

MATHEMATICAL FRONTIERS

*The National
Academies of* | SCIENCES
ENGINEERING
MEDICINE

nas.edu/MathFrontiers

**Board on
Mathematical Sciences & Analytics**

MATHEMATICAL FRONTIERS

2019 Monthly Webinar Series, 2-3pm ET

Feb 12: *Machine Learning for Materials Science*

Mar 12: *Mathematics of Privacy*

Apr 9: *Mathematics of Gravitational Waves*

May 14: *Algebraic Geometry*

June 11: *Mathematics of Transportation*

July 9: *Cryptography and Cybersecurity*

Aug 13: *Machine Learning in Medicine*

Sept 10: *Logic and Foundations*

Oct 8: *Mathematics of Quantum Physics*

Nov 12: *Quantum Encryption*

Dec 10: *Machine Learning for Text*

This webinar series is made possible by support for BMSA from the

***National Science Foundation
Division of Mathematical Sciences***

and the

***Department of Energy
Advanced Scientific Computing Research***

MATHEMATICAL FRONTIERS

Machine Learning for Materials Science

Elizabeth Holm,
Carnegie Mellon University

Rampi Ramprasad,
Georgia Institute of Technology

Mark Green,
UCLA (moderator)

MATHEMATICAL FRONTIERS

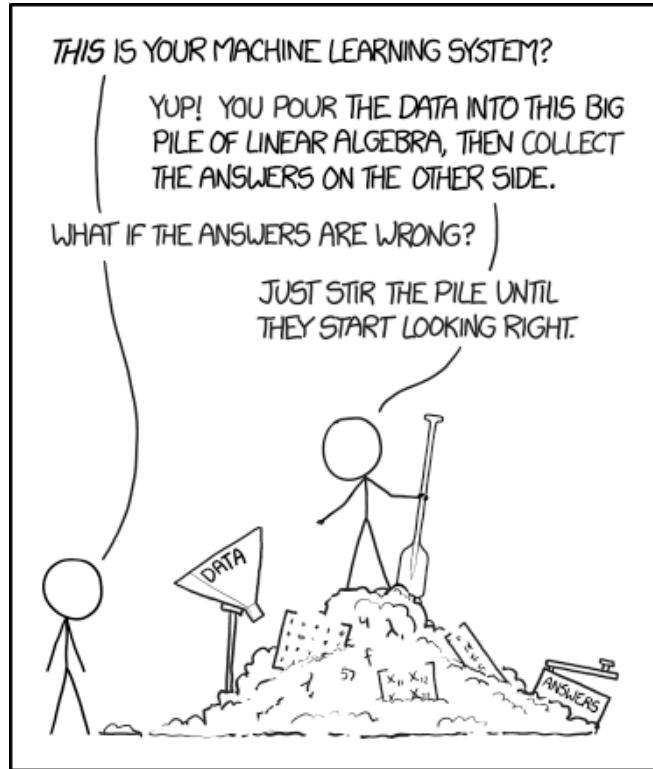
Machine Learning for Materials Science

Elizabeth Holm,
Carnegie Mellon University

*Professor of
Materials Science and Engineering*

**Incorporating
machine intelligence
in materials science
and engineering**

Demystifying machine intelligence (AI)



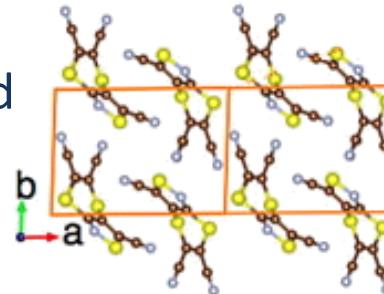
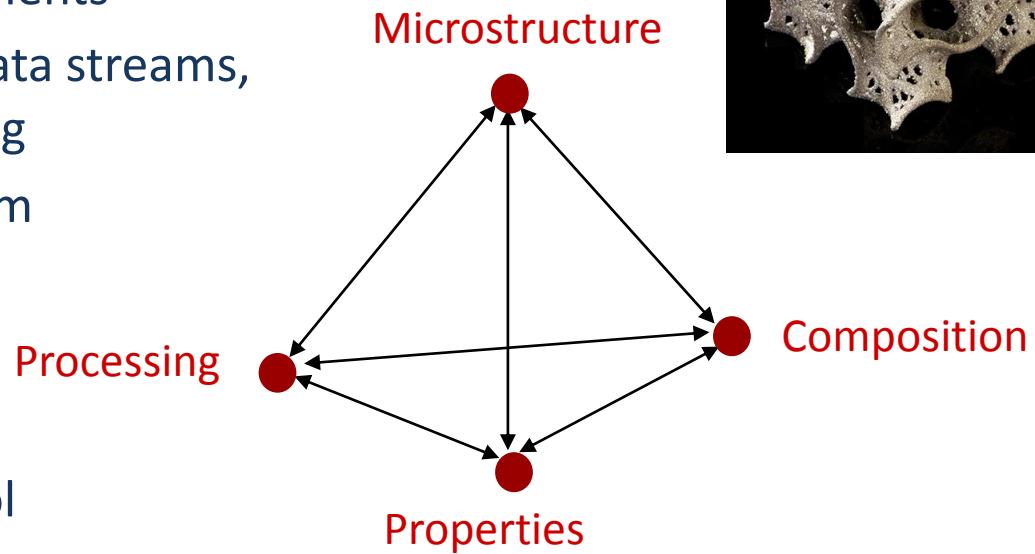
<https://xkcd.com/1838/>

- Machine intelligence is comprised of three basic building blocks:
 - Data science = statistics of multi-dimensional data
 - Machine learning = optimization via feedback loops
 - Convolutional neural networks = signal processing
- These three elements combine to give

Deep learning

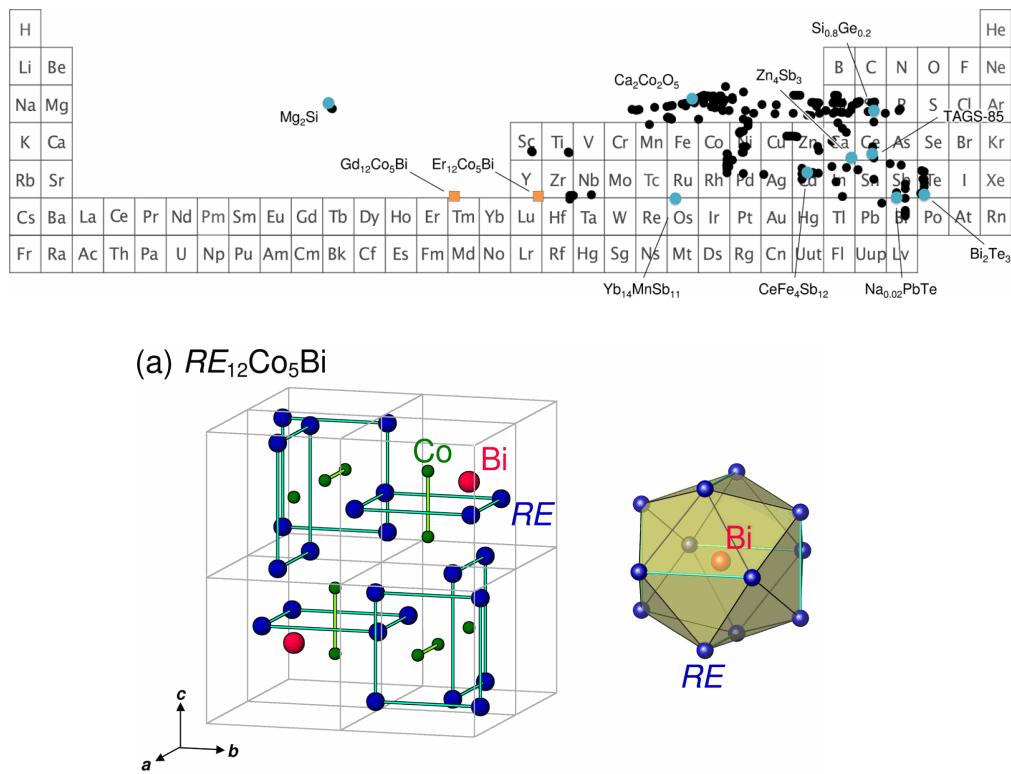
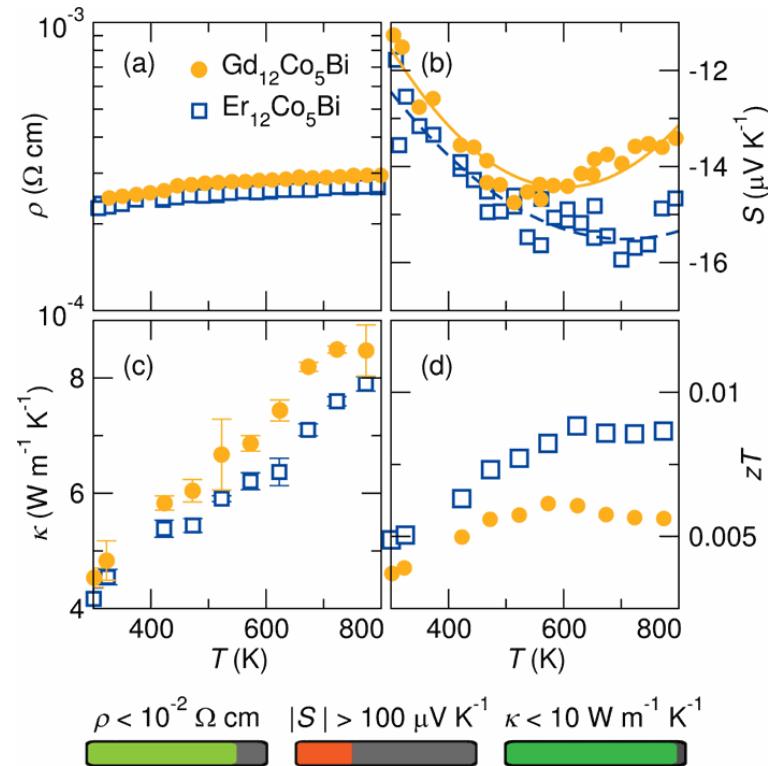
Opportunities for AI in materials science and engineering

- Discovery and design of materials
- Optimization of materials structure and properties
- Material selection
- Autonomous experiments and analysis, including adaptive experiments
- Managing experimental data streams, including forward modeling
- Extracting information from microstructural images
- Property prediction
- Failure analysis
- Process and quality control
- ...



Search for new materials using data science and machine learning

- Big data: Discovery of new thermoelectric material



M. W. Gaultois, A. O. Oliynyk, A. Mar, T. D. Sparks, G. J. Mulholland, B. Meredig, APL Mater., 4 053213 (2016)

What is holding physical scientists back?

- Informal survey of 14 physical scientists / engineers who attended a CMU workshop on Machine Learning in Science:
What are the biggest barriers to implementing data science in your research?
- Big data (28%)
- Small data (43%)
- Rare events (43%)
- Rich/multimodal data (57%)
- Data representation (71%)
- Interpretability (79%)

Why interpretability matters: The machine doesn't always learn the right things

- A CNN-based deep learning system was trained to identify classes of objects in photographs.
- Masking was used to evaluate critical features that the computer associates with an object.

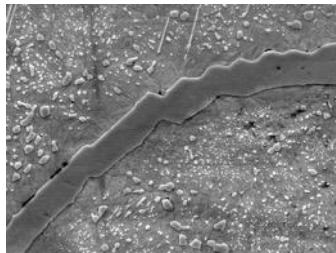
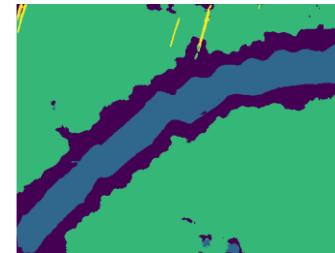
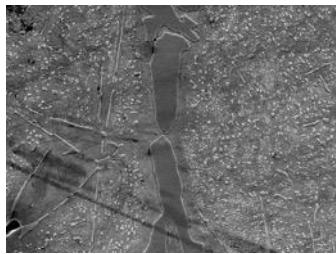
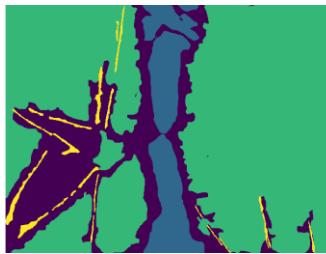
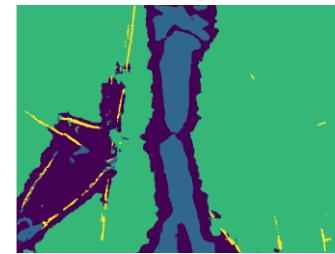
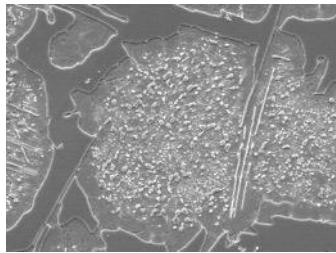
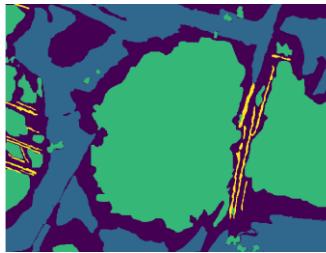
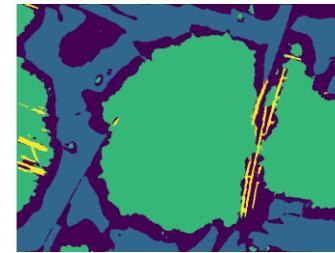
- Some masks made sense:

- Some did not:

Fong, et. al arXiv:1704.03296v1

Black box for tedious tasks: Autonomous microstructural segmentation

- Segmenting complex, multi-component microstructures



Original Image

Grad student

Pixel-Net

- Accurate ($93 \pm 3\%$)
- Objective
- Repeatable
- Indefatigable
- Permanent
- Exactly as interpretable as a graduate student

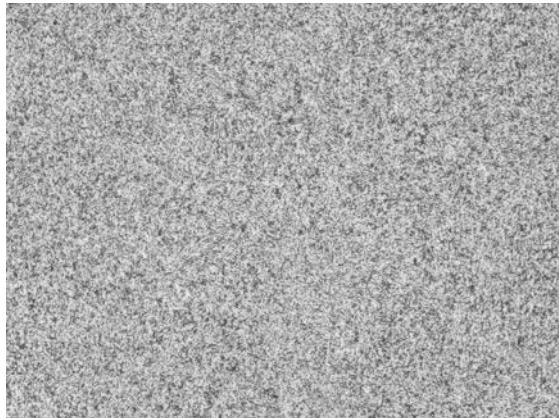
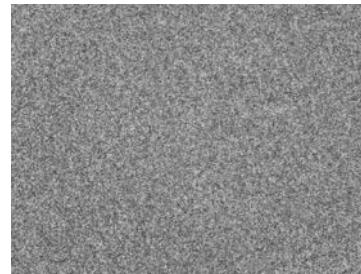
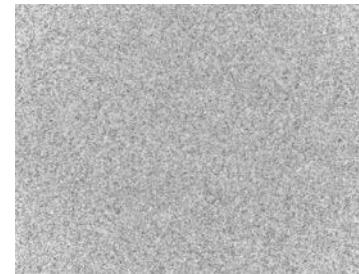
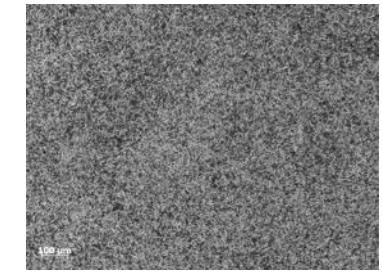
B. DeCost et al., arXiv:1805.08693

Black box for repetitive workflow: Quality control via computer vision

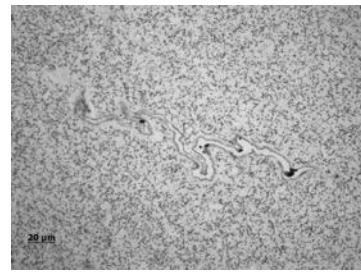
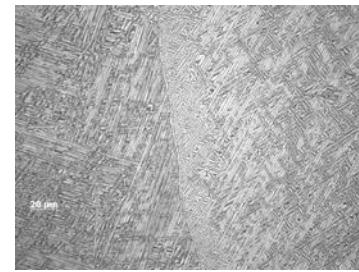
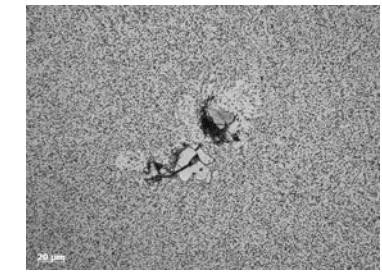
- Autonomous evaluation: identify “out of spec” microstructures

Meet specifications:

specified
microstructure:



Out of spec:

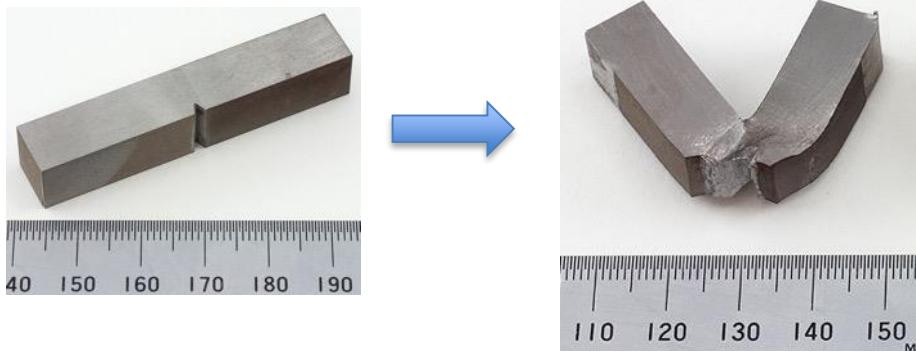
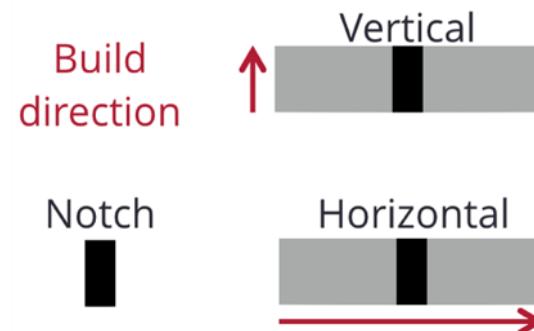
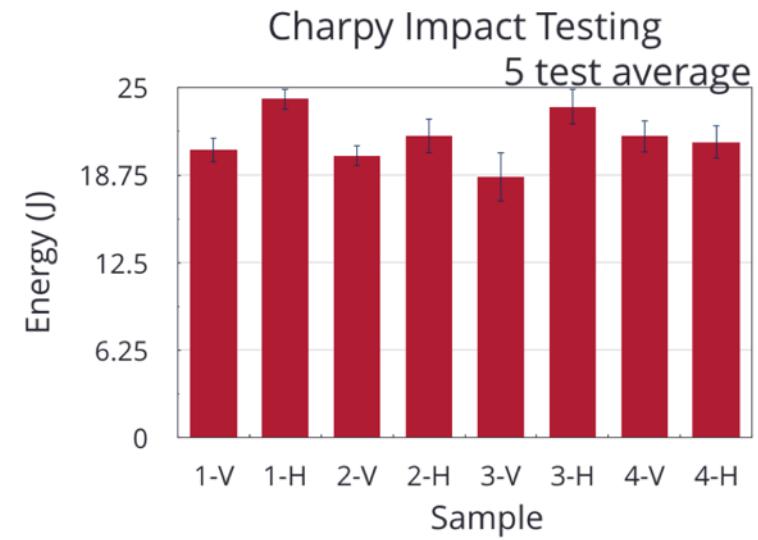


B. L. DeCost, E. A. Holm, *Comp. Mater. Sci.* 110 126-133 (2015).

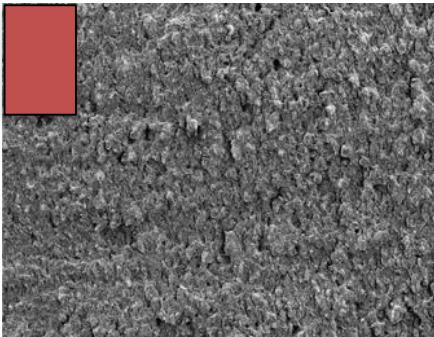
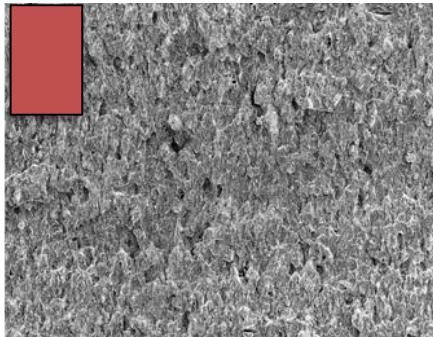
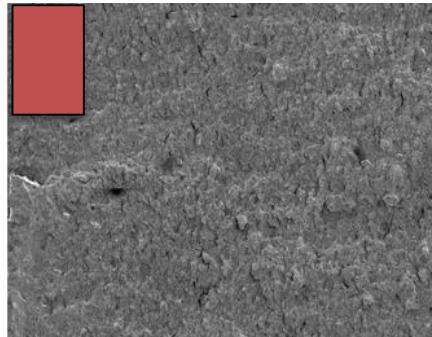
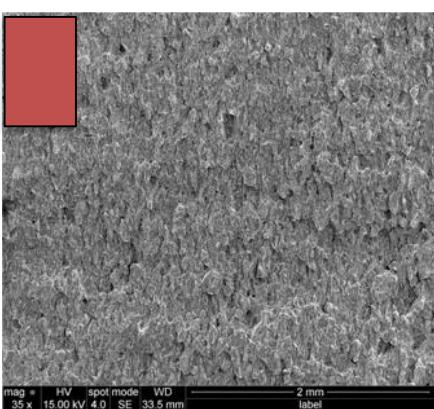
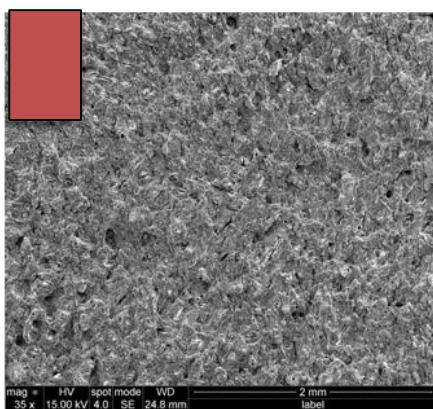
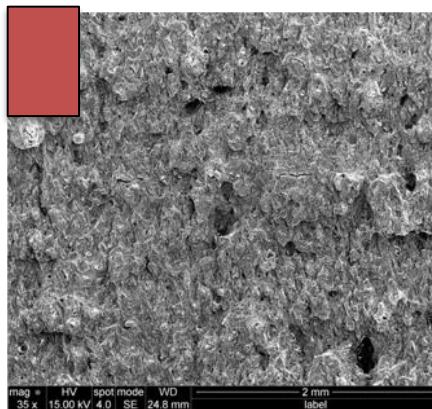
View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers

Where the black box fails: Extracting knowledge from information

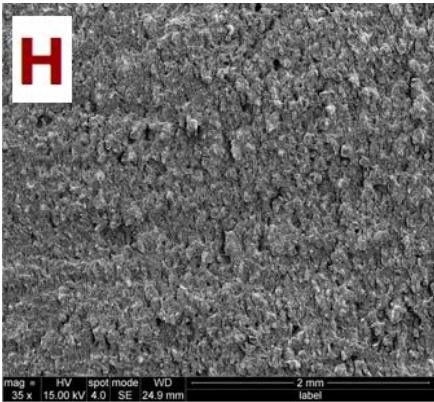
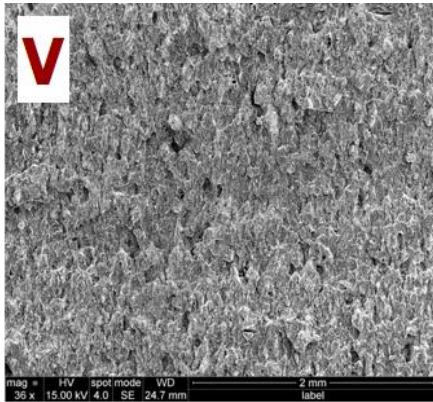
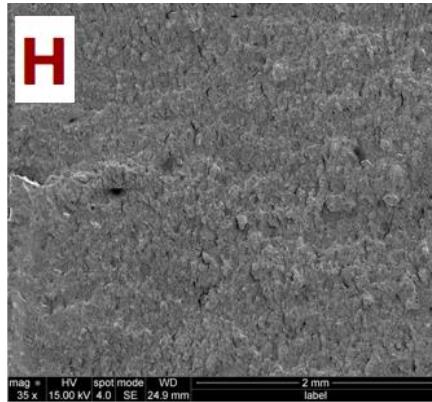
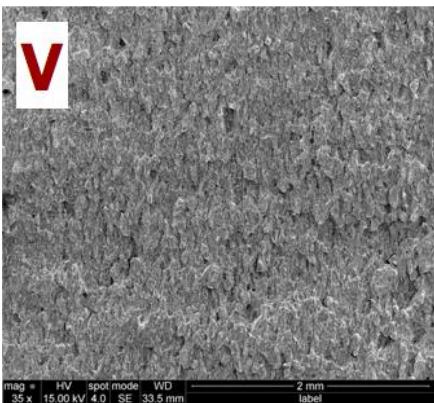
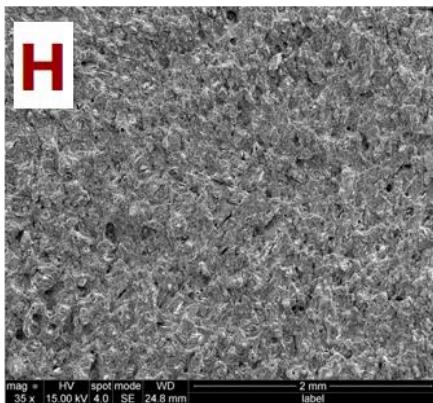
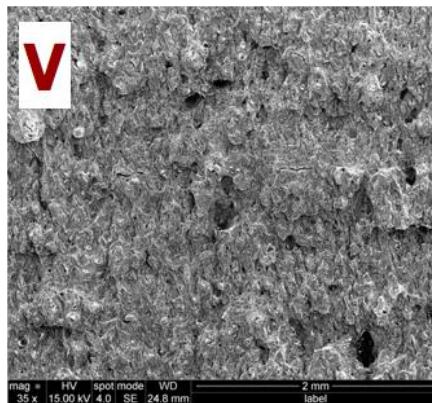
- Extracting information from microstructural images:
 - Inconel 718 Charpy impact specimens built using additive manufacturing.
 - Two build orientations, horizontal and vertical.
 - Charpy impact energy depends on build orientation.



Can you see the difference in the fracture surfaces?



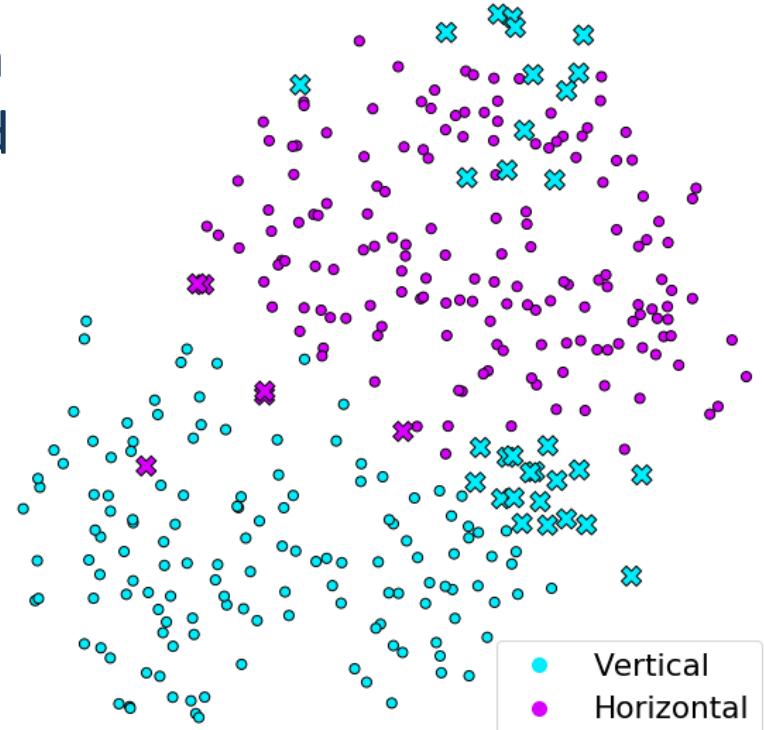
Can you see the difference in the fracture surfaces?



What is the computer learning?

- Using unsupervised ML with k-means clustering, the computer can identify horizontal and vertical build fractures with **$88 \pm 3\%$ accuracy**.
- **What does the computer see that we cannot?**
- **Does the distinguishing visual information provide physical insight?**
- **Has the computer learned fracture mechanics?**

Cluster Identification of In-718 Fracture Surfaces



A. Kitahara, E. Holm, IMMI 7[3] 148 (2018)

Conclusion: Philosophical musings

- When is a black box OK?
 - The overall cost of wrong answers is low.
 - The method is better than all alternatives within its domain.
- When does the black box fail?
 - The goal is not what, but why.

"All right," said Deep Thought. "The Answer to the Great Question..."
"Yes..."
"Of Life, the Universe and Everything..."
said Deep Thought.
"Yes..."
"Is..." said Deep Thought, and paused.
"Yes..."
"Is..."
"Yes...!!!...?"
"Forty-two," said Deep Thought, with infinite majesty and calm.

—Douglas Adams, The Hitchhiker's Guide to the Galaxy

Acknowledgements

- Current and former students:

- Andrew Kitahara
- Nan Gao
- Bo Lei
- Srujana Yarasi
- Keith Kozlosky
- Ankita Mangal (P&G)
- Toby Francis (UCSB)
- Anna Smith (Merck)
- Brian DeCost (NIST)

National Science Foundation
DMR-1507830 and DMR-
1826218

MATHEMATICAL FRONTIERS

Machine Learning for Materials Science

*Michael E. Tennenbaum Family Chair and
GRA Eminent Scholar,
School of Materials Science and
Engineering*

Polymer Genome:
An Informatics Platform
for Prediction & Design

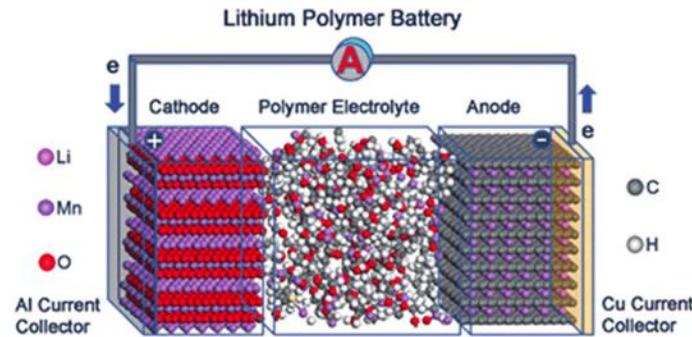
Rampi Ramprasad,
Georgia Institute of Technology

POLYMERS ARE UBIQUITOUS

High Energy Density Capacitors

Need: high band gap, high dielectric constant

Solid-State Battery Electrolytes



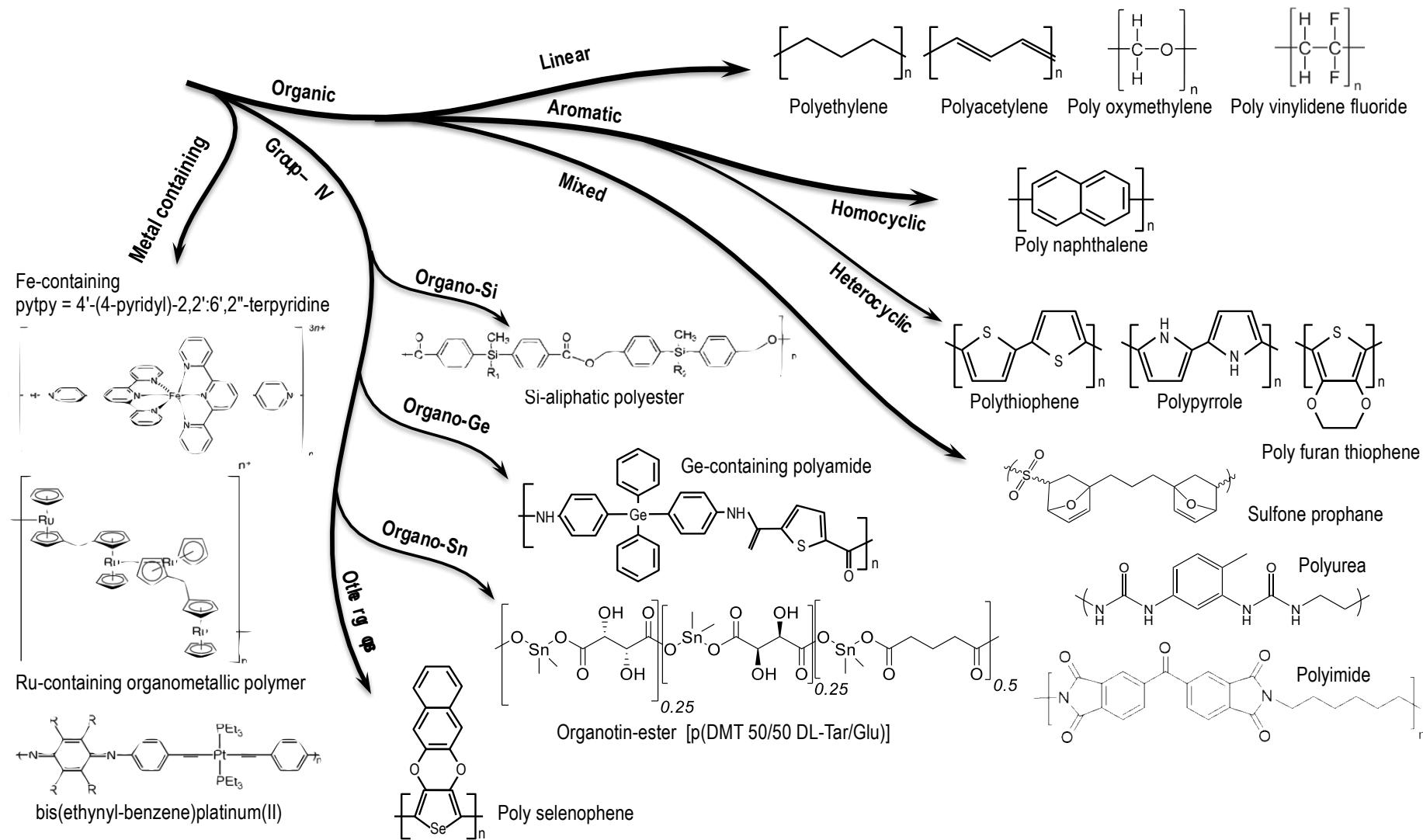
Need: low T_g , high mechanical strength

Organic / Flexible Electronics

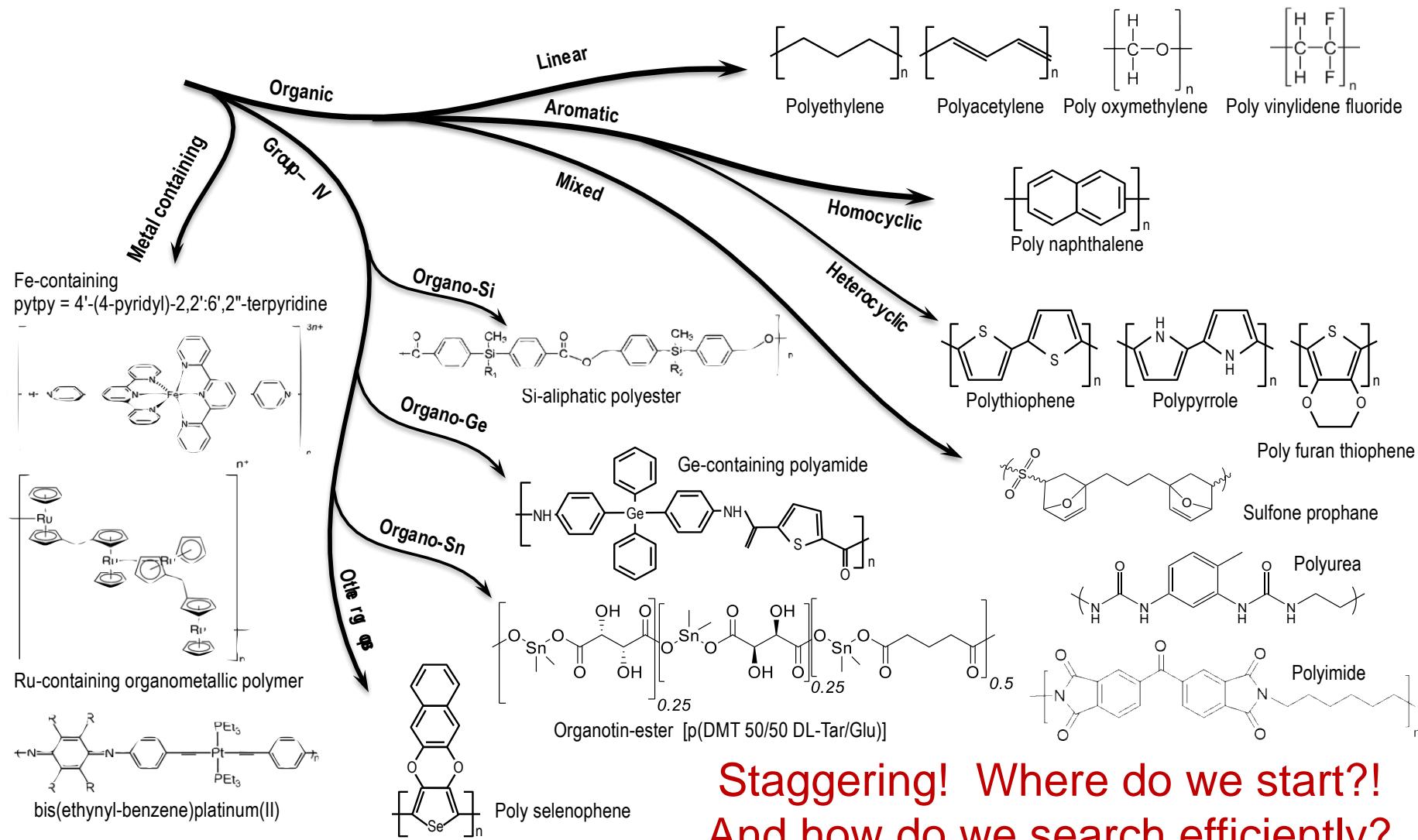
Need: low band gap, low carrier recombination

Different applications have different property requirements
(Optimal materials selection is non-trivial)

POLYMER CHEMICAL UNIVERSE



POLYMER CHEMICAL UNIVERSE



**Staggering! Where do we start?!
And how do we search efficiently?**

BENCHMARK DATASET

Data sources

Computational data
via high-throughput DFT

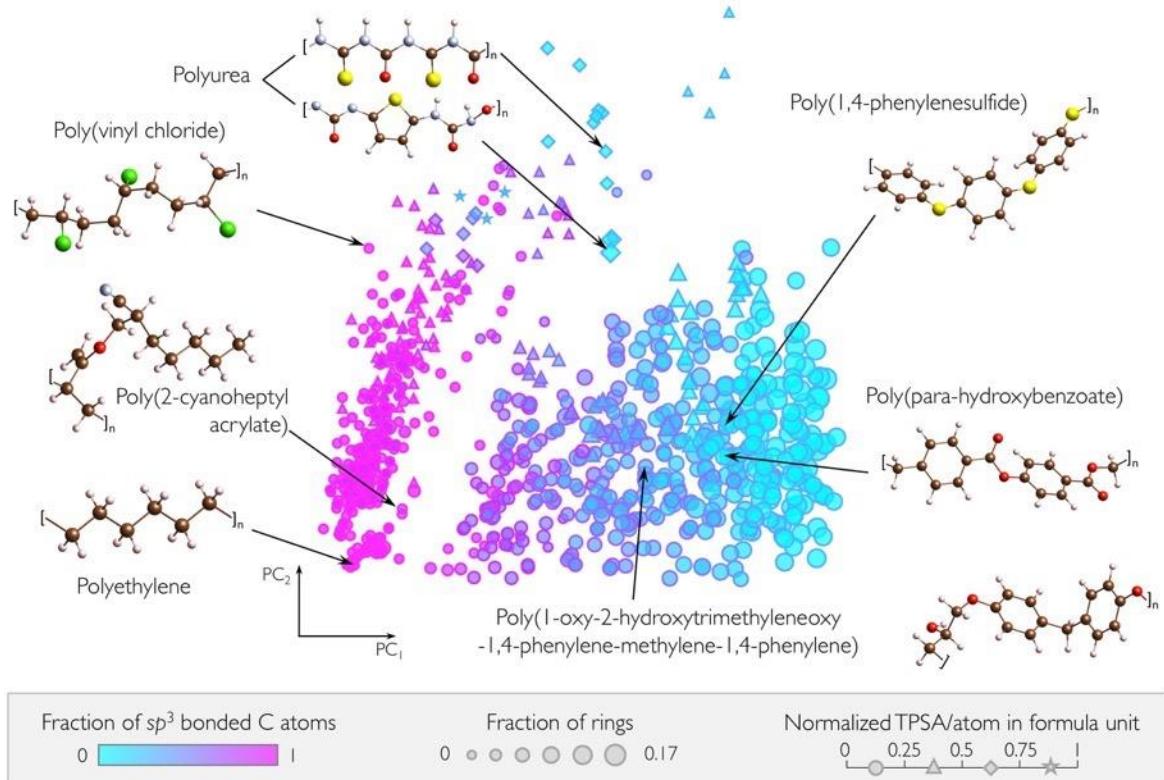
+

Experimental data
from collaborators,
literature
& data collections

Property space

Band gap
Dielectric constant
Glass transition temperature
Atomization energy,
etc.

Chemical space (~900 organic polymers)



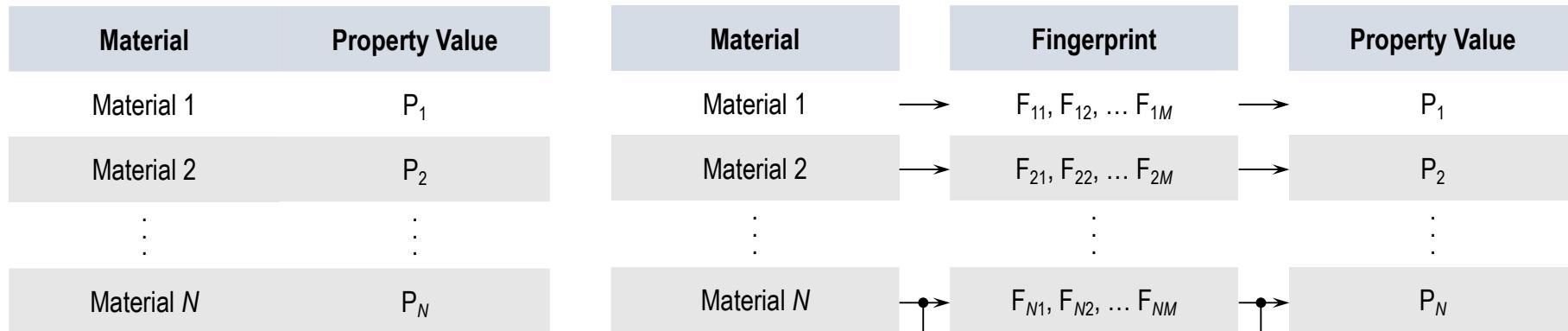
MACHINE LEARNING IN MSE

a

Example dataset

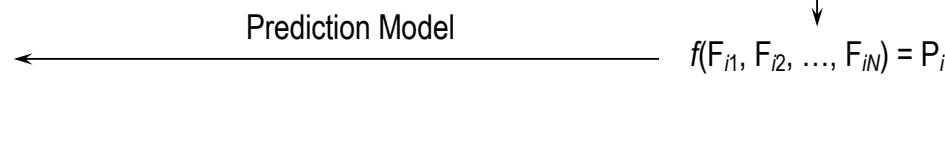
c

Fingerprinting, learning and prediction



b

The learning problem



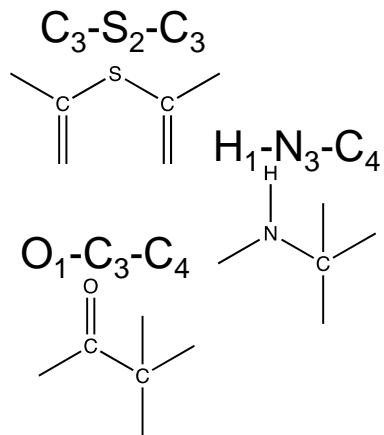
T. Mueller, A. G. Kusne, R. Ramprasad "Machine Learning in Materials Science: Recent Progress and Emerging Applications", *Reviews in Computational Chemistry*, John Wiley & Sons, Inc., Volume 29, (2016).

R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim, "Machine Learning and Materials Informatics: Recent Applications and Prospects", *npj Computational Materials* 3, 54 (2017).

POLYMER FINGERPRINTS (GENOME)

We represent polymers numerically at three length-scales

Atomic-level

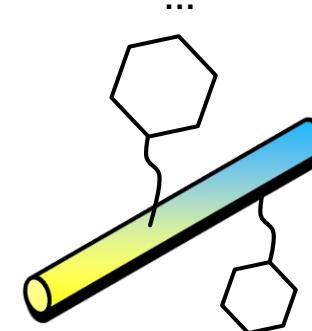


Block-level

C_6H_4 , CH_2 , etc., blocks; Van der Waals volume/surface, etc.

Chain-level

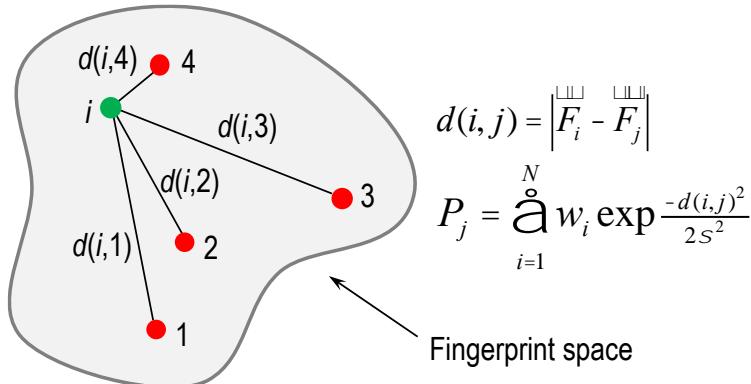
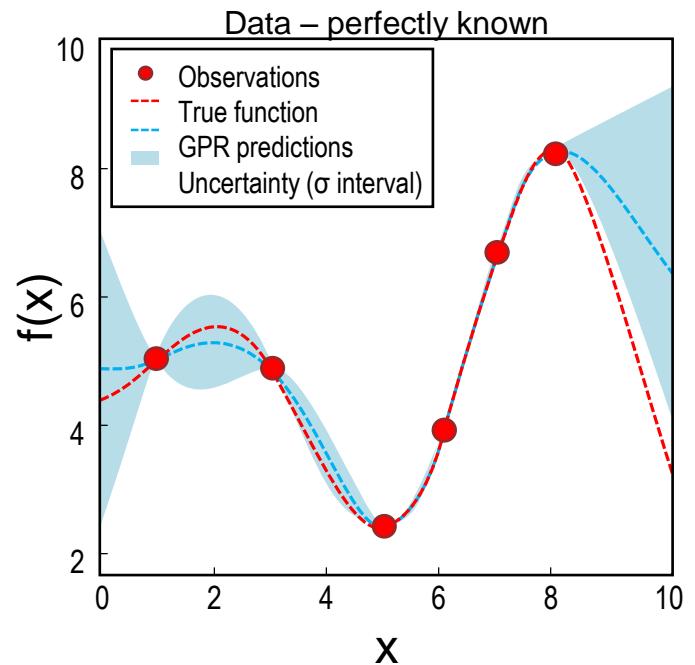
Distance between rings
Length of sidechain
Aromatics in sidechain
...



“Polymer Genome: A Data-Powered Polymer Informatics Platform for Property Predictions”
C. Kim, A. Chandrasekaran, T. D. Huan, D. Das and R. Ramprasad, J. Phys. Chem. C (2018)

LEARNING FROM DATA

Gaussian process regression (GPR)



“Polymer Genome: A Data-Powered Polymer Informatics Platform for Property Predictions”
C. Kim, A. Chandrasekaran, T. D. Huan, D. Das and R. Ramprasad, J. Phys. Chem. C (2018)

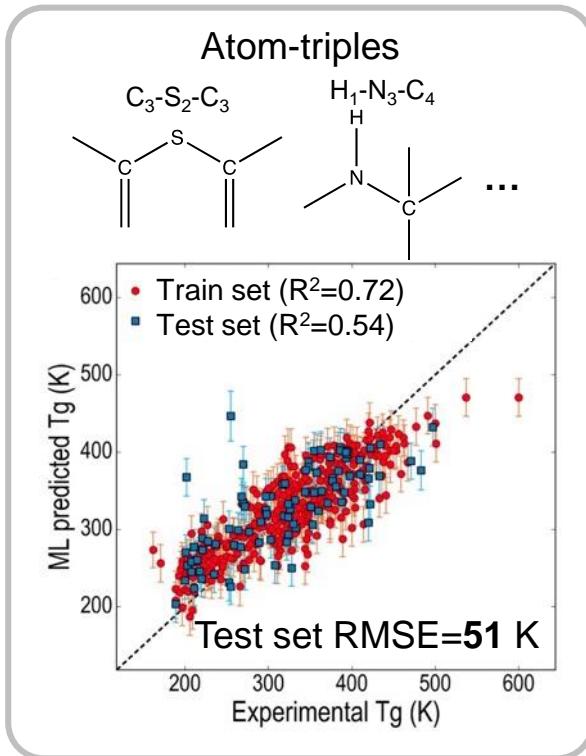
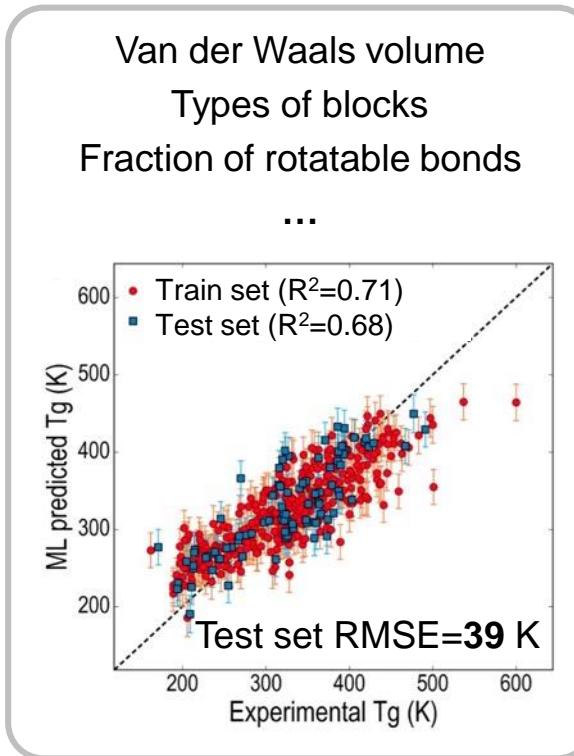
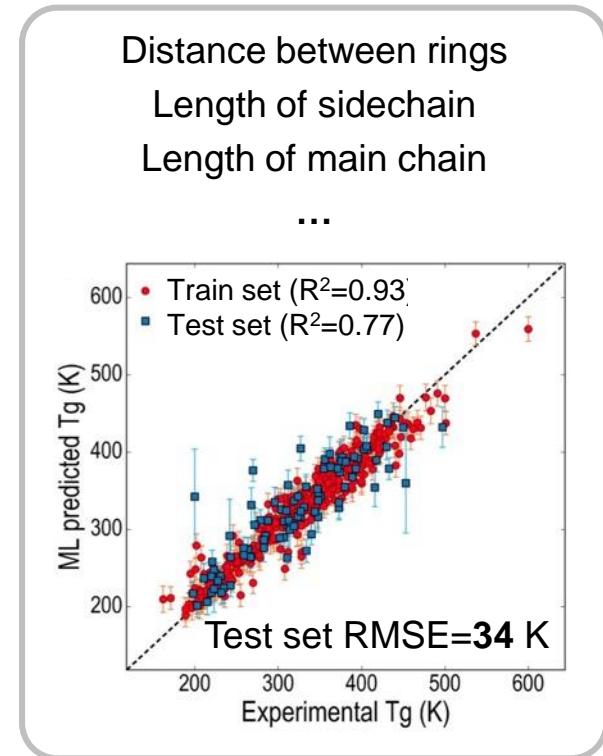
HIERARCHICAL FINGERPRINTING

Impact on glass transition

Atomic-level
descriptors

+ Block-level
descriptors

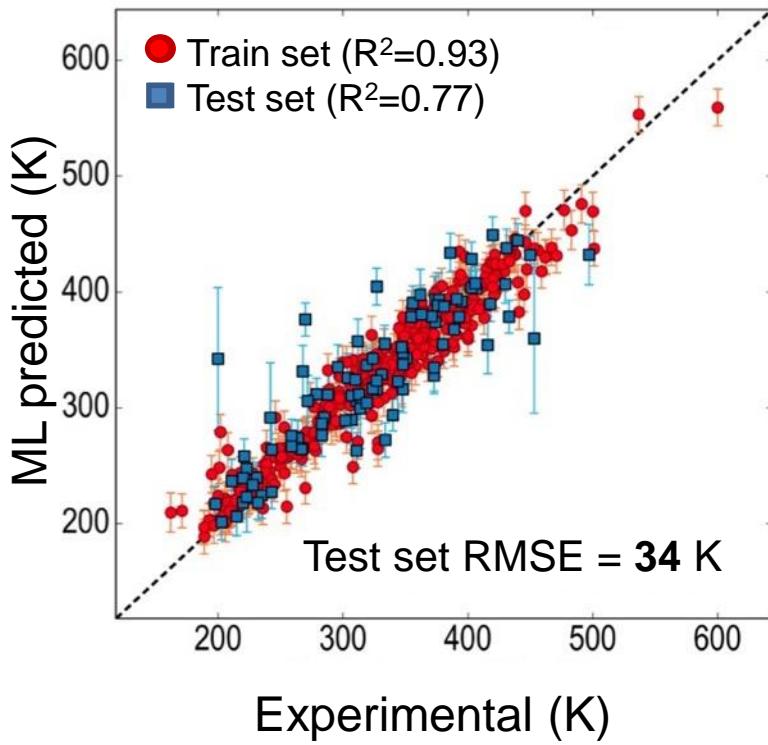
+ Chain-level
descriptors
Higher length-scale



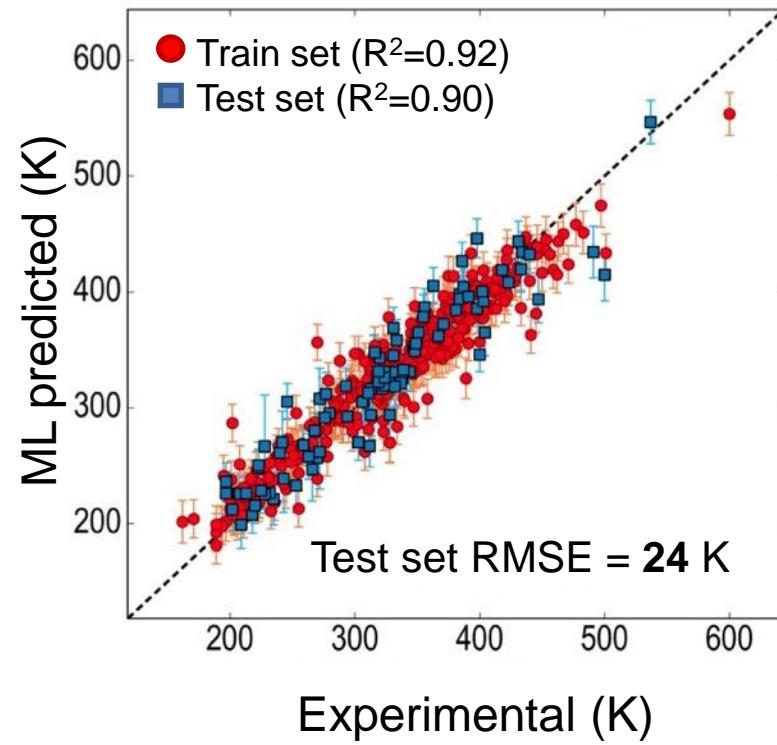
FINGERPRINT-DIMENSION REDUCTION

Glass transition temperature

All the fingerprint without RFE

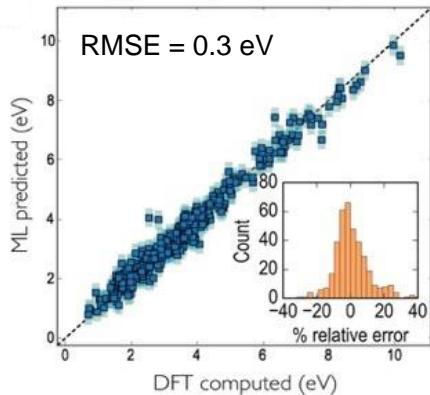


With recursive feature elimination (RFE)

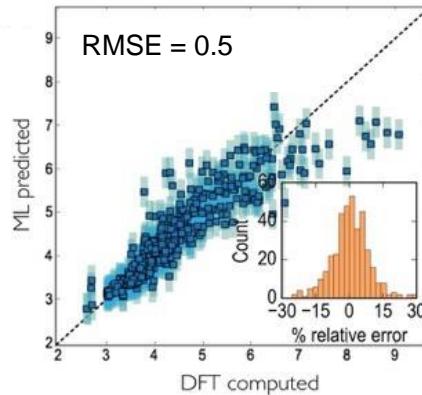


PROPERTY PREDICTION MODELS

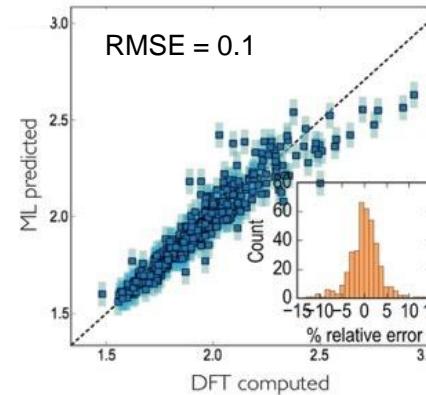
Band gap



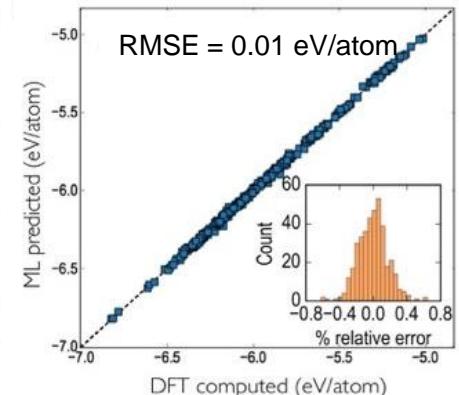
Dielectric constant



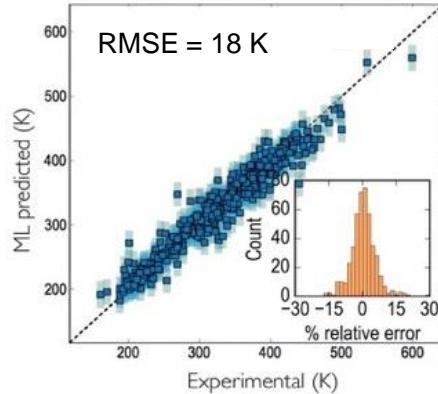
Refractive index



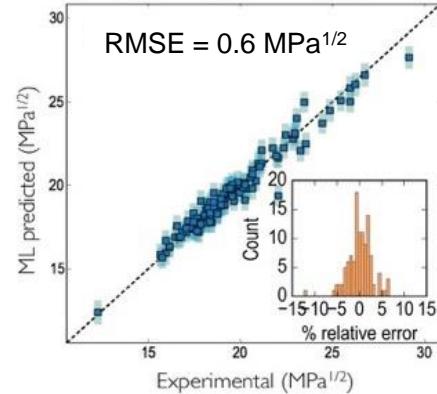
Atomization energy



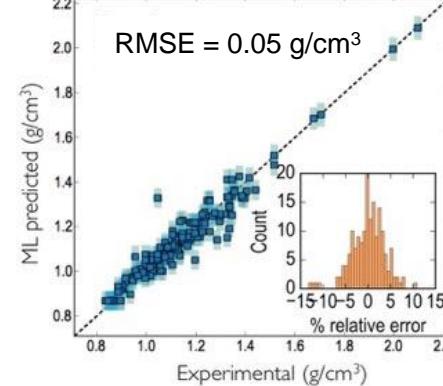
Glass transition temperature



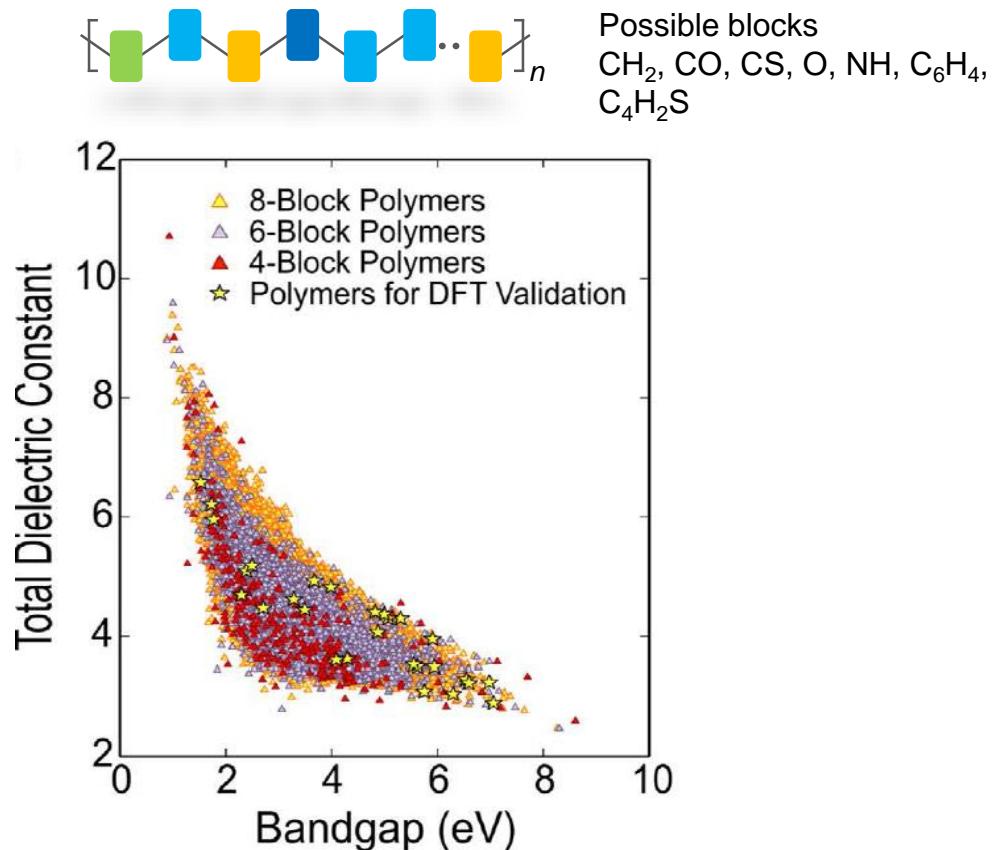
Solubility parameter



Density

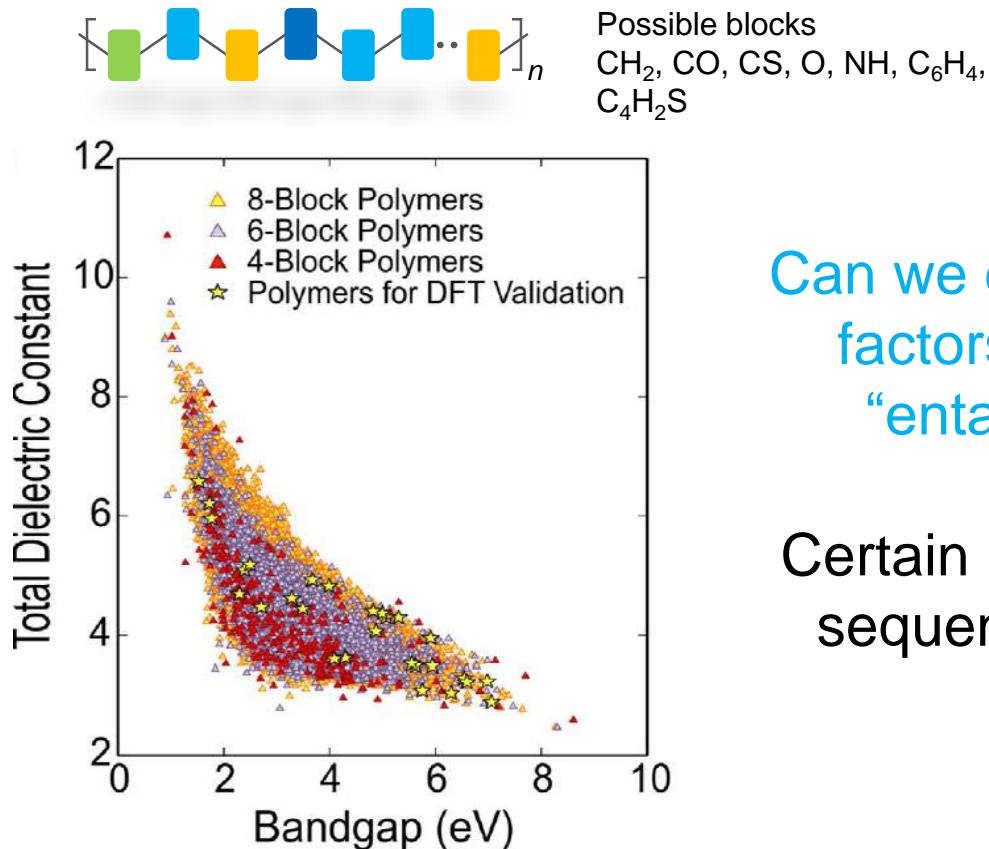


OUTCOME: INSIGHTS



“Mining materials design rules from data: The example of polymer dielectrics”
A. Mannodi-Kanakkithodi, et al, Chemistry of Materials (2017).

OUTCOME: INSIGHTS



Can we determine underlying factors that govern such “entangled” behavior?

Certain blocks in a particular sequence provide optimal behavior

“Mining materials design rules from data: The example of polymer dielectrics”
A. Mannodi-Kanakkithodi, et al, Chemistry of Materials (2017).

OUTCOME: MATERIAL DISCOVERIES

Example: High energy density capacitors

New materials discovered with performance up to 3.5x of BOPP, the current standard material!

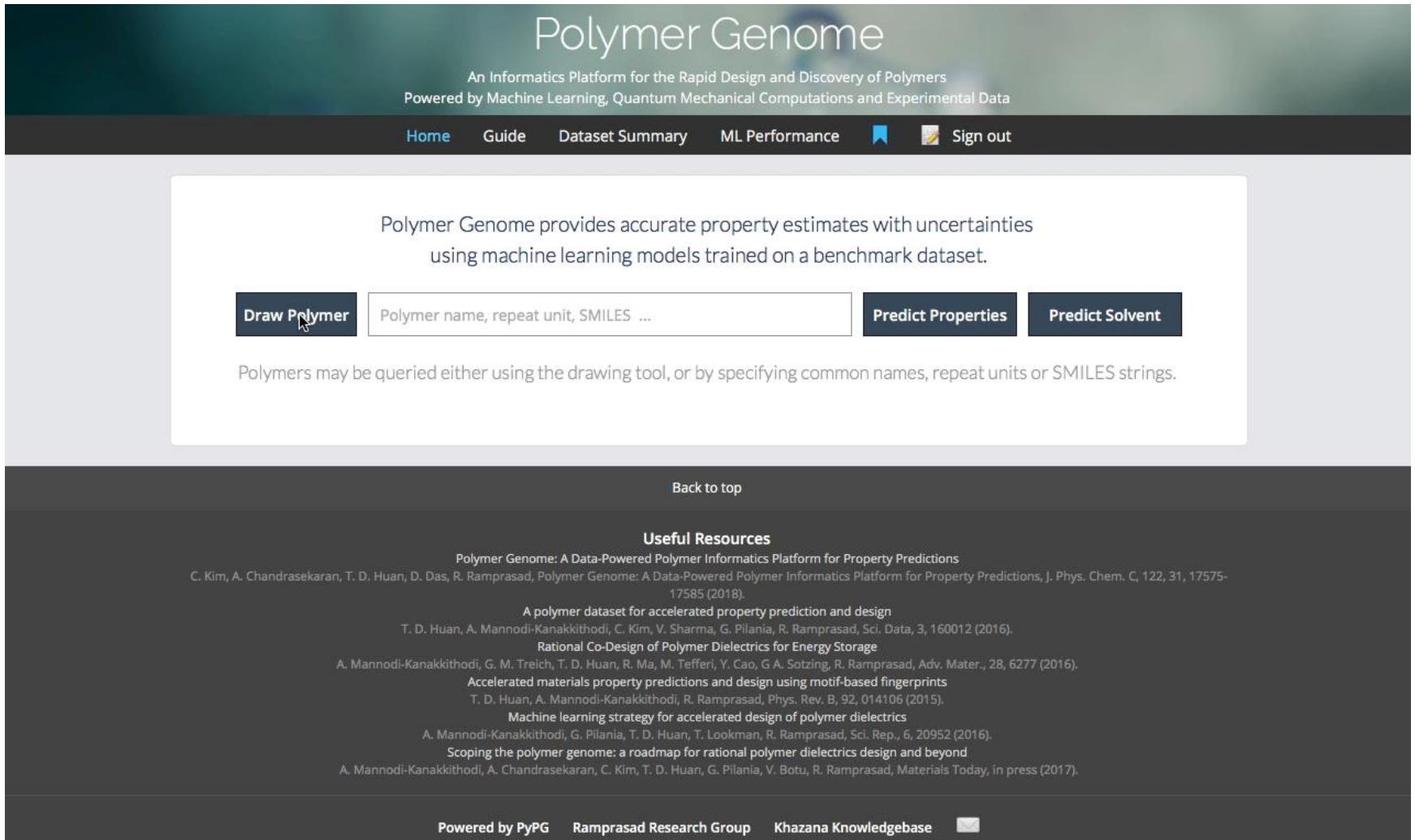
Polymer name	BOPP	PDTC-HDA (Polythiourea)	BTDA-HDA (Polyimide)	BTDA-HK511 (Polyimide)
Repeat unit				
Synthesized polymer				
Energy density (J/cm ³)	5	9	10	16

"Scoping the Polymer Genome: A Roadmap for Rational Polymer Dielectrics Design and Beyond,"

A. Mannodi-Kanakkithodi, et al, Materials Today 21, 7, 785-796 (2018)
View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers

OUTCOME: ONLINE APP

<https://www.polymergenome.org>



The screenshot shows the homepage of the Polymer Genome website. The header features the title "Polymer Genome" and a subtitle "An Informatics Platform for the Rapid Design and Discovery of Polymers Powered by Machine Learning, Quantum Mechanical Computations and Experimental Data". Below the header is a navigation bar with links for "Home", "Guide", "Dataset Summary", "ML Performance", a bookmark icon, and "Sign out". The main content area contains a text box stating: "Polymer Genome provides accurate property estimates with uncertainties using machine learning models trained on a benchmark dataset." It includes two buttons: "Draw Polymer" and "Predict Properties". A text input field is also present. Below this, a message says: "Polymers may be queried either using the drawing tool, or by specifying common names, repeat units or SMILES strings." At the bottom of the page, there is a "Back to top" link, a "Useful Resources" section with several research papers, and a footer with links to "Powered by PyPG", "Rampasad Research Group", "Khazana Knowledgebase", and an envelope icon.

Polymer Genome provides accurate property estimates with uncertainties using machine learning models trained on a benchmark dataset.

Draw Polymer **Predict Properties** **Predict Solvent**

Polymers may be queried either using the drawing tool, or by specifying common names, repeat units or SMILES strings.

[Back to top](#)

Useful Resources

Polymer Genome: A Data-Powered Polymer Informatics Platform for Property Predictions
C. Kim, A. Chandrasekaran, T. D. Huan, D. Das, R. Ramprasad, *Polymer Genome: A Data-Powered Polymer Informatics Platform for Property Predictions*, *J. Phys. Chem. C*, 122, 31, 17575-17585 (2018).

A polymer dataset for accelerated property prediction and design
T. D. Huan, A. Mannodi-Kanakkithodi, C. Kim, V. Sharma, G. Pilania, R. Ramprasad, *Sci. Data*, 3, 160012 (2016).

Rational Co-Design of Polymer Dielectrics for Energy Storage
A. Mannodi-Kanakkithodi, G. M. Treich, T. D. Huan, R. Ma, M. Tefferi, Y. Cao, G. A. Sotzing, R. Ramprasad, *Adv. Mater.*, 28, 6277 (2016).

Accelerated materials property predictions and design using motif-based fingerprints
T. D. Huan, A. Mannodi-Kanakkithodi, R. Ramprasad, *Phys. Rev. B*, 92, 014106 (2015).

Machine learning strategy for accelerated design of polymer dielectrics
A. Mannodi-Kanakkithodi, G. Pilania, T. D. Huan, T. Lookman, R. Ramprasad, *Sci. Rep.*, 6, 20952 (2016).

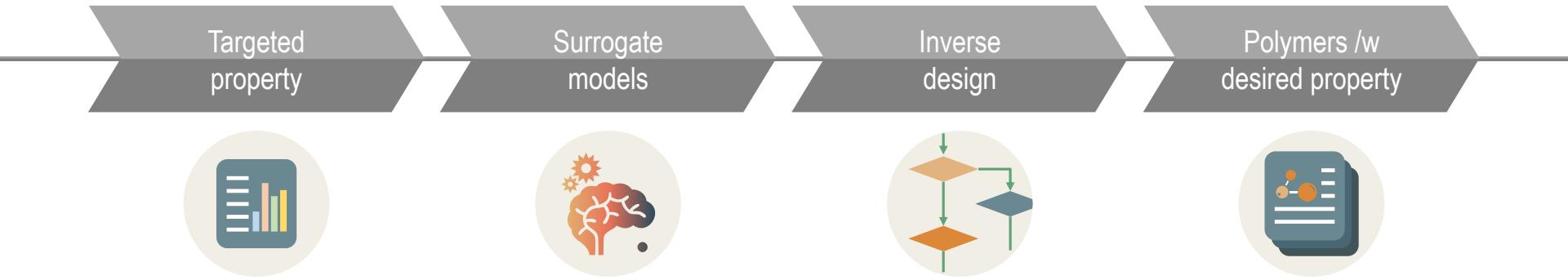
Scoping the polymer genome: a roadmap for rational polymer dielectrics design and beyond
A. Mannodi-Kanakkithodi, A. Chandrasekaran, C. Kim, T. D. Huan, G. Pilania, V. Botu, R. Ramprasad, *Materials Today*, in press (2017).

Powered by PyPG [Rampasad Research Group](#) [Khazana Knowledgebase](#) [✉](#)

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers

CHALLENGES AND NEXT STEPS

- Experimental data capture, and data uncertainty
 - Other applications / properties
 - Handling morphological complexity
- “Inverse” design (properties to polymers)



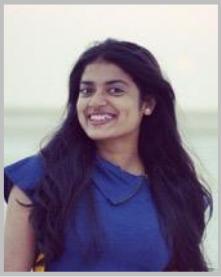
ACKNOWLEDGEMENT

Dr. Arun
Mannodi
Kanakkithodi
(@ Argonne)

Dr. Chihio
Kim

Dr. Anand
Chandrasekaran

Dr. Tran
Doan Huan



Dr. Deya
Das
(@ Mahindra)

Anurag
Jha

Shruti
Venkatram

Dr. Lihua
Chen

Dr. Rohit
Batra

Dr. Abhirup
Patra

Deepak
Kamal

Pranav
Shetty

MATHEMATICAL FRONTIERS

Machine Learning for Materials Science

Elizabeth Holm,
Carnegie Mellon University

Rampi Ramprasad,
Georgia Institute of Technology

Mark Green,
UCLA (moderator)

MATHEMATICAL FRONTIERS

2019 Monthly Webinar Series, 2-3pm ET

Feb 12: *Machine Learning for Materials Science*

Mar 12: *Mathematics of Privacy*

Apr 9: *Mathematics of Gravitational Waves*

May 14: *Algebraic Geometry*

June 11: *Mathematics of Transportation*

July 9: *Cryptography and Cybersecurity*

Aug 13: *Machine Learning in Medicine*

Sept 10: *Logic and Foundations*

Oct 8: *Mathematics of Quantum Physics*

Nov 12: *Quantum Encryption*

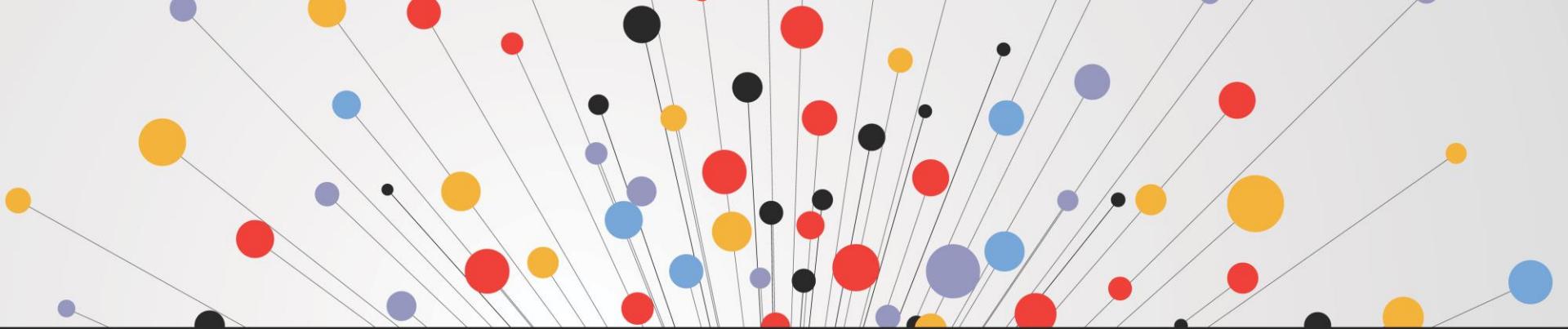
Dec 10: *Machine Learning for Text*

This webinar series is made possible by support for BMSA from the

***National Science Foundation
Division of Mathematical Sciences***

and the

***Department of Energy
Advanced Scientific Computing Research***



#ElevatingMath

VIDEO COMPETITION

*The National
Academies of*

SCIENCES
ENGINEERING
MEDICINE

nas.edu/ElevatingMath

