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Demystifying machine intelligence (Al)

 Machine intelligence is comprised of three

THIS 15 YOUR MACHINE LEARNING SYSTEM? basic building blocks:
YUP! YU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN (OLLECT
THE. ANSLIERS ON THE. OTHER SIDE. — Data science = statistics of multi-
? . .
WHATT IF THE ANSLEERS ARE. LIRDNG ) dimensional data
JUST STIR THE PILE UNTIL , , . :
THEY START LOOKING RIGHT — Machine learning = optimization via

feedback loops

— Convolutional neural networks = signal
processing

A

f[ ENN. A\ . .
17 ‘[ L ’“‘*V% * These three elements combine to give

AT T i —

https://xkcd.com/1838/ Deep leﬂ fn i N 9
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Opportunities for Al in materials

science and engineering

* Discovery and design of materials iuf _

Material selection

* Autonomous experiments and analysis,
including adaptive experiments

Microstructure

* Managing experimental data streams,
including forward modeling

e Extracting information from
microstructural images

* Property prediction Processing @<«———1 @ Composition

* Failure analysis !

Process and quality control Properties

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




Search for new materials using data

science and machine learning

* Big data: Discovery of new thermoelectric material
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M. W. Gaultois, A. O. Oliynyk, A. Mar, T. D. Sparks, G. J. Mulholland, B. Meredig, APL Mater., 4 053213 (2016)
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What is holding physical scientists back?

* Informal survey of 14 physical scientists / engineers who
attended a CMU workshop on Machine Learning in Science:

What are the biggest barriers to implementing data science
in your research?

 Big data (28%)

e Small data (43%)

e Rare events (43%)

* Rich/multimodal data (57%)
* Data representation (71%)

* Interpretability (79%)
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Why interpretability matters:

The machine doesn’t always learn the right things

* A CNN-based deep learning system was trained to identify
classes of objects in photographs.

* Masking was used to evaluate critical features that the
computer associates with an object.

* Some masks made sense: 'Bahnhof-Sir

street sign

e Some did not:

chocolate sauce

Fong, et. al arXiv:1704.03296v1
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Black box for tedious tasks:

Autonomous microstructural segmentation

* Segmenting complex, multi-component microstructures

/

e Accurate (93 + 3%)
* Objective

* Repeatable

* Indefatigable

* Permanent

e Exactly as
interpretable as a
graduate student

Original Image Grad student Pixel-Net

B. DeCost et al., arXiv:1805.08693
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Black box for repetitive workflow:

Quality control via computer vision

 Autonomous evaluation: identify “out of spec” microstructures

Meet specifications:

specified

microstructure:
e RN ST St
: %é"f R

Out of spec:
_ I B \3‘1.. 2

B. L. DeCost, E. A. Holm, Comp. Mater. Sci. 110 126-133 (2015).
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Where the black box fails:

Extracting knowledge from information

* Extracting information from

. . , ~ Vertical
microstructural images: Build 4
: ) direction
— Inconel 718 Charpy impact specimens
built using additive manufacturing. Notch Horizontal
— Two build orientations, horizontal and I I
vertical.
— Charpy impact energy depends on build
orientation Charpy Impact Testing
' - 5 test average
. 18.75
>
i 20 125
f L
6.25
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Can you see the difference in the
fracture surfaces?
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Can you see the difference in the
fracture surfaces?
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What is the computer learning?

Cluster Identification of In-718 Fracture Surfaces

Using unsupervised ML with k-

: . B %
means clustering, the computer can g . .mg.
. . . . . L ~.c-o: ® ®
identify horizontal and vertical build Cet e iRt
. e ° 8 8 o
fractures with 88 £ 3 % accuracy. W e -"'.3 coer !
.0..“0...:.. :
What does the computer see that . % .o 0 0ol 500
° o  of ° @ 00000 ©
we cannot? TR R A SO
o a0 . . . e 00%‘ S o o W : 8 - 8 e
Does the distinguishing visual R S L
° ° ° ° ° %00 @ 000 e 083 983833383
information provide physical o 0% Sogs Pwe oo o og
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Has the computer learned fracture Y

mechanics? G—/”‘)

A. Kitahara, E. Holm , IMMI 7[3] 148 (2018)
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Conclusion: Philosophical musings

When is a black box OK?

— The overall cost of wrong
answers is low.

— The method is better than
all alternatives within its
domain.

When does the black box fail?

— The goal is not what, but
why.

"All right,” said Deep Thought. "The
Answer to the Great Question..."
"Yes..!"

"Of Life, the Universe and Everything..."
said Deep Thought.

"Yes...!I"

"Is..." said Deep Thought, and paused.
"Yes...!"

"Is..."

"Yes... 17"

"Forty-two," said Deep Thought, with
infinite majesty and calm.

—Douglas Adams, The Hitchhiker’s
Guide to the Galaxy
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POLYMERS ARE UBIQUITOUS

High Energy Sc;':t_ti;te Organic / Flexible
Density Capacitors Electrolytes Electronics

mer Electrolyte
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Need: high band gap, Need: low T,, high Need: low band gap,

high dielectric mechanical strength low carrier
constant recombination

Different applications have different property requirements
(Optimal materials selection is non-trivial)
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POLYMER CHEMICAL UNIVERSE
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POLYMER CHEMICAL UNIVERSE
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BENCHMARK DATASET

Data sources Chemical space (~900 organic polymers)

: & £ 3 E
~Computational data e <l LY L I )
via high-throughput DFT s

A

Poly( | 4-phenylenesulfide) I

(Vs

Poly(vinyl chloride)

Experimental data

from collaborators, (
literature L

& data collections ‘

<

T <
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Atomization energy,
etc.
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MACHINE LEARNING IN MSE

a Example dataset ¢ Fingerprinting, learning and prediction
Material Property Value Material Fingerprint Property Value
Material 1 P, Material 1 — Fi1, F12, ... Fau - P
Material 2 P, Material 2 — Fot, Foo, oo Fom — P,
Material N Py Material N T Fut, Fag, o Fam T Py

Fingerprinting Learning

b The learning problem l

Material Property Value Prediction Model

Material X ?

T. Mueller, A. G. Kusne, R. Ramprasad “Machine Learning in Materials Science: Recent Progress and
Emerging Applications”, Reviews in Computational Chemistry, John Wiley & Sons, Inc., Volume 29, (2016).

R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim, “Machine Learning and Materials
Informatics: Recent Applications and Prospects”, npj Computational Materials 3, 54 (2017).
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POLYMER FINGERPRINTS (GENOME)

We represent polymers numerically at three length-

scales
Atomic-level Block-level Chain-level
Distance between rings
C.-S.-C Length of sidechain
~ 3/32\ i C6H4 CH2 Aromatics in sidechain
[ I Hy-Ny-C, etc., blocks;

Van der Waals
volume/surface
, etc.

|
O1'((;\’3'(34 /N\%/

I
/C\l/
|

“Polymer Genome: A Data-Powered Polymer Informatics Platform for Property Predictions”
C. Kim, A. Chandrasekaran, T. D. Huan, D. Das and R. Ramprasad, J. Phys. Chem. C (2018)
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LEARNING FROM DATA

Data — perfectly known

. . 10
Gaussian process regression (GPR) ® Observations
~ True function
GPR predictions N
8 [ Uncertainty (o interval) AR
L e \ \,
oo\ N \
d(l])—‘F—F‘ X - \
T
P= aw exp =4’ > ¢
Fingerprint space
2L .
0 2 4 6 8 10

“Polymer Genome: A Data-Powered Polymer Informatics Platform for Property Predictions”
C. Kim, A. Chandrasekaran, T. D. Huan, D. Das and R. Ramprasad, J. Phys. Chem. C (2018)
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HIERARCHICAL FINGERPRINTING

Impact on glass transition

Atomic-level
descriptors

+ Block-level
descriptors

+ Chain-level
descriptors

Atom-triples

C;-S,-C, H1H'N3'C4

NN il |
[

T
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K
P w
o o
(=] (=]

w
o
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ML predicted Tg (K)

" Test set RMSE=51 K

200 300 400 500 600
Experimental Tg (K)

Van der Waals volume
Types of blocks
Fraction of rotatable bonds

600/ » Train set (R?=0.71)
* Test set (R?=0.68)

K
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(=]
(=]
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o
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" 'Test set RMSE=39 K
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goo| * Train set (R?=0.93

W
o
o

ML predicted Tg (K)

Higher length-scale
>

Distance between rings
Length of sidechain
Length of main chain

®* Test set (R>=0.77)

/
L,
4 L]
e,
’
#

Test set RMSE=34 K

200 300 400 500 600
Experimental Tg (K)
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FINGERPRINT-DIMENSION REDUCTION

Glass transition temperature

All the fmgerprlnt Wlthout RFE

ith recursive feature elimination (RFE

600 @ Traln set (R2 0. 93) 600/ @ Traln set (R2 0. 92)
M Test set (R?=0.77) T M Test set (R?=0.90) g .3
144 » ,
— —
X 500 X 500
8 ° ,0.‘; 8 Pt
D 400 * D 400 %
o o
o o
Q300 Q. 300}
— —
= = _
200f * P 200 oo PBRY S
" Test set RMSE = 34 K Test set RMSE =24 K

200 300 400 500 600

Experimental (K)

200 300 400 500 600

Experimental (K)
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PROPERTY PREDICTION MODELS

Band gap Dielectric constant Refractive index Atomization energy
"_.’ "‘,’ 30 ".»' &
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OUTCOME: INSIGHTS

% /'\ . % Possible blocks
n CH,, CO, CS, O, NH, CgH,,

C,H,S
12 : : .
~ 8-Block Polymers
A 6-Block Polymers
= 101 A 4-Block Polymers I
< . * Polymers for DFT Validation
k7 u
S
O 8 4
O
3
@ 6
(]
<
k=gt
2

“Mining materials design rules from data: The example of polymer dielectrics”
A. Mannodi-Kanakkithodi, et al, Chemistry of Materials (2017).
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OUTCOME: INSIGHTS

% /'\ . % Possible blocks
n CH,, CO, CS, O, NH, CgH,,

C,H,S
22—
~ 8-Block Polymers
|1 TR Foimer | |
10 | Polymers for DT Validation Can we determine underlying
2 | & factors that govern such
o I & ' “entangled” behavior?
3
@ 6f : : :
= Certain blocks in a particular
2 4f seguence provide optimal
behavior
2

Bandgap (eV)

]

“Mining materials design rules from data: The example of polymer dielectrics’
A. Mannodi-Kanakkithodi, et al, Chemistry of Materials (2017).
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OUTCOME: MATERIAL DISCOVERIES

Example: High energy density capacitors
New materials discovered with performance up to 3.5x
of BOPP, the current standard material!

PDTC-HDA BTDA-HDA BTDA-HK511
(Polythiourea) (Polyimide) (Polyimide)

Polymer name

Repeat unit
Synthesized polymer /
(Metallize:
Energy density (J/cm3) 5 o . .

"Scoping the Polymer Genome: A Roadmap for Rational Polymer Dielectrics Design and
Beyond,”

ol aVaV. Wall

. " o' .- - .7 1 1 1 B \v) o |
View webinar videos and learn more about atwww.nas.e u))l\)latﬁlc-)/ontlers 31




OUTCOME: ONLINE APP

https://www.polymergenome.org

Powered by Machi

Home Guide Dataset Summary ML Performance ! Sign out

Polymer Genome provides accurate property estimates with uncertainties
using machine learning models trained on a benchmark dataset.

L ‘ Predict Properties Predict Solvent

Back to top

Useful Resources
Polymer Genome: A Data-Powered Polymer Informatics Platform for Property Predictions
A polymer dataset for accelerated property prediction and design
Rational Co-Design of Polymer Dielectrics for Energy Storage
Accelerated materials property predictions and design using motif-based fingerprints
Machine learning strategy for accelerated design of polymer dielectrics

Scoping the polymer genome: a roadmap for rational polymer dielectrics design and beyond

Powered by PyPG  Ramprasad Research Group  Khazana Knowledgebase ||
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CHALLENGES AND NEXT STEPS

» Experimental data capture, and data uncertainty
» Other applications / properties
» Handling morphological complexity

» “Inverse” design (properties to polymers)

Targeted Surrogate Inverse Polymers /w
property models design desired property

Sl = i3
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