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Demystifying machine intelligence (AI)

• Machine intelligence is comprised of three 
basic building blocks:

– Data science = statistics of multi-
dimensional data

– Machine learning = optimization via 
feedback loops

– Convolutional neural networks = signal 
processing

• These three elements combine to give

Deep Learninghttps://xkcd.com/1838/
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Opportunities for AI in materials 
science and engineering

• Discovery and design of materials

• Optimization of materials structure and 
properties

• Material selection

• Autonomous experiments and analysis, 
including adaptive experiments

• Managing experimental data streams, 
including forward modeling

• Extracting information from 
microstructural images

• Property prediction

• Failure analysis

• Process and quality control

• …

Microstructure 

Properties

Composition
Processing
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Search for new materials using data 
science and machine learning

• Big data: Discovery of new thermoelectric material

M. W. Gaultois, A. O. Oliynyk, A. Mar, T. D. Sparks, G. J. Mulholland, B. Meredig, APL Mater., 4 053213 (2016)
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What is holding physical scientists back?

• Informal survey of 14 physical scientists / engineers who 
attended a CMU workshop on Machine Learning in Science:

What are the biggest barriers to implementing data science 
in your research?

• Big data (28%)

• Small data (43%)

• Rare events (43%)

• Rich/multimodal data (57%)

• Data representation (71%)

• Interpretability (79%)
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Why interpretability matters: 
The machine doesn’t always learn the right things

• A CNN-based deep learning system was trained to identify 
classes of objects in photographs.

• Masking was used to evaluate critical features that the 
computer associates with an object.

• Some masks made sense:

• Some did not:

Fong, et. al arXiv:1704.03296v1 
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Black box for tedious tasks:
Autonomous microstructural segmentation 

using deep learning 
• Segmenting complex, multi-component microstructures

B. DeCost et al., arXiv:1805.08693

• Accurate (93 ± 3%)

• Objective

• Repeatable

• Indefatigable

• Permanent

• Exactly as 
interpretable as a 
graduate student

Original Image Grad student Pixel-Net
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Black box for repetitive workflow:
Quality control via computer vision

• Autonomous evaluation: identify “out of spec” microstructures

specified
microstructure:

Meet specifications:

Out of spec:

B. L. DeCost, E. A. Holm, Comp. Mater. Sci. 110 126-133 (2015). 
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Where the black box fails: 
Extracting knowledge from information

• Extracting information from 
microstructural images:
– Inconel 718 Charpy impact specimens 

built using additive manufacturing.

– Two build orientations, horizontal and 
vertical.

– Charpy impact energy depends on build 
orientation.
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Can you see the difference in the 
fracture surfaces?
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What is the computer learning?

• Using unsupervised ML with k-
means clustering, the computer can 
identify horizontal and vertical build 
fractures with 88 ± 3 % accuracy.

• What does the computer see that 
we cannot?

• Does the distinguishing visual 
information provide physical 
insight?

• Has the computer learned fracture 
mechanics?

A. Kitahara, E. Holm , IMMI 7[3] 148 (2018)
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Conclusion: Philosophical musings

• When is a black box OK?

– The overall cost of wrong 
answers is low.

– The method is better than 
all alternatives within its 
domain.

• When does the black box fail?

– The goal is not what, but 
why.

"All right," said Deep Thought. "The 

Answer to the Great Question..."

"Yes..!"

"Of Life, the Universe and Everything..." 

said Deep Thought.

"Yes...!"

"Is..." said Deep Thought, and paused.

"Yes...!"

"Is..."

"Yes...!!!...?"

"Forty-two," said Deep Thought, with 

infinite majesty and calm.

―Douglas Adams, The Hitchhiker’s 

Guide to the Galaxy
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POLYMERS ARE UBIQUITOUS

19

High Energy 

Density Capacitors

Different applications have different property requirements

(Optimal materials selection is non-trivial)

Solid-State 

Battery

Electrolytes

Organic / Flexible 

Electronics

Need: high band gap, 

high dielectric 

constant

Need: low Tg, high 

mechanical strength

Need: low band gap, 

low carrier 

recombination



View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers

POLYMER CHEMICAL UNIVERSE
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Staggering! Where do we start?!

And how do we search efficiently?
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BENCHMARK DATASET

Computational data

via high-throughput DFT

Experimental data

from collaborators, 

literature

& data collections

Band gap

Dielectric constant

Glass transition temperature

Atomization energy,

etc.

Data sources

Property space

Chemical space (~900 organic polymers)

+
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MACHINE LEARNING IN MSE

T. Mueller, A. G. Kusne, R. Ramprasad “Machine Learning in Materials Science: Recent Progress and 

Emerging Applications”, Reviews in Computational Chemistry, John Wiley & Sons, Inc., Volume 29, (2016).

R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim, “Machine Learning and Materials 

Informatics: Recent Applications and Prospects”, npj Computational Materials 3,  54  (2017). 
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a Example dataset

b The learning problem
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Fingerprinting Learning

c Fingerprinting, learning and prediction

f(Fi1, Fi2, …, FiN) = Pi

Prediction Model
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POLYMER FINGERPRINTS (GENOME)

“Polymer Genome: A Data-Powered Polymer Informatics Platform for Property Predictions”

C. Kim, A. Chandrasekaran, T. D. Huan, D. Das and R. Ramprasad, J. Phys. Chem. C (2018)

Distance between rings

Length of sidechain

Aromatics in sidechain

…

C3-S2-C3

H1-N3-C4

O1-C3-C4

C6H4, CH2, 

etc., blocks;

Van der Waals 

volume/surface

, etc.

We represent polymers numerically at three length-

scales
Block-levelAtomic-level Chain-level
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LEARNING FROM DATA

“Polymer Genome: A Data-Powered Polymer Informatics Platform for Property Predictions”

C. Kim, A. Chandrasekaran, T. D. Huan, D. Das and R. Ramprasad, J. Phys. Chem. C (2018)
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HIERARCHICAL FINGERPRINTING
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Higher length-scale

+ Block-level
descriptors

Van der Waals volume

Types of blocks

Fraction of rotatable bonds

…

+ Chain-level
descriptors

Distance between rings

Length of sidechain

Length of main chain

…

Atomic-level
descriptors

C3-S2-C3
H1-N3-C4

Atom-triples

…

Train set (R2=0.72)

Test set (R2=0.54)

Test set RMSE=51 K

Train set (R2=0.71)

Test set (R2=0.68)

Test set RMSE=39 K

Train set (R2=0.93)

Test set (R2=0.77)

Test set RMSE=34 K

Impact on glass transition
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FINGERPRINT-DIMENSION REDUCTION
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All the fingerprint without RFE

Glass transition temperature

With recursive feature elimination (RFE)
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PROPERTY PREDICTION MODELS

RMSE = 0.6 MPa1/2 RMSE = 0.05 g/cm3RMSE = 18 K

Glass transition temperature Solubility parameter Density

RMSE = 0.3 eV RMSE = 0.5 RMSE = 0.1 RMSE = 0.01 eV/atom

Band gap Dielectric constant Refractive index Atomization energy
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OUTCOME: INSIGHTS

“Mining materials design rules from data: The example of polymer dielectrics”

A. Mannodi-Kanakkithodi, et al, Chemistry of Materials (2017).

Possible blocks

CH2, CO, CS, O, NH, C6H4, 

C4H2S
n
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OUTCOME: INSIGHTS

“Mining materials design rules from data: The example of polymer dielectrics”

A. Mannodi-Kanakkithodi, et al, Chemistry of Materials (2017).

Can we determine underlying 

factors that govern such 

“entangled” behavior?

Certain blocks in a particular 

sequence provide optimal 

behavior

Possible blocks

CH2, CO, CS, O, NH, C6H4, 

C4H2S
n
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OUTCOME: MATERIAL DISCOVERIES
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Polymer name BOPP
PDTC-HDA

(Polythiourea)

BTDA-HDA

(Polyimide)

BTDA-HK511

(Polyimide)

Repeat unit

Synthesized polymer

Energy density (J/cm3) 5 9 10 16

Example: High energy density capacitors

New materials discovered with performance up to 3.5x 

of BOPP, the current standard material!

(Metallized)

”Scoping the Polymer Genome: A Roadmap for Rational Polymer Dielectrics Design and 

Beyond,” 

A. Mannodi-Kanakkithodi, et al, Materials Today 21, 7, 785-796 (2018)
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OUTCOME: ONLINE APP
https://www.polymergenome.org
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CHALLENGES AND NEXT STEPS

 Experimental data capture, and data uncertainty

 Other applications / properties

 Handling morphological complexity

 “Inverse” design (properties to polymers)

33

Targeted

property

Surrogate

models

Inverse

design

Polymers /w

desired property
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