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The Mathematics of 
Differential Privacy

Kamalika Chaudhuri 
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Sensitive Data

Medical Records

Genetic Data

Search Logs



AOL Violates Privacy



AOL Violates Privacy



Netflix Violates Privacy [NS08]

User%1%
User%2%
User%3%

Movies%

2-8 movie-ratings and dates for Alice reveals:

Whether Alice is in the dataset or not
Alice’s other movie ratings



High-dimensional Data is Unique

Example: UCSD Employee Salary Table

One employee (Kamalika) fits description!

Faculty

Position Gender Department Ethnicity

-

Salary

Female CSE SE Asian



Simply anonymizing data is unsafe!



Disease Association Studies [WLWTZ09]

Cancer Healthy

Correlations Correlations

Correlation (R2 values),  Alice’s DNA reveals:
If Alice is in the Cancer set or Healthy set



Simply anonymizing data is unsafe!

Statistics on small data sets is unsafe!

Privacy

AccuracyData Size

Need:  rigorous definition of privacy



Privacy Definition



The Setting

(sensitive)
Data Sanitizer

Statistics 

Data release

Public

Private
data set

D

Privacy-preserving
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Property of Sanitizer

Aggregate information computable

Individual information protected 
(robust to side-information)

Statistics 

Data release

Data Sanitizer Public 

Private
data set

D

Privacy-preserving
sanitizer

privacy barrier

non-public public

summary
statistic

synthetic
dataset

ML model



Differential Privacy
[Dwork-McSherry-Nissim-Smith 2006]



Differential Privacy [DMNS06]

Participation of a person does not change outcome

Since a person has agency, they can decide 
to participate in a dataset or not

Data  + Algorithm

Data  + Algorithm

Outcome

Outcome



Adversary

Prior Knowledge:
A’s Genetic profile

A smokes
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Adversary

Prior Knowledge:
A’s Genetic profile

A smokes

Cancer

A has
cancer

[ Study violates A’s privacy ]

StudyCase 1:

Smoking causes cancer

A probably 
has cancer

[ Study does not violate privacy]

StudyCase 2:



Differential Privacy [DMNS06]

Participation of a person does not change outcome  

Since a person has agency, they can decide 
to participate in a dataset or not  

Data  + Algorithm

Data  + Algorithm

Outcome

Outcome



How to ensure this?

…through randomness

Data  +A( )

Data  +A( )

Random 
variables

have close 
distributions



How to ensure this?

Data  +A( )

Data  +A( )

Random 
variables

have close 
distributions

Randomness:  Added by randomized algorithm A

Closeness: Probability of every event is close



Differential Privacy [DMNS06]

For all D, D’ that differ in one person’s value,
t

D D’
p[A(D) = t] p[A(D’) = t] 

  

If A =   -differentially private randomized algorithm, then for all t,✏

p(A(D) = t)  e✏p(A(D0) = t)

✏ = privacy parameter



What can we do with 
Differential Privacy?



Statistics

• Counts, means, 
variances

• Contingency tables, 
histograms

• 2020 Census will use 
differential privacy

[MKAGV’08]



Estimation and prediction problems

Statistical estimation: estimate a parameter or 
predictor using private data that has good expected 
performance on future data.

Private
data set

D
DP estimate of

privacy barrier
f(w, ·)

argmin
w

f(w, D) ŵ

risk functional

private estimator

sample size n

(", �)

E[f(ŵ, z)]� E[f(w⇤, z)]



Examples: Estimation and Prediction

Language Models

[MRTZ’18]

HIV Epidemiology

[SMVLC’18]
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What does
differential privacy

offer
G

Katrina Ligett
Hebrew University of Jerusalem
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What does D P protect against

attacker knows all of database except young
East
aa
Stagg

your data is correlated with a

few other people Iink

attacker gains complementary
database FIFI



Ori Heffetz and Katrina Ligett

Privacy and Data Based Research

Journal of Economic Perspectives
2014
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