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February	13*: 		
Mathema:cs	of	the	Electric	Grid	
	

March	13*:			
Probability	for	People	and	Places	
	

April	10*:			
Social	and	Biological	Networks	
	

May	8*:			
Mathema:cs	of	Redistric:ng	
	

June	12*:	Number	Theory:	The	
Riemann	Hypothesis	
	
	

	
	
	
	
	

July	10*:	Topology	
	

August	14*:		Algorithms	for	Threat	
Detec:on	
	

September	11*:	Mathema:cal	Analysis	
	

October	9*:	Combinatorics	
	

November	13*:		
Why	Machine	Learning	Works	
	

December	11:		
Mathema:cs	of	Epidemics	
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February	12:	Machine	Learning	for	
Materials	Science	and	Drug	Discovery	
	

March	12:			
Mathema:cs	of	Privacy	
	

April	9:			
Mathema:cs	in	Astronomy	
	

May	14:			
Algebraic	Geometry	
	

June	11:	Transporta:on	and		
Urban	Planning	
	

	
	
	
	
	

July	9:	Cryptography	and	Cybersecurity	
	

August	13:		Machine	Learning	for	
Genomics	and	Medicine	
	

September	10:	Logic	and	Founda:ons	
	

October	8:	Quantum	Physics	and	String	
Theory	
	

November	12:	Quantum	Encryp:on		
	
December	10:	Machine	Learning	and	Text	

MATHEMATICAL FRONTIERS 
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*	Recording	posted	

Made	possible	by	support	for	BMSA	from	the		
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Calistus	Ngonghala,		
University	of	Florida,	Gainesville	

Folashade	Agusto,	
University	of	Kansas	

Mark	Green,		
UCLA	(moderator)	
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MATHEMATICAL FRONTIERS 
Mathematics of  Epidemics 
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Assistant	Professor	

Ecology	and	Evolu:onary	Biology	
University	of	Kansas		

Strategies	for	disease	
and	infestaPon	

control		
Folashade	Agusto,	
University	of	Kansas	
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Why do we model infectious 
diseases?

1. Gain insight into mechanisms influencing disease spread, and to link the  
individual scale ‘clinical’ knowledge with population-scale patterns.

2. Derive new insights and hypotheses from mathematical analysis or 
simulation.

3. Establish relative importance of different processes and parameters, to 
focus research or management effort.

4. To address  via thought experiments the “what if” questions, since real 
experiments are often logistically or ethically impossible.

5. Explore management options.
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Natural History of Infection

Steve Bellan Introduction to Infectious Disease Modelling Clinic on the Meaningful Modeling of Epidemiological Data, (2015) 
African Institute for Mathematical Sciences Muizenberg, South Africa.
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Compartmental Disease 
Models

Without demography 

With demography 

S I R
𝛽𝐼 γ

μ μ μ
S I R

𝛽𝐼 γ
μ
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𝜇𝐻
𝑆𝐻 𝐼𝐻 𝑅𝐻

𝛽𝐻𝐼𝑉 𝛾𝐻𝜇𝐻

𝑆𝑉 𝐼𝑉

𝐸𝐻

𝛽𝑉𝐼𝐻

𝜎𝐻

Humans

Mosquitoes

𝜇𝐻 𝜇𝐻

𝜇𝑉 𝜇𝑉

𝜇𝑉

𝜇𝐻

𝜔𝐻

Compartmental Disease 
Models
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Types of Models

Even after compartmental framework is chosen, still need to 
decide:

▪ Deterministic vs stochastic

▪ Discrete vs continuous time

▪ Discrete vs continuous state variables

▪ Random mixing vs structured population

▪ Homogeneous vs heterogeneous

(and which heterogeneities to include?) 
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S I R
𝛽𝐼 γ

With initial conditions     
𝑆(0) > 0, 𝐼(0) > 0, and    𝑅(0) = 0.

𝑑𝑆
𝑑𝑡

= – 𝛽𝑆𝐼
𝑑𝐼
𝑑𝑡

= 𝛽𝑆𝐼 − 𝛾𝐼
𝑑𝑅
𝑑𝑡

= 𝛾𝐼

μ μ μ
S I R

𝛽𝐼 γ
μ

𝑑𝑆
𝑑𝑡

= 𝜇 – 𝛽𝑆𝐼 − 𝜇𝑆
𝑑𝐼
𝑑𝑡

= 𝛽𝑆𝐼 − 𝛾𝐼 − 𝜇𝐼
𝑑𝑅
𝑑𝑡

= 𝛾𝐼 − 𝜇𝑅

Compartmental Disease 
Models
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Basic reproductive number, R0

R0 : The average number of
secondary cases caused by a
typical infectious individual in a
totally susceptible population.

Matthew Keeling
The mathematics of diseases
https://plus.maths.org/content/os/issue14/features/diseases/index

What are the conditions for 
- Disease elimination?
- Disease persistence?

These conditions can be determined 
from the basic reproductive number, 
R0
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R0 d 1

disease dies out

R0 > 1

disease can invade

Outbreak dynamics

• probability of fade-out

• epidemic growth rate

Disease control

• threshold targets

• vaccination levelsNo
. n

ew
 ca

se
s

Time
Jamie Lloyd-Smith
Introduction to infectious diseases 
Center for Infectious Disease Dynamics, Pennsylvania State University

Basic reproductive number, R0
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• Probability of successful invasion
• Initial rate of epidemic growth
• Prevalence at the peak of the epidemic
• The proportion of susceptible who would escape the infection 

(or final epidemic size)

What does R0 tell you?

𝑆 ∞ = exp(− 1 − 𝑆 ∞ 𝑅0 )

Matt J. Keeling and Pejman Rohani.
Modeling Infectious Disease in Humans
and Animals. Princeton University Press
2008.
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• Critical vaccination threshold for eradication
𝑃𝑐 = 1 − 1/𝑅0
• Threshold values for other control measures

Matt J. Keeling and Pejman Rohani.
Modeling Infectious Disease in Humans
and Animals. Princeton University Press
2008.

What does R0 tell you?
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Agusto, F. B., Del Valle, S. Y., Blayneh, K. W., Ngonghala, C. N., Goncalves, M. J.,
Li, N., ... & Gong, H. (2013). The impact of bed-net use on malaria
prevalence. Journal of theoretical biology, 320, 58-65.

The impact of bed-net use on 
malaria prevalence 

With bed-net usage of 75%, R=0.4

𝜆ℎ 𝑏 =
𝑝1𝛽 𝑏 𝐼𝑉

𝑁ℎ

𝑏 >
𝛽𝑚𝑎𝑥 − 𝜇𝑣1 𝑄

𝛽𝑚𝑎𝑥 − 𝛽𝑚𝑖𝑛 + 𝜇𝑚𝑎𝑥 𝑄
= 𝑏𝑐

𝛽 𝑏 = 𝛽max −𝑏 𝛽max −𝛽min ,
𝜇𝑣(𝑏) = 𝜇𝑣1 + 𝜇𝑣2 (𝑏)0 ≤ 𝑏 ≤ 1

𝜆𝑣 𝑏 =
𝑝2𝛽 𝑏 𝐼ℎ

𝑁ℎ

How much bed-net usage is
necessary to control the spread
of malaria in the community?
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Epidemiology of La Crosse Virus 
Emergence, Appalachia Region, 

United States

Bewick, S., Agusto, F., Calabrese, J. M., Muturi, E. J., & Fagan, W. F. (2016). Epidemiology of La Crosse
Virus Emergence, Appalachia Region, United States. Emerging infectious diseases, 22(11), 1921.

What is the role of invasive
Asian tiger (Aedes albopictus)
mosquito on the emergence of
La Crosse virus (LACV)?

This model do not, however,
support the hypothesis that Asian
tiger mosquitoes are responsible
for the recent emergence of
LACV at new foci.
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Assessing the role of temperature 
variations on malaria transmission 

dynamics

Agusto, F. B., Gumel, A. B., & Parham, P. E. (2015). 
Qualitative assessment of the role of temperature variations on malaria transmission dynamics.
Journal of Biological Systems, 23(04), 1550030.

What are the effect of temperature in
sub-Saharan Africa?

Malaria-associated increases with increasing
mean monthly temperature in the ranges:

(1) 22.6– 28.6 0𝐶 in the three West African
cities,

(2) 16.7– 27.9 0𝐶 in the three Central African
cities,

(3) 19.0– 26.8 0𝐶 in the three East African
cities,

(4) 16– 25 0𝐶 in Kwazulu-Natal, South
Africa.
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Wagner, R., & Agusto, F. B. (2018). Transmission dynamics for Methicillin-resistant 
Staphylococcus aureus with injection drug user. BMC infectious diseases, 18(1), 69.

Methicillin-resistant Staphylococcus 
aureus among injection drug users 

(IDUs)
What is the impact of behavioral
change of the IDUs on MRSA
transmission in a community?
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Transmission Dynamics of Bovine 
Anaplasmosis in a Cattle Herd

Zabel, T. A., & Agusto, F. B. (2018).
Transmission Dynamics of Bovine
Anaplasmosis in a Cattle Herd. Interdisciplinary
perspectives on infectious diseases, 2018.

Which control strategies is the
most effective in the prevention
and control of bovine
anaplasmosis: bovine-culling,
safety-control and, improving
and maintaining good hygiene
practices?

𝜆𝐽 =
𝛽𝐽𝜙𝑇 𝐼𝑇𝐽 + 𝐼𝑇𝐴
𝑆𝐽 + 𝐴𝐽 + 𝐶𝐽

+ 𝛽𝐸𝜙𝐸𝐸𝑀 𝜆𝐴 =
𝛽𝐴𝜙𝑇 𝐼𝑇𝐽 + 𝐼𝑇𝐴
𝑆𝐴 + 𝐴𝐴 + 𝐶𝐴

+ 𝛽𝐸𝜙𝐸𝐸𝑀

𝜆𝑇 =
𝛽𝑇𝜙𝑇 𝐴𝐽 + 𝐶𝐽 + 𝐴𝐴 + 𝐼𝐴

𝑁𝐽 + 𝑁𝐴
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Plant-virus-vector interactions

Jeger, M. J., Madden, L. V., & van den Bosch, F. (2018). Plant Virus Epidemiology:
Applications and Prospects for Mathematical Modeling and Analysis to Improve
Understanding and Disease Control. Plant Disease, 102(5), 837-854.

What are the optimal control strategies 
required to minimize yield losses?
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Tree harvesting in age-structured 
forests subject to beetle infestations

Leite, M. C. A., Chen-Charpentier, B., & Agusto, F. B. (2018). A mathematical model of
tree harvesting in age-structured forests subject to beetle infestations. Computational and
Applied Mathematics, 37(3), 3365-3384.

𝑑𝐵
𝑑𝑡

= 𝑟𝐵𝐵 1 − 𝐵
𝐾𝑒

− 𝛼B2

1+𝛽𝐵2
𝜕 𝑉 𝑎, 𝑡

𝜕 𝑡 +
𝜕 𝑉 𝑎, 𝑡
𝜕 𝑎 = − [𝜇(𝑎) + 𝜇𝐵(𝑎, 𝑡)]𝑉(𝑎, 𝑡)

0 ≤ 𝑡 ≤ 𝑇, 0 ≤ 𝑎 < 𝐴, 𝐴, 𝑇 < ∞
𝑉(𝑎, 0) = 𝑉0(𝑎)
𝑉(0, 𝑡) = 𝑉(𝑡) = න

0

𝐴
𝑏(𝑎)𝑉(𝑎, 𝑡)𝑑𝑡

𝑉 𝐴, 0 ≡ 0

What is the effect of beetle outbreaks on
forest trees dynamics?

What is the effect of beetle outbreaks and
harvesting strategies on the harvest
benefit? 𝐽 𝑢 = න

0

𝑇
න
0

𝐴
𝑉(𝑎, 𝑡)𝑑𝑎 dt
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𝐽 𝑢 = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒 ∫0
𝑇 𝑓 𝑡, 𝑥 𝑡 , 𝑢 𝑡 𝑑𝑡

subject to 
𝑥′(𝑡) = 𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡))
𝑥(0) = 𝑥0 and 𝑥(𝑇) free

Optimal Control Theory 

What is the optimal piecewise
continuous control 𝒖∗(𝒕) and
the 𝒙∗(𝒕) associated state
variable that optimizes the
objective functional 𝑱 𝒖 ?

Pseudo-algorithm
- Optimal Control 𝑢∗(𝑡) achieves the optimum
- Put 𝑢∗(𝑡) into state equation and obtain 𝑥∗(𝑡)
- 𝑥∗(𝑡) corresponding optimal state
- 𝑢∗(𝑡), 𝑥∗(𝑡) optimal pair

Lenhart, S., & Workman, J. T. (2007). Optimal control applied to biological models. Crc Press.



View	webinar	videos	and	learn	more	about	BMSA	at	www.nas.edu/MathFron:ers		 	25	View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers

Maximizing tree harvesting benefit 
from forests under insect infestation 

disturbances

Leite, M. C., Chen-Charpentier, B., & Agusto, F. B. (2018). Maximizing 
tree harvesting benefit from forests under insect infestation 
disturbances. PloS one, 13(8), e0200575.

1. Total number of trees harvested

2. Total amount of wood harvested including
trees killed by beetles and other natural
causes

3.  Total benefit

𝑑𝐵(𝑎,𝑡)
𝑑𝑡

= 𝑟𝑏𝐵(𝑎, 𝑡) 1 − 𝐵(𝑎,𝑡)
𝐾𝑒(𝑎)

− 𝛼B(𝑎,𝑡)2

1+𝛽𝐵(𝑎,𝑡)2

𝜕 𝑉 𝑎, 𝑡
𝜕 𝑡

+
𝜕 𝑉 𝑎, 𝑡
𝜕 𝑎

= − [𝜇 𝑎, 𝑡 + 𝜇𝐵 𝑎, 𝑡 + 𝑢(𝑎, 𝑡)]𝑉(𝑎, 𝑡)

0 ≤ 𝑡 ≤ 𝑇, 0 ≤ 𝑎 < 𝐴, 𝐴, 𝑇 < ∞

𝑉(𝑎, 0) = 𝑉0(𝑎)

𝑉 0, 𝑡 = න
0

𝐴
𝑏(𝑎)𝑉(𝑎, 𝑡)𝑑𝑎

𝑉 𝐴, 0 ≡ 0

𝜇𝐵(𝑎, 𝑡) = 𝑓𝑘(𝑎)𝐵(𝑎, 𝑡)

𝐵𝑇 0, 𝑡 = න
0

𝐴
𝐵(𝑎, 𝑡)𝑉(𝑎, 𝑡)𝑑𝑎

𝐽1 𝑢 = න
0

𝑇
න
0

𝐴
𝜔1𝑢(𝑎, 𝑡)𝑉(𝑎, 𝑡)𝑑𝑎 dt

𝐽2 𝑢 = න
0

𝑇
න
0

𝐴 [𝜔1𝑢 𝑎, 𝑡 + 𝜔2(𝜇𝐵 𝑎, 𝑡
+ 𝜇(𝑎, 𝑡))]𝑉(𝑎, 𝑡)𝑑𝑎 dt

𝐽3 𝑢 = න
0

𝑇
න
0

𝐴 [𝜔1𝑢 𝑎, 𝑡 + 𝜔2(𝜇𝐵 𝑎, 𝑡
+ 𝜇(𝑎, 𝑡))]𝑉(𝑎, 𝑡)𝑑𝑎 dt

−න
0

𝑇
න
0

𝑇
𝜔3𝑢2 𝑎, 𝑡 𝑑𝑎 𝑑𝑡
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Gaoue, O. G., Jiang, J., Ding, W., Agusto, F. B., & Lenhart, S. (2016). Optimal harvesting 
strategies for timber and non-timber forest products in tropical ecosystems. Theoretical 
ecology, 9(3), 287-297.

Optimal harvesting strategies for timber 
and non-timber forest products (NTFPs) in 

tropical ecosystem

𝐽 ℎ𝐿, ℎ𝑁 = 𝐴𝑇 𝑥 𝑇 + ∫0
𝑇e−𝛿 𝑡[𝐴𝑥(𝑡) + 𝐵1ℎ𝐿(𝑡)

+𝐵2ℎ𝑁(𝑡)𝑥(𝑡) − 𝐶1ℎ𝐿2(𝑡) − 𝐶2ℎ𝑁2 (𝑡)]𝑑𝑡

𝑥 0 = 𝑥0, 𝑟(0) = 𝑟_𝑒

𝜏
𝑑𝑟 𝑡
𝑑𝑡

= 𝑟𝑒 − 𝑟(𝑡) − [𝛼h𝑁(𝑡) + 𝛽h𝐿(𝑡)]

𝑑𝑥 𝑡
𝑑𝑡

= 𝑟 𝑡 𝑥 𝑡 1 −
𝑥 𝑡
𝐾

− ℎ𝐿(𝑡)𝑥(𝑡)
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Optimal control & temperature 
variations of malaria transmission 

dynamics
What are the optimal control strategies under
changing temperatures in sub-Saharan Africa?

F.B. Agusto (2018)
Optimal Control and Temperature Variations of Malaria
Transmission Dynamics. Submitted to Mathematical
Biosciences

𝐽 𝑢𝐻, 𝑢𝐿, 𝑢𝑉 = න
0

𝑇
[𝐴1𝐼𝐻 + 𝐵1𝐿𝑉 + 𝐵2𝑆𝑉 +

𝐵3𝐸𝑉 + 𝐵4𝐼𝑉 + 𝐶1𝑢𝐻 + 𝜖 𝐶2𝑢𝐻2 + 𝐶3𝑢𝐿
+ 𝜖C4𝑢𝐿2 + 𝐶5𝑢𝑉 + 𝜖 𝐶6𝑢𝑉2]
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Assistant	Professor			
Mathema:cal	Biology	

University	of	Florida,	Gainesville	

Understanding	extreme	
poverty	from	an	

epidemiological-economic	
perspecPve	

Calistus	Ngonghala,		
University	of	Florida,	Gainesville	
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Background and empirical trends

About 1.94 billion people lived in extreme poverty in 1981

Currently, about 746 million people live in extreme poverty

⇡ 61% decline in number of poor

Reduction more significant in middle-income countries

33% of the extreme poor live in low-income countries,
compared to 13% in 1981

No significant change for the poor in low-income countries
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Background

70% of the global poor live in rural areas, mostly subsistence

35% su↵er from chronic malnutrition

75% of deaths among the poor are due to infectious diseases

Major characteristics of the rural poor
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Subsistence life styles and high disease burden
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Subsistence life styles and high disease burden
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Vector-borne and parasitic disease burden Income

Bonds et al. (2012) PLoS Biology (https://doi.org/10.1371/journal.pbio.1001456)
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Association between poverty and disease

Malaria reduced per capita income by 1.3% (Gallup and
Sachs, 2001)

Hookworm reduced income by 35% (Bleakly, 2008)

Nutrition supplements increased wages by 47% (Hoddinot et
al., 2008)

Deworming reduced absenteeism by 25% and improved exam.
scores (Miguel and Kremer, 2003)
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Disease model

Disease model

İ = �(1� I)I � (↵+ � + ⌫)I + ⌫I

2
.
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Coupled disease-economic system

Basis of feedback between disease and income

Disease transmission and recovery depend on income

Income, M , depends on disease prevalence, I.

İ = �(M)(1� I)I � (↵+ �(M) + ⌫)I + ⌫I

2
,

Ṁ = �rM(M �M0(1� I)).
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Dynamics of deterministic system

Population is stuck in poverty trap or enjoys development

Breaking trap requires substantial health and economic e↵orts

Plucinski MM, Ngonghala CN, Bonds M (2011) Journal of The Royal Society Interface
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Stochastic model: Path to development or poverty trap

Plucinski MM, Ngonghala CN, Bonds MH (2011) Journal of The Royal Society Interface
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Escaping poverty traps

Best strategy depends on status of income and disease

Increase income when arrow points vertically upward

More health when arrow points horizontally to the left

Both health and income when arrow points diagonally upwards

Plucinski MM, Ngonghala CN, Bonds MH (2011) Journal of The Royal Society Interface

CNN, UF Models of subsistence, health and poverty 39	



View	webinar	videos	and	learn	more	about	BMSA	at	www.nas.edu/MathFron:ers		 40	

Safety nets

Single safety nets can lead to development

Double safety net leads to shorter time to development

Plucinski MM, Ngonghala CN, Bonds MH (2011) Journal of The Royal Society Interface
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Rate of development

Average time to attain the development equilibrium from initial
conditions reinforced by safety nets.

Location of safety net determines rate of development

Plucinski MM, Ngonghala CN, Bonds MH (2011) Journal of The Royal Society Interface
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Within population poverty traps

a)-b) Each point is an individual. Darker points: lower income, larger

points: greater time spent infected. a) Equilibrium distribution of health

and income in the network. b) Average long-term income versus

proportion of time spent infected.

Plucinski et al. (2013) Journal of The Royal Society Interface
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Economic growth theory

Deaths

Recovery

Deaths

ConsumptionDepreciation

Transmission

Births

InfectiousSusceptibleIncomeCapital

Disease
deaths

Economic growth model Infectious disease model

Investment

Production

İ = �(y)(1� I)I � (↵+ �(y) + ⌫)I + ⌫I

2
,

ḣ = rh(I)y � �h, y(I) = �(I)h�.

Ngonghala et al. (2017) Nature Ecology & Evolution
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General model

Two broad classes of state variables

capital – economic or biological

natural enemies of capital

Rate of change = Growth� Loss

ẋi =  i(x, z, f(x, z))��i(x, z, f(x, z)), (1)

żj = �j(x, z, f(x, z))� �j(x, z, f(x, z)). (2)

Examples of capital

Physical capital

Human capital

Renewable resource

Land-use change

Examples of natural enemies

Infectious diseases of humans

Diseases of animals

Plant diseases
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Results
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February	12:	Machine	Learning	for	
Materials	Science	and	Drug	Discovery	
	

March	12:			
Mathema:cs	of	Privacy	
	

April	9:			
Mathema:cs	in	Astronomy	
	

May	14:			
Algebraic	Geometry	
	

June	11:	Transporta:on	and		
Urban	Planning	
	

	
	
	
	
	

July	9:	Cryptography	and	Cybersecurity	
	

August	13:		Machine	Learning	for	
Genomics	and	Medicine	
	

September	10:	Logic	and	Founda:ons	
	

October	8:	Quantum	Physics	and	String	
Theory	
	

November	12:	Quantum	Encryp:on		
	
December	10:	Machine	Learning	and	Text	
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