC project – PNNL/ORNL/UF

Virtual Battery-Based Characterization and Control of Flexible 
Building Loads Using VOLTTRON

Network Tomorrow: New Balancing Resources
Demand Dispatch & Virtual Energy Storage
DER Flexibility Assessment & Valuation
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Conclusions

Today: managing the grid is an enormous distributed control problem
The future: new communication and control architectures are required

Questions:

o Will frequency remain the global information signal?
o What is the impact of further increased decentralized resources? 

(power and storage)
o How will markets evolve to provide incentives for zero marginal-

cost resources?
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Thank You
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18 Y. Chen, A. Bǔ sí c, and S. Meyn. Estimation and control of quality of service in demand
dispatch. IEEE Trans. on Smart Grid, 2017 (prelim. version IEEE CDC, 2015)
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Autonomous 
Grid
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Autonomous Grid

Steven Low
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Watershed moment

Bell: telephone

1876

Tesla: multi-phase AC

1888 both started as natural monopolies
both provided a single commodity
both grew rapidly through two WWs

1980-90s

1980-90s

deregulation
started

deregulation
started

Energy network will undergo similar architectural
transformation that phone network went through
in the last two decades to become the world’s
largest and most complex IoT

IoT

1969: DARPAnet
convergence

to Internet



View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers

Risk: active DERs introduce rapid random
fluctuations in supply, demand, power quality
increasing risk of blackouts

Opportunity: active DERs enables realtime
dynamic network-wide feedback control,
improving robustness, security, efficiency

Caltech research: distributed control of networked DERs  

• Foundational  theory, practical algorithms, concrete 
applications

• Integrate engineering and economics
• Active collaboration with industry



View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers

Ben Kroposki
NREL workshop 2017

https://www.nrel.gov/grid/autonomous-energy.html
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Autonomous grid

Computational challenge
 nonlinear models, nonconvex optimization

Increased volatility
 in supply, demand, voltage, frequency

Scalability challenge
 billions of intelligent DERs

Limited sensing and control
 design of/constraint from cyber topology

Incomplete or unreliable data
 local state estimation & closed-loop system identification

Data-driven modeling and control
 real-time learning at scale

many other important problems, inc. economic, regulatory, social, ...
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Computational challenge
 nonlinear models, nonconvex optimization

Increased volatility
 in supply, demand, voltage, frequency
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 design of/constraint from cyber topology

Incomplete or unreliable data
 local state estimation & closed-loop system identification

Data-driven modeling and control
 real-time learning at scale

many other important problems, inc. economic, regulatory, social, ...
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Autonomous energy grid

Two examples as illustration
 dealing with nonconvexity
 dealing with volatility

... close with a research challenge in each 
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Optimal power flow (OPF)

OPF is solved routinely for
– state estimation, stability analysis, topology reconfiguration
– generator commitment and dispatch
– pricing electric services
– at timescales of mins, hours, days, …

Non-convex and hard to solve
– Huge literature since 1962
– Common practice: DC power flow (linear program)
– Also: Newton-Raphson, interior point, …
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Relaxations of OPF
dealing with nonconvexity

Low, Convex relaxation of OPF, 2014
http://netlab.caltech.edu

Bose (UIUC) Chandy Farivar (Google) Gan (FB) Lavaei (UCB)

many others at & outside Caltech …

Li (Harvard)



View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers

Optimal power flow

power flow equation

gen cost, power loss

line flow 

injection limits

line limits

voltage limits

nonconvex
QCQP

Challenges
1. Nonconvexity: Kirchhoff’s laws  (        not positive semidefinite)
2. Volatility: time-varying optimization
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Optimal power flow

Ian Hiskens, Michigan
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Dealing with nonconvexity

Linearization
– DC approximation

Convex relaxations
– Semidefinite relaxation (Lasserre hierarchy, ....)
– QC relaxation (van Hentenryck, Michigan)
– Strong SOCP (Sun, GATech)

Realtime OPF
– Online algorithm, as opposed to offline
– Also tracks time-varying OPF
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Semidefinite relaxation

If optimal solution      satisfies easily checkable conditions, then 
optimal solution       of OPF can be recovered  
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Is OPF really hard?

For tree networks, sufficient conditions on
– power injections bounds, or 
– voltage upper bounds, or
– phase angle bounds
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Is OPF really hard?

For tree networks, sufficient conditions on
– power injections bounds, or 
– voltage upper bounds, or
– phase angle bounds

For mesh networks: observations
– no guarantee for general mesh networks (complexity: NP-hard)
– yet, relaxations often exact for practical networks
– ... and local algorithms often produce global solutions
– Do practical networks have special structure that make OPF easy ?
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Dvijotham (DeepMind)

Realtime OPF
dealing with volatility

Gan (FB) Tang (Caltech)

Gan & L, JSAC 2016
Tang et al, TSG 2017
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Realtime OPF

active control

law of physics

Quasi-Newton algorithm:

Gan & Low 2016;  Dall’Anese et al 2016;  Arnold et al 2016;  Hauswirth et al 2016
Dall’Anese & Simonetto 2016;  Wang et al 2016;  Tang et al 2017; Simonetto 2017
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Realtime OPF

Theorem: tracking performance

• rate of OPF drifting
• approximation of Hessian
• conditioning of Hessian

Tang, Dj, & Low, TSG 2017
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Learning + control ?

New challenges:
Strategic agents (human, 
organizations) in the loop 
hard to model
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Astrom & Wittenmark 1971; Gevers & Ljung 1986; Gu & Khargonekar 1992; ...  

Classical joint identification and control

control
u(t)

measurement
y(t)

New challenges:
Strategic agents (human, 
organizations) in the loop 
hard to model

Learning + control ?
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Astrom & Wittenmark 1971; Gevers & Ljung 1986; Gu & Khargonekar 1992; ...  

Classical joint identification and control

control
u(t)

measurement
y(t) How to integrate new tools ?

• Statistical learning 
theory; advances in ML

• Learning high-dim data
• Diversity of data
• Algorithms & computing 

power

Learning + control ?



View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers

Sean Meyn, 
University of Florida

Steven Low, 
Caltech

Mark Green, 
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