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Classification of Diseases

What is disease?
This is a condition of the
body, or of some parts or

Non-Infectious Disease
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cold, cancer, Bovine TB,
malaria, Ebola, Zika etc.
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Matt J. Keeling and Pejman Rohani.
Maodeling Infectious Disease in Humans
and Animals. Princeton University Press 2008.
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Why do we model infectious

diseases?

. Gain insight into mechanisms influencing disease spread, and to link the
individual scale ‘clinical’ knowledge with population-scale patterns.

. Derive new insights and hypotheses from mathematical analysis or
simulation.

. Establish relative importance of different processes and parameters, to
focus research or management effort.

. 'To address via thought experiments the “what if” questions, since real
experiments are often logistically or ethically impossible.

. Explore management options.

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




Natural History of Infection

Infection Onset of symptoms

Clinical disease

Diseased

Onset of shedding

Steve Bellan Introduction to Infectious Disease Modelling Clinic on the Meaningful Modeling of Epidemiological Data, (2015)
African Institute for Mathematical Sciences Muizenberg, South Africa.

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers



Compartmental Disease

Models

Without demography

8-0-0

With demography
L
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Compartmental Disease

Models

Humans a)H

Mosquitoes
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Types of Models

Even after compartmental framework is chosen, still need to
decide:

» Deterministic vs stochastic

= Discrete vs continuous time

= Discrete vs continuous state variables

= Random mixing vs structured population
* Homogeneous vs heterogeneous

(and which heterogeneities to include?)

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




Compartmental Disease
Models

ds

- = das

i~ o = KPS
a = P — vl %=,BSI—)/I—MI
d—Rz‘yI dR

dt E—)/I—,LLR

With initial conditions
S0) > 0,I(0) > 0,and R(0) = 0.
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Basic reproductive number, R,

What are the conditions for These conditions can be determined

- Disease elimination? from the basic reproductive number,
- Disease persistence? R,

R, : The average number of [The value of R, for some well-known diseases
secondary cases caused by a  Disease Ro
typical infectious individual in a AIDS 205
totally susceptible population. Smallpox 3t0 5

Measles 16 to 18

Malaria > 100

Matthew Keeling
The mathematics of diseases
https://plus.maths.org/content/os/issuel4/features/diseases/index
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Basic reproductive number, R,

Ry<1 R,> 1
disease dies out disease can invade

~—

Outbreak dynamics  Disease control

. probablllty of fade-out . threshold targets

 epidemic growth rate « vaccination levels

No. new cases

Time

Jamie Lloyd-Smith
Introduction to infectious diseases
Center for Infectious Disease Dynamics, Pennsylvania State University

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 13




What does R, tell you?

«  Probability of successful invasion

« Initial rate of epidemic growth

 Prevalence at the peak of the epidemic

«  The proportion of susceptible who would escape the infection

(or final epidemic size) 0.5
Eo O | R, =2
S(0) = exp(—(1 — S(0)Ry)) 203/
= 02/ e
= .
>
0.1 Ro=5 |
Matt J. Keeling and Pejman Rohani. //
Modeling Infectious Disease in Humans (0] - : : :
and Animals. Princeton University Press O 10% 20% 30% 40%
2008. S

oo
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What does R, tell you?

* Critical vaccination threshold for eradication
PC — 1 — 1/R0
 Threshold values for other control measures

1 T L
|

0.9

© o o
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tion fraction, p,,
o
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S 0.4}

CCl

Mumps Measles
P Chickenpox Pertussis

£ 03¢ Matt J. Keeling and Pejman Rohani.

Modeling Infectious Disease in Humans
and Animals. Princeton University Pres
2008.

Vv

0 5 10 15 20
Basic reproduction ratio, A
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The impact of bed-net use on

malaria prevalence

Vh
Humans
My A(b) 6y
bw \\‘::x: """" b
Mosquitoes 7 s
% s W A(b) ( I
" |
l W H,(b)
_ 1By p2B(b)Iy,
Ah(b) - N— Av(b) - N—h

h
B(b) = Pmax — b(ﬂmax _,Bmin):
0<b<1 ty(D) = Uy + py (b)

Agusto, F. B., Del Valle, S. Y., Blayneh, K. W., Ngonghala, C. N., Goncalves, M. J.,
Li, N., .. & Gong, H. (2013). The impact of bed-net use on malaria
prevalence. Journal of theoretical biology, 320, 58-65.

How much bed-net usage is
necessary to control the spread
of malaria in the community?

3

25 |

2 F

© 15 |
1}
05
0 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1
bednet usage, b
,Bmax — Hu1 Q
b > b,

,Bmax _ ,Bmin + Umax Q B
With bed-net usage of 75%, R=0.4
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Epidemiology of La Crosse Virus
Emergence, Appalachia Region,

United States

Si1 . What is the role of invasive

. Asian tiger (Aedes albopictus)
| mosquito on the emergence of
Swa . La Crosse virus (LACV)?

by My 1 by H

;I'CM,I h E
Sc n—~ k. |1 This model do not, however,

---------------------------------------------------------------------- ' support the hypothesis that Asian

(1-p)ps

p1B1

b, 2 2 bz 2 : : :
' SN R tiger mosquitoes are responsible
o Su2 for the recent emergence of
o, LACV at new foci.
(1-p2)B;
S12

Bewick, S., Agusto, F., Calabrese, J. M., Muturi, E. J., & Fagan, W. F. (2016). Epidemiology of La Crosse
Virus Emergence, Appalachia Region, United States. Emerging infectious diseases, 22(11), 1921.
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Assessing the role of temperature

variations on malaria transmission
dynamics

Human component AT LN I, oo o, What are the effect of temperature in
S - ¢ .

‘ -Sl;lh sub-Saharan Africa?

&—Ei-—’ " ~4, Malaria-associated increases with increasing
Ki 2 mean monthly temperature in the ranges:
Az 1, . Ny) . o, y P ges.
&‘J—Ez o T n R4k, (1)[22.6-28.6]°C in the three West African
4 6,0 cities
q) (T.L. v}f)" % ’

(2) [16.7-27.9]°C in the three Central African
-r- T"E _i- cities,

Vector component (3) [19.0-26.8]°C in the three East African
@ (T)——e 16,(T) M— (1.1 1\:)—— o, (T)mmm - cities,

| S
f T #y(T) it (T) _V—(T)

(4) [16-25]°C in Kwazulu-Natal, South

Agusto, F. B., Gumel, A. B., & Parham, P. E. (2015). Africa.
Qualitative assessment of the role of temperature variations on malaria transmission dynamics.
Journal of Biological Systems, 23(04), 1550030.
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Methicillin-resistant Staphylococcus

aureus among injection drug users
(IDUs)

n What is the impact of behavioral
change of the IDUs on MRSA
transmission in a community?
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Wagner, R., & Agusto, F. B. (2018). Transmission dynamics for Methicillin-resistant o

Staphylococcus aureus with injection drug user. BMC infectious diseases, 18(1), 69. © 20 40 o0 20 100

Time (days)
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Transmission Dynamics of Bovine

Anaplasmosis in a Cattle Herd

= B - Which control strategies is the
S > ; ‘ . . .
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Zabel, T. A., & Agusto, F. B. (2018).
Transmission Dynamics of Bovine
Anaplasmosis in a Cattle Herd. Interdisciplinary
perspectives on infectious diseases, 2018.
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Plant-virus-vector interactions

Vector What are the optimal control strategies
L . . .
Healthy (susceptible) | required to minimize yield losses?
or non-viruliferous
100
&= 80
3
S 60
Latent (exposed) or 2
not yet infective g -
2 20
o +
Infectious or o 20 40 60 80 100
infective Reversion rate (%)
50
40
S
Removed g 30
E
= 20
2
10
ol L , : ?
Jeger, M. J., Madden, L. V., & van den Bosch, F. (2018). Plant Virus Epidemiology: & 55 56 56 oy ”'x)
Applications and Prospects for Mathematical Modeling and Analysis to Improve - )
Understanding and Disease Control. Plant Disease, 102(5), 837-854. Reversion rate (%)
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Tree harvesting in age-structured

forests subject to beetle infestations

What is the effect of beetle outbreaks on “[FEzz=

forest trees dynamics?

dB B aB?

a = 8B 1—1?3) REVYTE
aV(a,t)_I_aV(a,t)_ N —
at aa - [:u(a) :uB(a' )] (a' )

0< t<T, 0< a < A4, AT <o
V(a,0) = Vy(a) 4 V(4,0) =0

V(0,t) = V(t) = fo b(a)V(a, t)dt

What is the effect of beetle outbreaks and
harvesting strategies on the harvest

. T FA
benefit? ) = f J V(a, t)da dt
0 YO0

Leite, M. C. A., Chen-Charpentier, B., & Agusto, F. B. (2018). A mathematical model of

tree harvesting in age-structured forests subject to beetle infestations. Computational ana
Applied Mathematics, 37(3), 3365-3384.
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Optimal Control Theory

J(u) = optimize fOT f(t,x(t),u(t))dt
subject to What is the optimal piecewise
x’(t) — g(t,x(t),u(t)) continuous control u*(t) and

— the x*(t) associated state
x(O) X0 and x(T) free variable that optimizes the

. objective functional J(u)?
Pseudo-algorithm

- Optimal Control u™(t) achieves the optimum
- Put u™(t) into state equation and obtain x™*(t)
- x*(t) corresponding optimal state
-u”(t),x"(t) optimal pair

Lenhart, S., & Workman, J. T. (2007). Optimal control applied to biological models. Crc Press.

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




Maximizing tree harvesting benefit

from forests under insect infestation
disturbances

dB(at) B(a,t) aB(a,t)?
dt — bB(a t) (1 % (a)) - 1+ BB (a,)? 1. Total number of trees harvested
€ ’ T A
V@D 9V 1@ = [ | ooy odad
dt da 00
— [u(a,t) + ug(a,t) + u(a, t)]V(a,t) 2. Total amount of wood harvested including
_ trees killed by beetles and other natural
at) = a)B(a,t
pp(a,t) = fr(a)B(a,t) causes
0<t<T,0< a < A4AT <o I _j j [wiu(a, t) + w,(ug(a,t) dt
V(a,0) = Vo(@) V(4,0)=0 ’ + pu(a, )]V (a, t)da
0.0 A @Vt 3. Total benefit
V(0,t =j b(a)V (a,t)da
: 1) = J f [wi(a, ) + w(up(a,0)
A B + u(a, t))]V(a, t)da
B;(0,t) =f B(a,t)V(a,t)da
0
Leite, M. C., Chen-Charpentier, B., & Agusto, F. B. (2018). Maximizing — w uz (Cl t)da dt
tree harvesting benefit from forests under insect infestation 3 !

disturbances. PloS one, 13(8), e0200575.
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Optimal harvesting strategies for timber
and non-timber forest products (NTFPs) in

tropical ecosystem

d
3;(;) = r(t)x(t) (1 —%) — h (O)x(t)

dr(t)
r—= =1, = 7(®) = [ahy(®) + fhy (0]

x(0) = x4, r(0) = r_e
J(hy, hy) = Ap x(T) + [, e {[Ax(t) + Byhy(t)
+Byhy (D)x(t) — Cihi(t) — Chf(D)]dt

Gaoue, O. G,, Jiang, J., Ding, W., Agusto, F. B., & Lenhart, S. (2016). Optimal harvesting
strategies for timber and non-timber forest products in tropical ecosystems. Theoretical
ecology, 9(3), 287-297.
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Optimal control & temperature

variations of malaria transmission
dynamics

What are the optimal control strategies under
changing temperatures in sub-Saharan Africa?
T

Human component 4T H_’—

-‘%'

SN e R R JQug,up, uy) = J [A1lg + BiLy + B,Sy +
—— ﬁ 0
(T 1 N, ) ; ()3 BSEV + B4IV + CluH + € CzuIZ{ + C3uL
Ju_+ I— R—ﬂ + €C4u% + CSuV + € C6u]2/]
—“} r /'“\ -|-'- it South Afica 1 South Afic
,7 o- X T T T ! !
~ : [ Uncontrol
; o, e A -

w

B e , 08 ]
el
He Ky 205 g —
g ol | 506¢
Vector component I £
o 0
¢f(_T2L_€"( ) -,(TI L I\,)—g %)1-5' 1004t
-7 0
fu;(r) fﬂAT) I 1) #;-T e | ol
05| 1
F.B. Agusto (2018) ﬂ .ﬂ H 0

o

Optimal Control and Temperature Variations of Malaria 0 0 0 0 0 0
Transmission Dynamics. Submitted to Mathematical 16.66°C 2099°C 26.32°C 16.66°C 20.99°C 26.32°C
Biosciences
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Mathematics of Epidemics

Assistant Professor
Mathematical Biology
University of Florida, Gainesville

Understanding extreme
poverty from an
epidemiological-economic
perspective

Calistus Ngonghala,
University of Florida, Gainesville
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@ About 1.94 billion people lived in extreme poverty in 1981
@ Currently, about 746 million people live in extreme poverty
@ ~ 61% decline in number of poor

@ Reduction more significant in middle-income countries

@ 33% of the extreme poor live in low-income countries,
compared to 13% in 1981

@ No significant change for the poor in low-income countries

CNN, UF Models of subsistence, health and povert



@ 70% of the global poor live in rural areas, mostly subsistence
@ 35% suffer from chronic malnutrition

@ 75% of deaths among the poor are due to infectious diseases

Major characteristics of the rural poor

CNN, UF Models of subsistence, health and povert



Subsistence life
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Subsistence life s
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Bonds et al. (2012) PLoS Biology (https://doi.org/10.1371/journal.pbio.1001456)

CNN, UF Models of subsistence, health and povert



@ Malaria reduced per capita income by 1.3% (Gallup and
Sachs, 2001)

@ Hookworm reduced income by 35% (Bleakly, 2008)

@ Nutrition supplements increased wages by 47% (Hoddinot et
al., 2008)

@ Deworming reduced absenteeism by 25% and improved exam.
scores (Miguel and Kremer, 2003)

CNN, UF Models of subsistence, health and poverty



Disease model

Births Disease deaths

Transn&issz’on

<
Recovery

Natural deaths Natural deaths

Disease model

RS O T )] B
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Coupled disease-econ

e
é FoTToTToos
Growth
LOI‘S S ‘
[
? e e e e e e e e e P o o -
i

Basis of feedback between disease and income
@ Disease transmission and recovery depend on income

@ Income, M, depends on disease prevalence, I.

I = BM)(A—-DI—(a+v(M)+v)+vI?
M = —rM(M— My1-1).

CNN, UF Models of subsistence, health and povert



~ Dynamics of determinis

100 100
= = Developed Country
o) o
s s
° S
E E
P 50 P 50
& 5
@) QO
= = Poverty Trap
aw ¥
(b)
ol . 0
0.0 0.5 1.0 0.0 0.5 1.0
Prevalence, I Prevalence, 1

@ Population is stuck in poverty trap or enjoys development

@ Breaking trap requires substantial health and economic efforts

Plucinski MM, Ngonghala CN, Bonds M (2011) Journal of The Royal Society Inter face
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Plucinski MM, Ngonghala CN, Bonds M H (2011) Journal of The Royal Society Inter face
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Escaping poverty

95
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Prevalence of Infection, [ Prevalence of Infection, I

@ Best strategy depends on status of income and disease

e Increase income when arrow points vertically upward
e More health when arrow points horizontally to the left

e Both health and income when arrow points diagonally upwards

Plucinski MM, Ngonghala CN, Bonds M H (2011) Journal of The Royal Society Inter face
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@ Single safety nets can lead to development

@ Double safety net leads to shorter time to development

Plucinski MM, Ngonghala CN, Bonds M H (2011) Journal of The Royal Society Interface
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Rate of developmen
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Prevalence of Infection, [

Average time to attain the development equilibrium from initial
conditions reinforced by safety nets.

@ Location of safety net determines rate of development

Plucinski MM, Ngonghala CN, Bonds M H (2011) Journal of The Royal Society Inter face
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Within population p
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a)-b) Each point is an individual. Darker points: lower income, larger
points: greater time spent infected. a) Equilibrium distribution of health
and income in the network. b) Average long-term income versus
proportion of time spent infected.

Plucinski et al. (2013) Journal of The Royal Society Interface
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Economic growth the

Economic growth model

Infectious disease model

T T T i
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CNN, UF
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. General model

@ [wo broad classes of state variables

e capital — economic or biological

e natural enemies of capital

Rate of change = Growth — Loss

i = vi(x,z, f(x,2)) — Ai(x, 2, f(x,2)), (1)
Zj — 5j(X,Z,f(X, Z)) _Fj(Xazvf(Xv Z)) (2)
Examples of capital
@ Physical capital
@ Human capital
@ Renewable resource
@ Land-use change
Examples of natural enemies
@ Infectious diseases of humans

@ Diseases of animals
@ Plant diseases

CNN, UF Models of subsistence, health and povert
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2019 Monthly Webinar Series, 2-3pm ET

February 12: Machine Learning for July 9: Cryptography and Cybersecurity

Materials Science and Drug Discover
g y August 13: Machine Learning for

March 12: Genomics and Medicine

Mathematics of Privac
f y September 10: Logic and Foundations

April 9:

Mathematics in Astronomy October 8: Quantum Physics and String

Theory
May 14

Algebraic Geometry November 12: Quantum Encryption

June 11: Transportation and December 10: Machine Learning and Text
Urban Planning
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