

MATHEMATICAL FRONTIERS

*The National
Academies of*

SCIENCES
ENGINEERING
MEDICINE

nas.edu/MathFrontiers

**Board on
Mathematical Sciences & Analytics**

MATHEMATICAL FRONTIERS

2018 Monthly Webinar Series, 2-3pm ET

February 13: *Recording posted*
Mathematics of the Electric Grid

March 13: *Recording posted*
Probability for People and Places

April 10: *Recording posted*
Social and Biological Networks

May 8: *Recording posted*
Mathematics of Redistricting

June 12: *Recording posted*
Number Theory: The Riemann Hypothesis

July 10: *Topology*

August 14:
Algorithms for Threat Detection

September 11:
Mathematical Analysis

October 9: *Combinatorics*

November 13:
Why Machine Learning Works

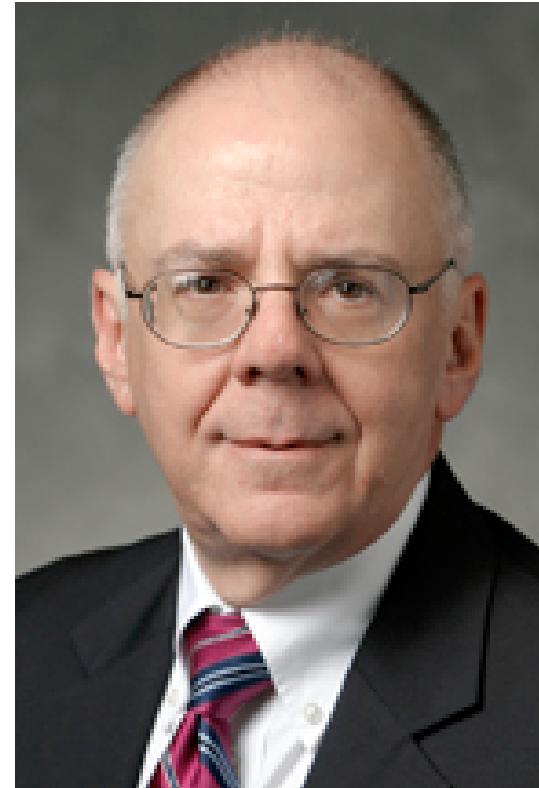
December 11:
Mathematics of Epidemics

MATHEMATICAL FRONTIERS

Topology

**Genevieve Walsh,
Tufts University**

**Jeffrey F. Brock
Yale University**



**Joseph Langsam,
University of Maryland**

MATHEMATICAL FRONTIERS

Topology

*Chaire Jean-Morlet (CIRM) and
Professor of Mathematics
in the Department of
Mathematics*

What is topology?

**Genevieve Walsh,
Tufts University**

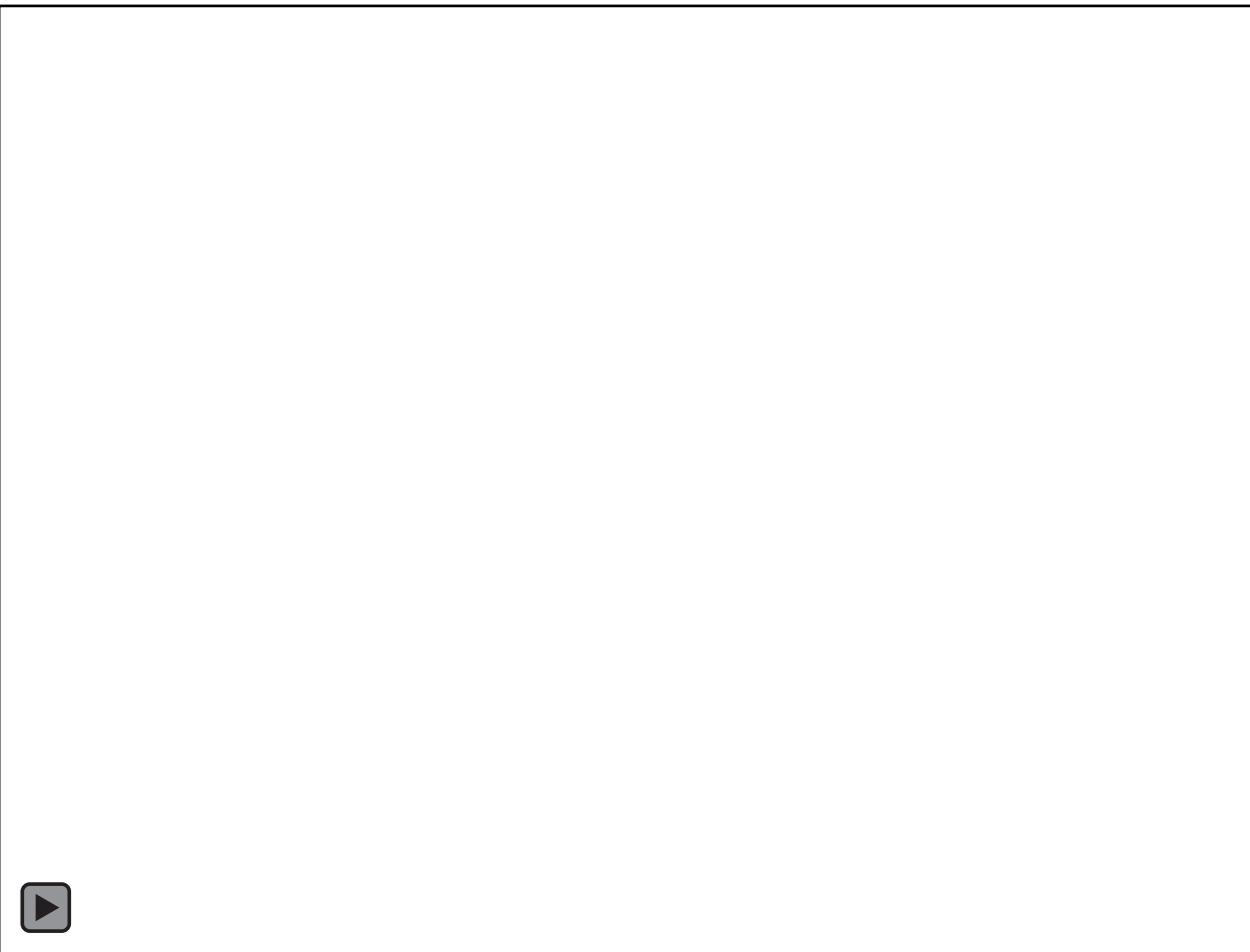
View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers

General idea

Topology is the study of properties that persist under continuous changes.

How can we make this mathematically precise?

Coffee cup vs donut



Coffee cup...

donut

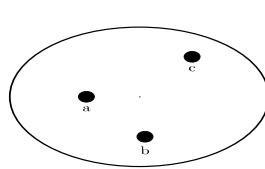
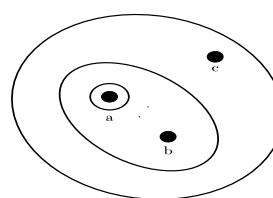
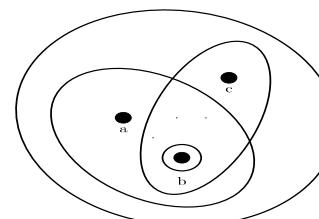
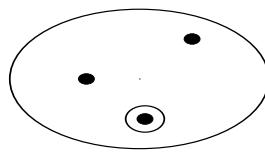
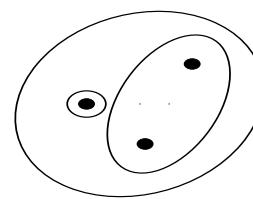
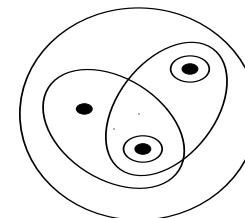
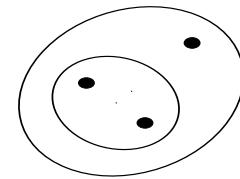
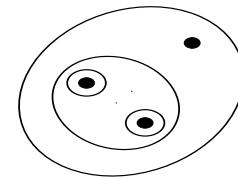
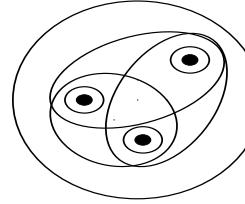
(Thanks Jim Fowler)

Open sets

Given a set X : a TOPOLOGY on X is a collection of subsets of X (the open subsets) such that:

- X is open and \emptyset is open
- the intersection of any two sets is open
- the union of any collection of open sets is open

Examples: three point set



Standard topology on R^n

TOPOLOGY on R^n :

$$\{S: S \text{ is a union of open balls}\} \cup \emptyset$$

Open balls are sets of the form:

$$B_\varepsilon(x) = \{p \in R^n: d(x, p) < \varepsilon\}$$

Other Topologies on R^n

Discrete Topology on R^n :

Every subset is open

Power-point topology τ_p on R^n :

$$\{S \subseteq R^n : p \in S\} \cup \emptyset$$

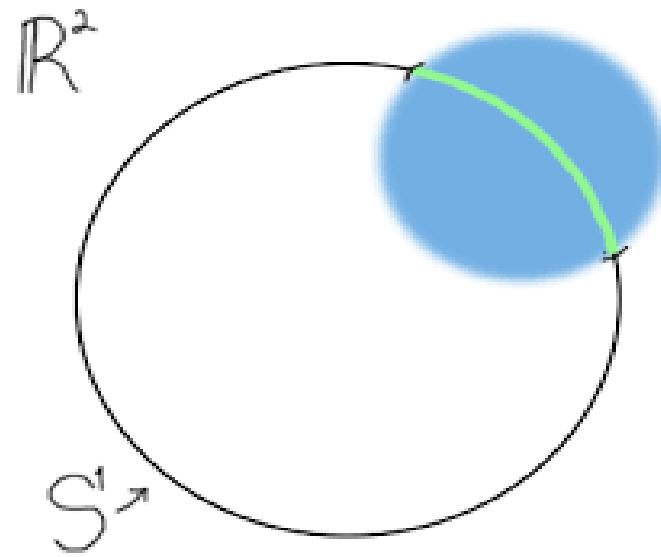
Subspace topology

Given a topological space (X, τ) and a subset $Y \subset X$, the subspace topology on Y , (Y, τ_X) is the collection of sets

$$\tau_X = \{U \cap Y : U \in \tau\}$$

Ex: S^1

The open sets are intersections
of open sets in R^2 with S^1



Homeomorphisms

A continuous map between two topological spaces (X, τ) and (Y, ρ) is a function

$$f: X \rightarrow Y$$

Where the pre-image of each open set in (Y, ρ) is open in (X, τ) .

A **homeomorphism** is a continuous map with a continuous inverse.

Properties

What properties are preserved under homeomorphisms? Or continuous families of homeomorphisms?

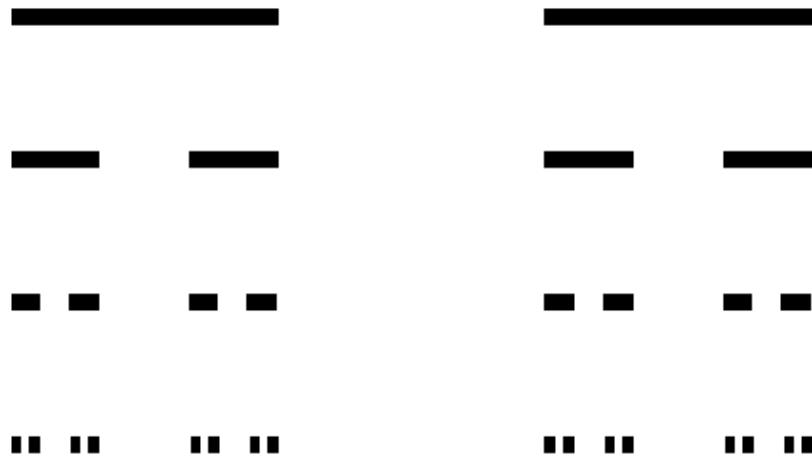
- Connected
- Simply connected (trivial fundamental group)

Connected vs non-connected

A topological space is connected if it cannot be written as the union of two clopen sets.
(clopen = open and closed!)

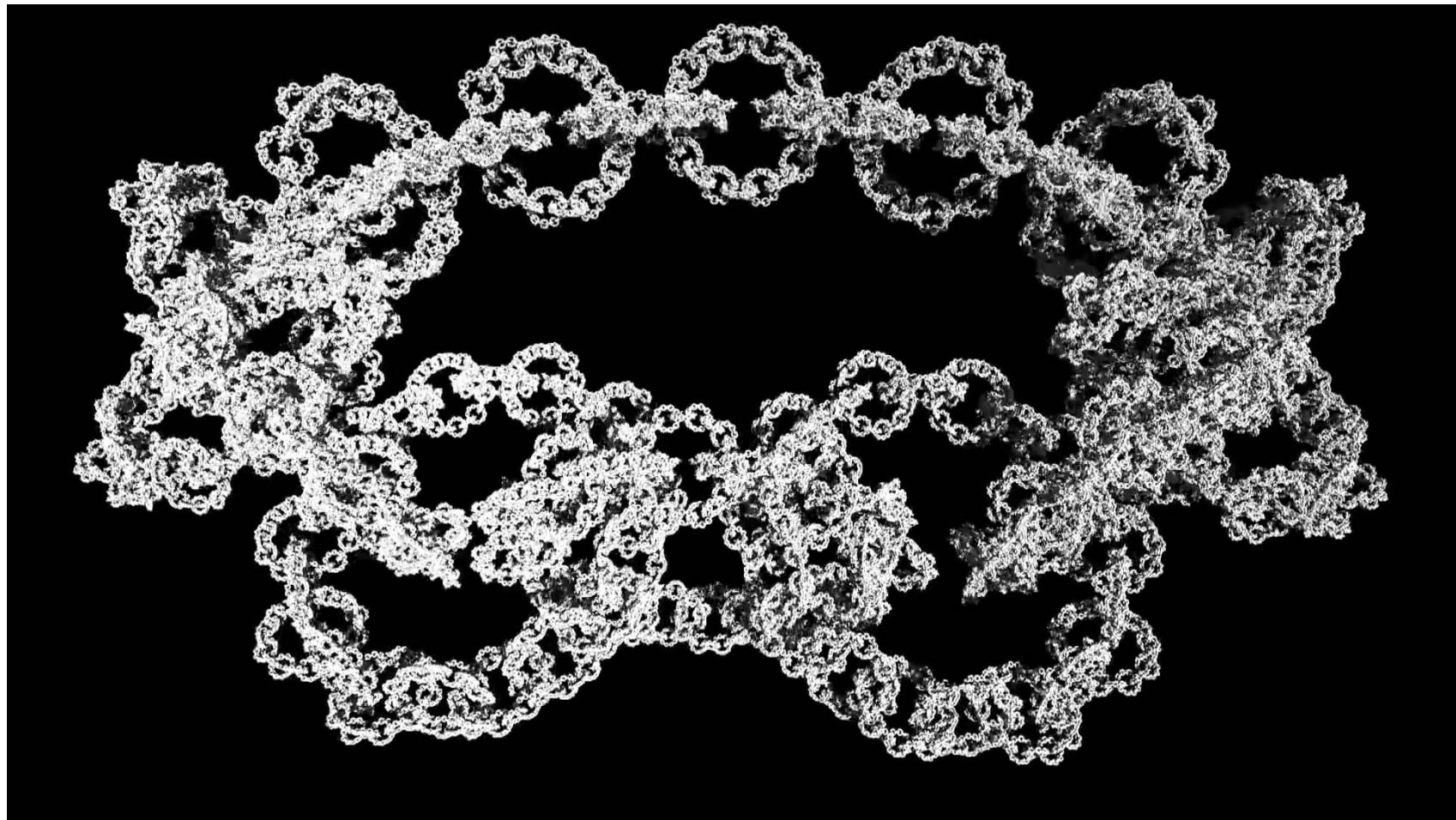
Ex: The Cantor set is not connected (use the subspace topology!)

The Cantor Set



The limit is a Cantor set ...

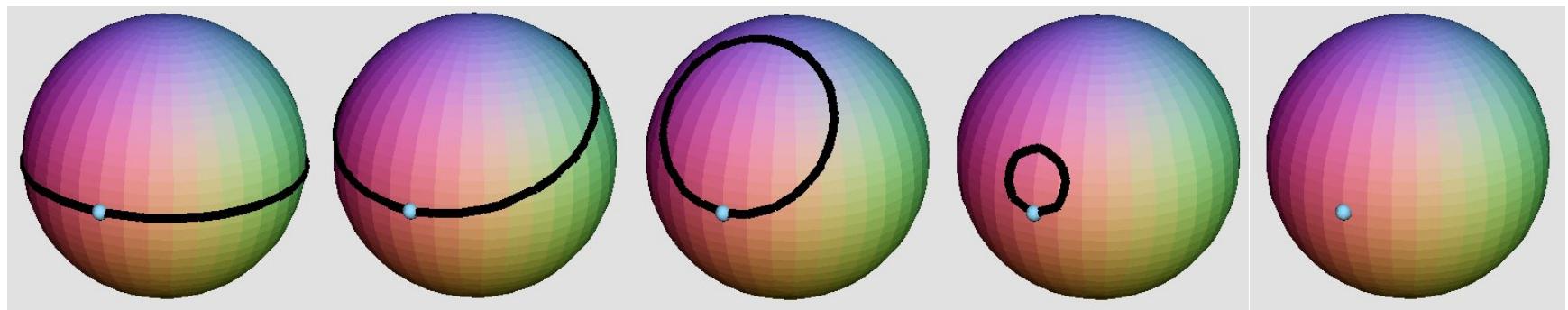
Another picture of the cantor set



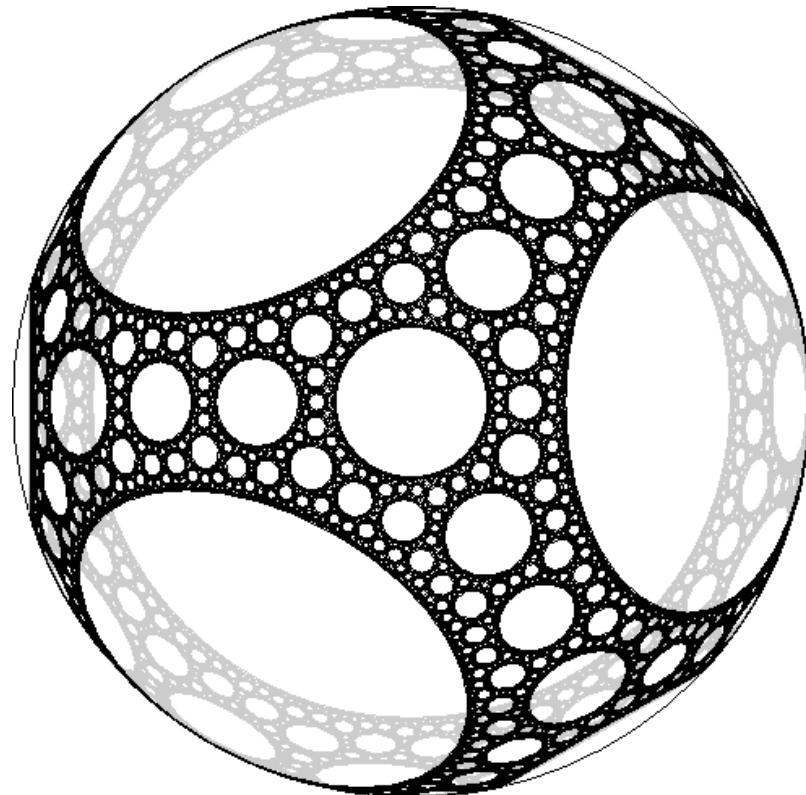
Simply connected

- A path-connected space is simply connected if every loop can be shrunk to a point.
- Formally: any continuous map $f: S^1 \rightarrow X$ can be extended to $F: D^2 \rightarrow X$

The sphere is simply connected



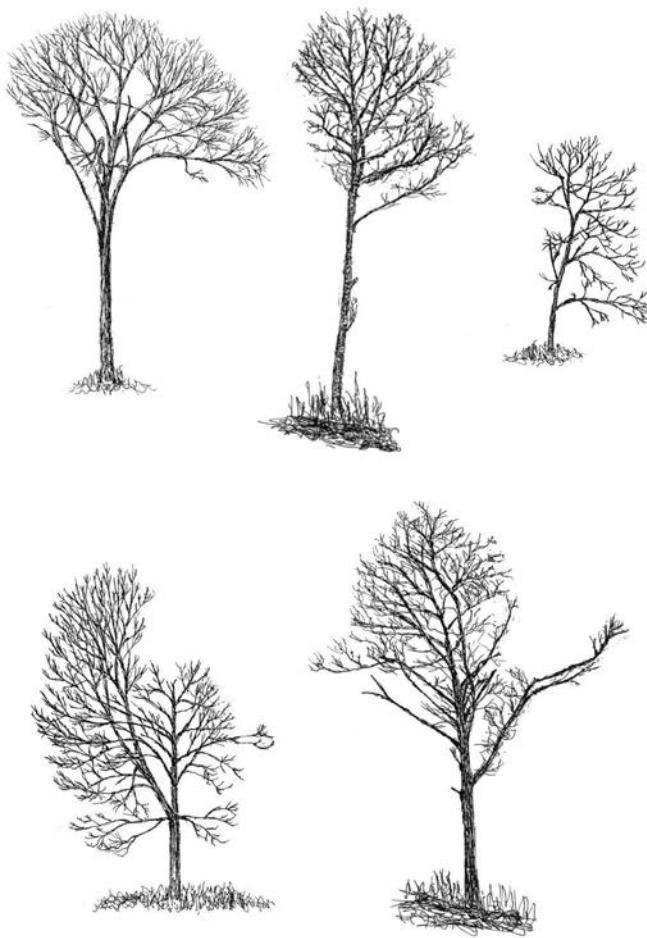
The Sierpinski carpet is not simply connected



Cut points

A cut point of a topological space (X, τ) is a point so that $X \setminus p$ is not connected.

Cut points detect tree-like nature



MATHEMATICAL FRONTIERS

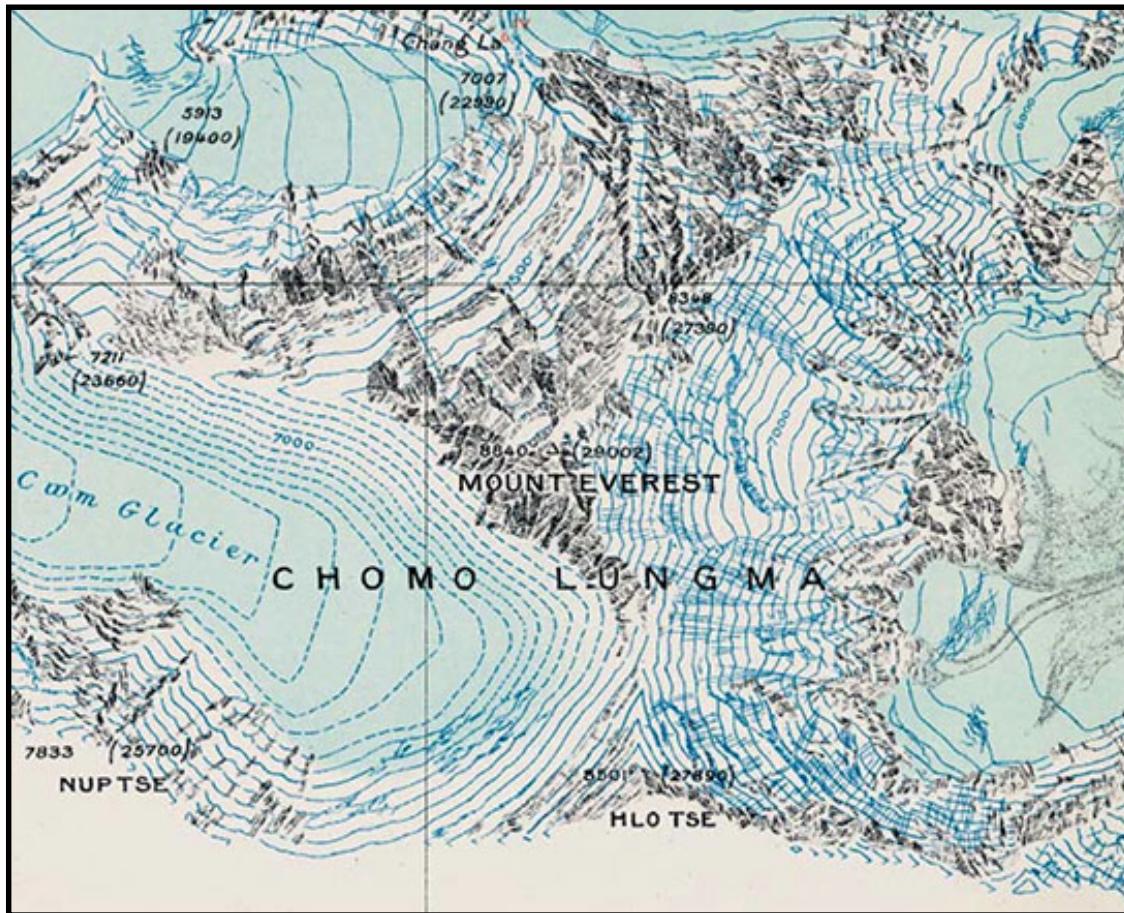
Topology

Jeffrey F. Brock,
Yale University

*Incoming Dean of Science
and Professor of Mathematics
in the Department of
Mathematics*

Applied Topology:
*from data science to neuroscience to
social networks*

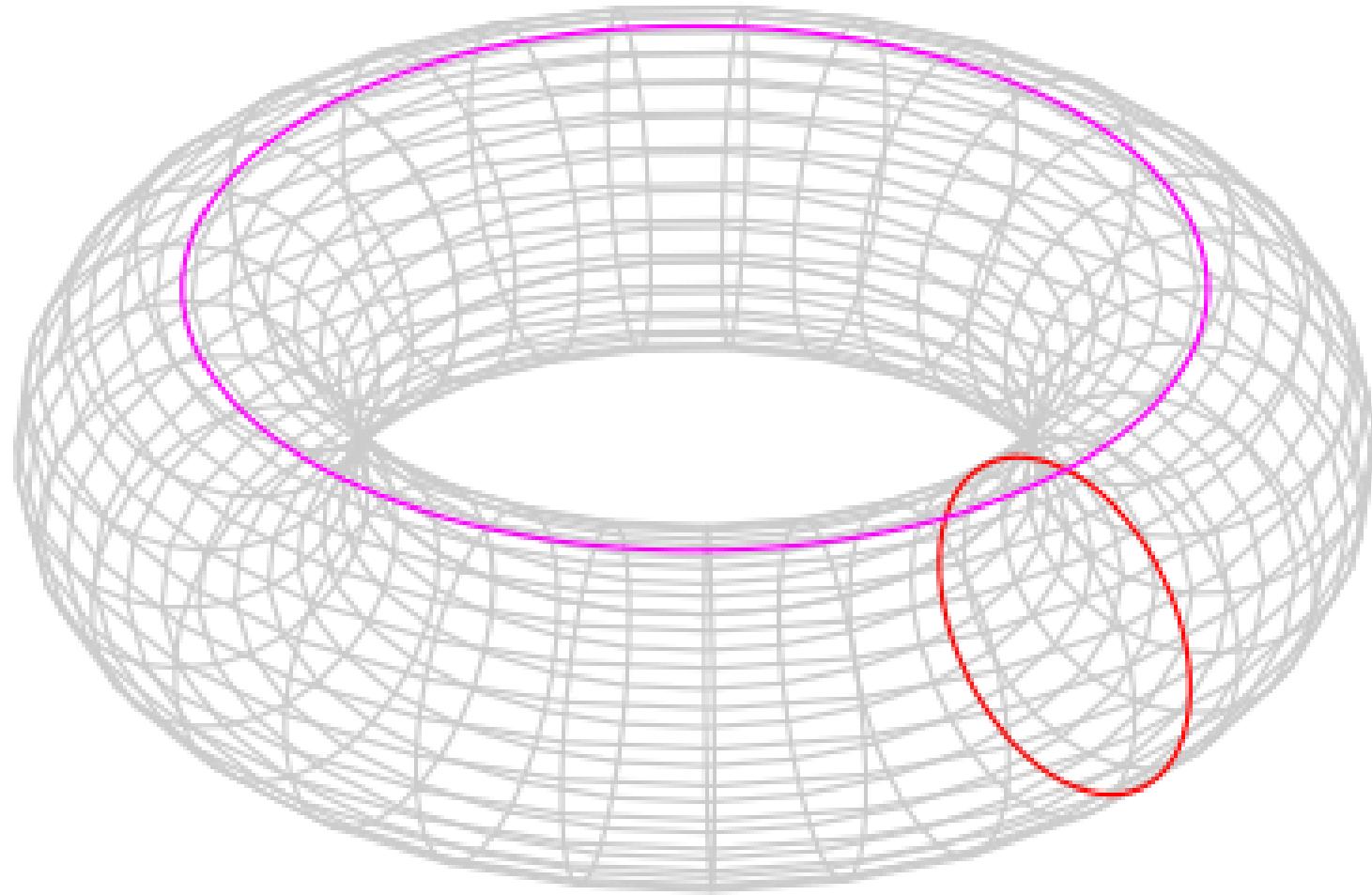
Topology



Topology



Topology

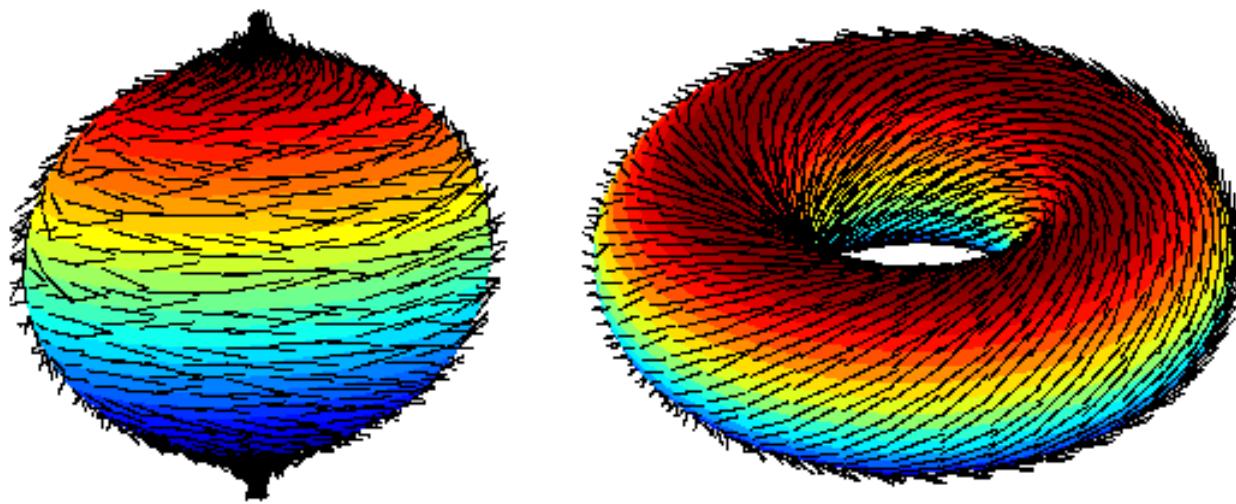


Topology

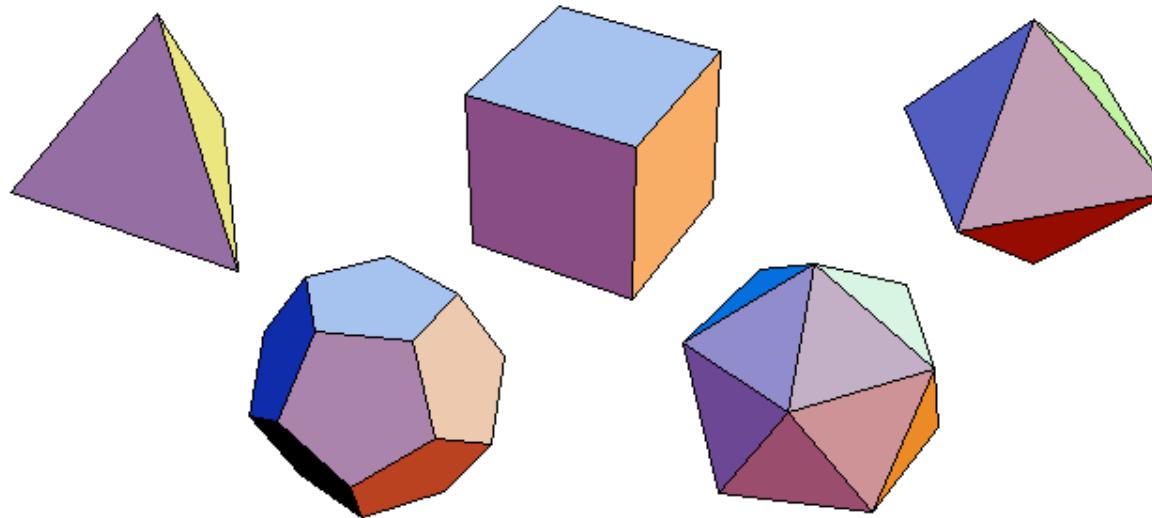
- **Sample Theorem:** there is no non-vanishing continuous tangent vector field on the sphere.

You cannot comb the hair of a sphere: there will always be a bald spot

Topology



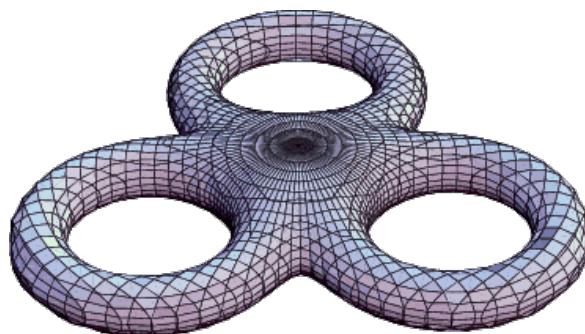
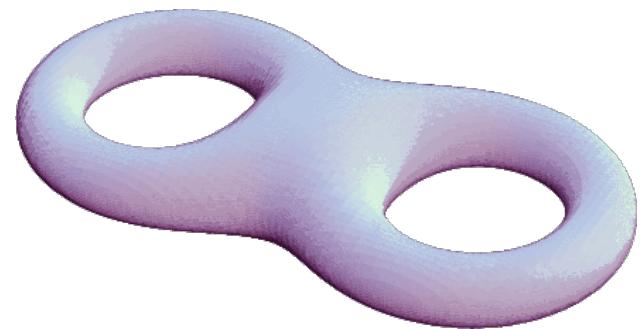
Classical Polyhedra



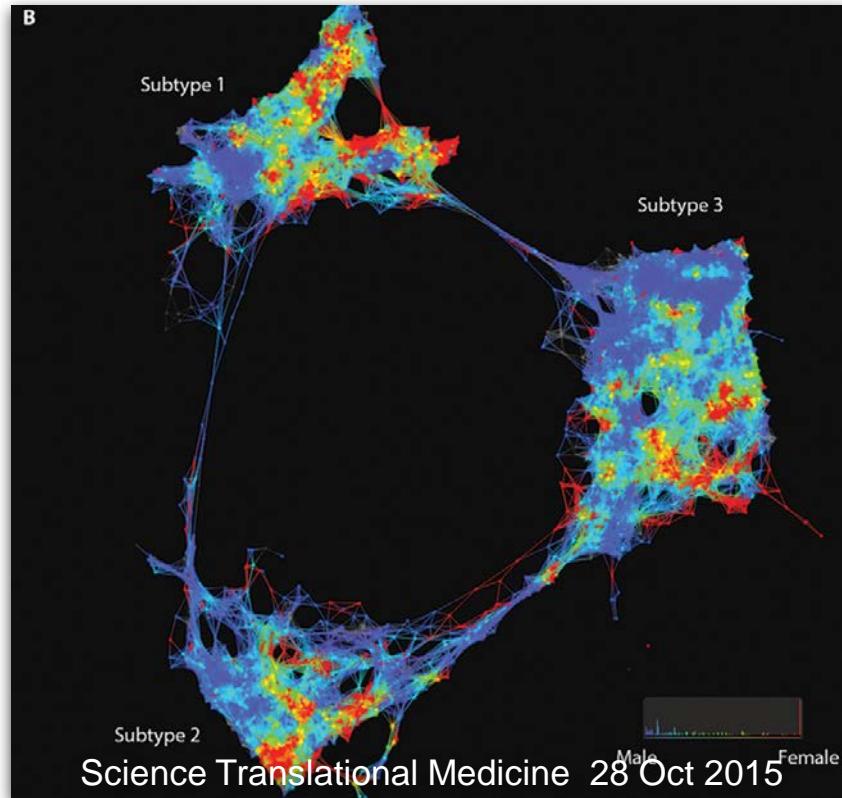
Count the **Vertices**, the **Edges**, and the **Faces**
Is there a pattern? $V - E + F$?

Surfaces

- Surfaces come in many shapes and sizes
- The “number of holes” or g classifies the surface ***topologically***.
- $V - E + F = 2 - 2g$ - the ***Euler number*** does as well!



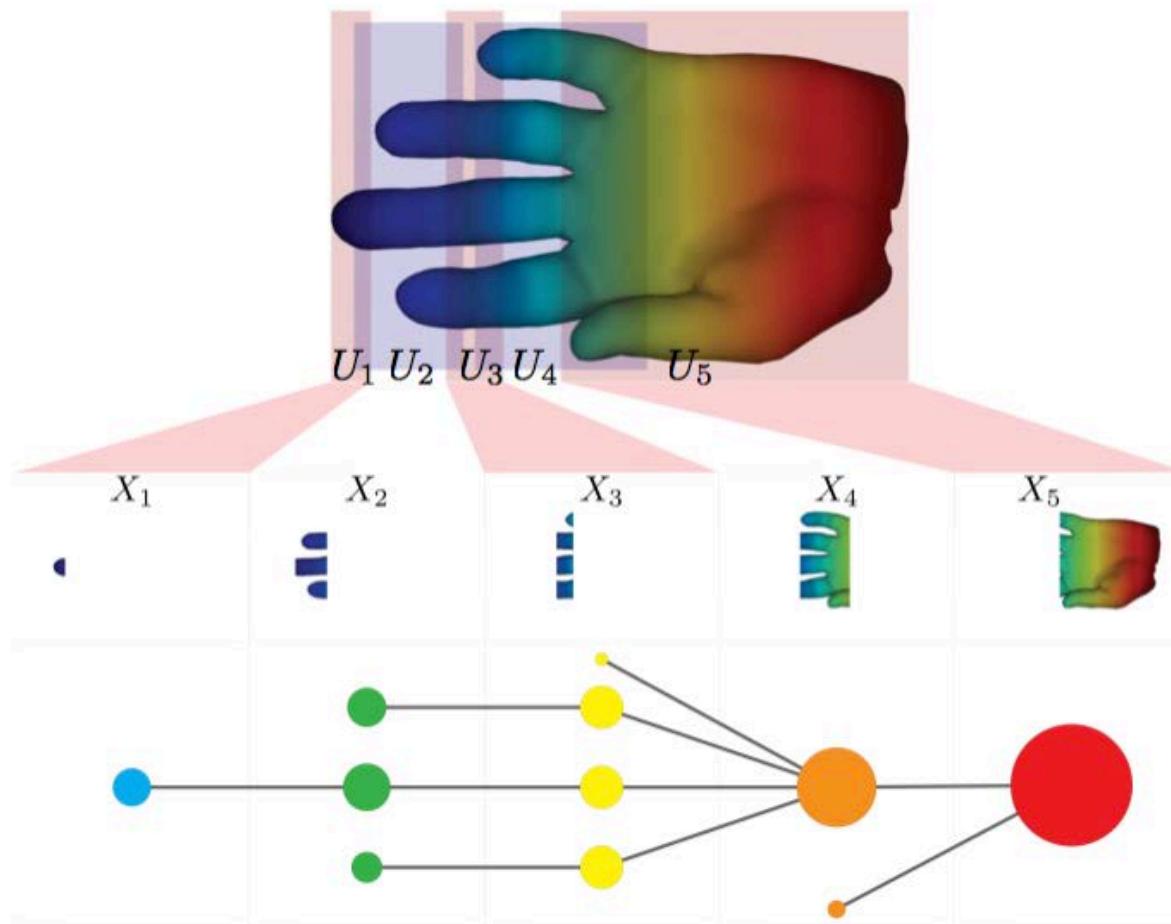
Applied Topology



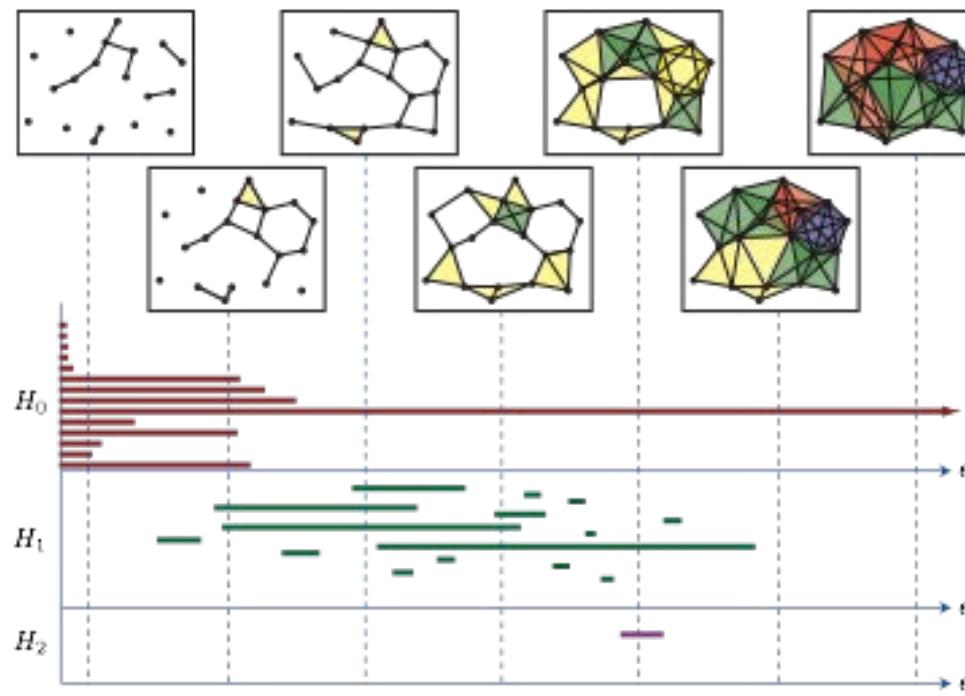
Li Li¹, Wei-Yi Cheng¹, Benjamin S. Glicksberg¹, Omri Gottesman², Ronald Tamler³, Rong Chen¹, Erwin P. Bottinger² and Joel T. Dudley

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers

Topological Signatures

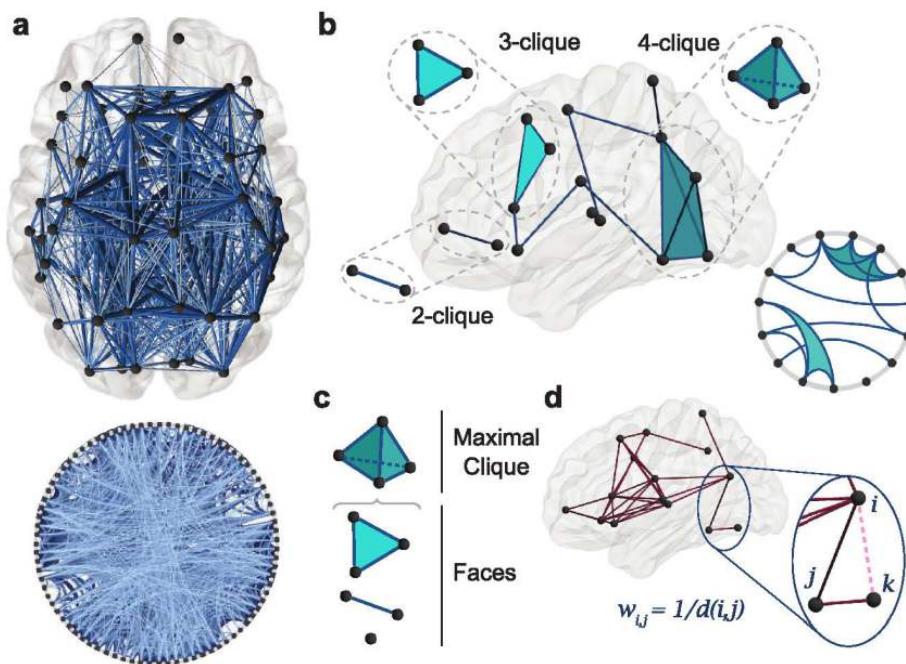


Barcodes



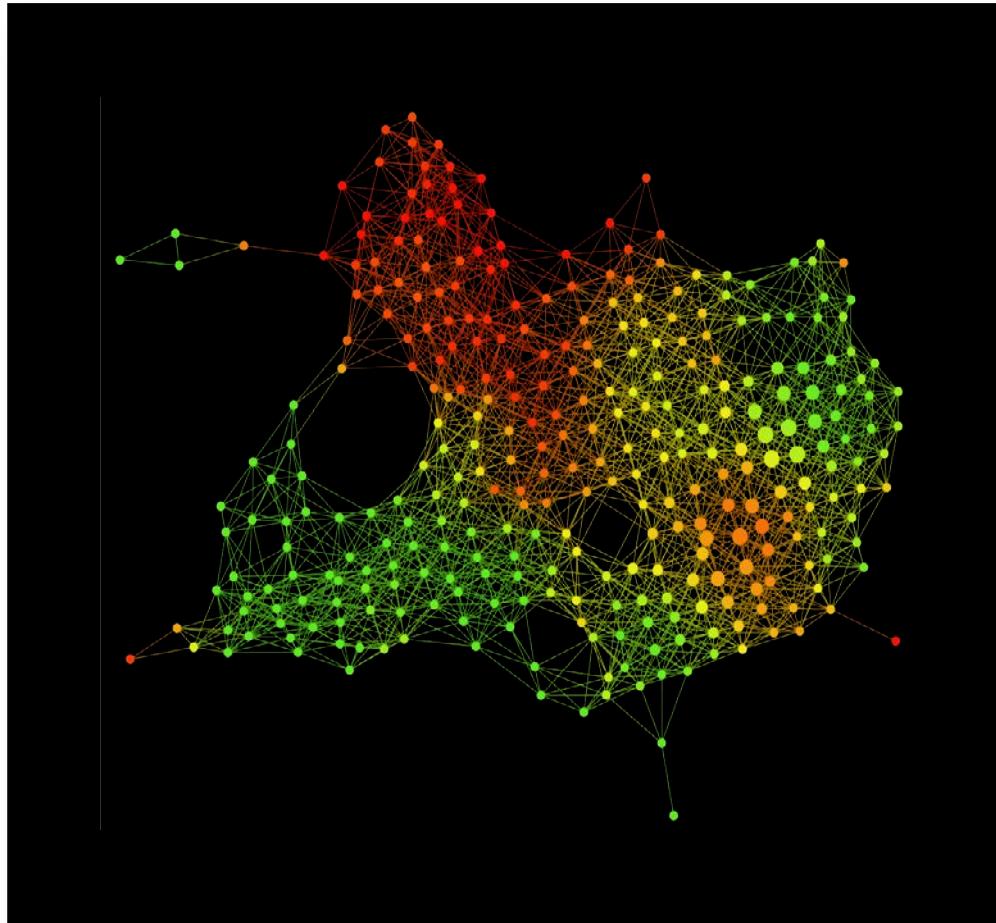
R. Ghrist - *Barcodes*

Cliques in the Connectome



Ann Sizemore, Chad Giusti, Richard F. Betzel, Danielle S. Bassett - [arXiv:1608.03520](https://arxiv.org/abs/1608.03520)

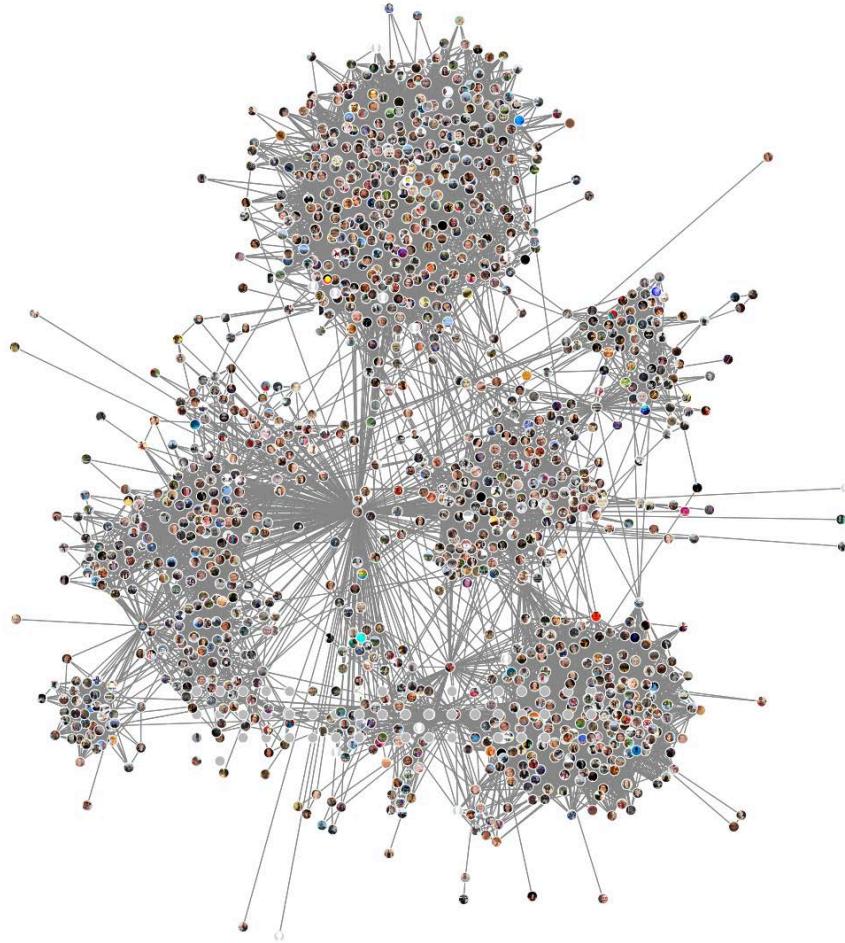
Radiology



Krishna N. Keshavamurthy ; Owen P. Leary ; Lisa H. Merck ; Benjamin Kimia ; Scott Collins ; David W. Wright ; Jason W. Allen ; Jeffrey F. Brock ; Derek Merck

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers

Social Networks



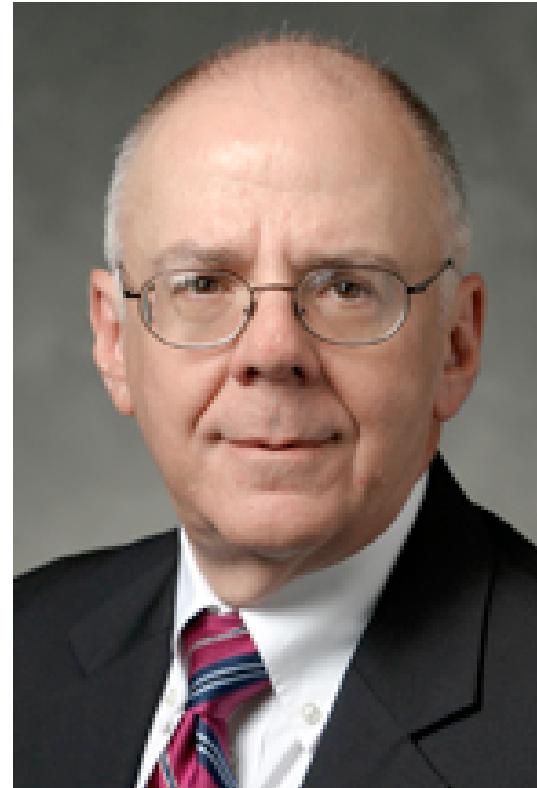
View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers

MATHEMATICAL FRONTIERS

Topology

**Genevieve Walsh,
Tufts University**

**Jeffrey F. Brock
Yale University**



**Joseph Langsam,
University of Maryland**

MATHEMATICAL FRONTIERS

2018 Monthly Webinar Series, 2-3pm ET

February 13: *Recording posted*
Mathematics of the Electric Grid

March 13: *Recording posted*
Probability for People and Places

April 10: *Recording posted*
Social and Biological Networks

May 8: *Recording posted*
Mathematics of Redistricting

June 12: *Recording posted*
Number Theory: The Riemann Hypothesis

July 10: *Topology*

August 14:
Algorithms for Threat Detection

September 11:
Mathematical Analysis

October 9: *Combinatorics*

November 13:
Why Machine Learning Works

December 11:
Mathematics of Epidemics