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Sensitive Data

Medical Records

Genetic Data

Search Logs (0 L)gle



AOL Violates Privacy



AOL Violates Privacy

A Face Is Exposed for AOL Searcher No. 4417749

By MICHAEL BARBARO and TOM ZELLER Jr.

Buried in a list of 20 million Web search queries collected by AOL and
recently released on the Internet is user No. 4417749. The nurmber was

assigned by the company to protect the searcher’s anonymity, but it was

not much of a shield.

No. 4417749 conducted hundreds of
searches over a three-month period on
topics ranging from “numb fingers” to

“60 single men” to “dog that urinates on



Netflix Violates Privacy [NS08]

Movies
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2-8 movie-ratings and dates for Alice reveals:

Whether Alice is in the dataset or not

Alice’s other movie ratings



High-dimensional Data is Unique

Example: UCSD Employee Salary Table

Position || Gender || Department || Ethnicity || Salary

Faculty Female CSE SE Asian -

One employee (Kamalika) fits description!




Simply anonymizing data is unsafe!



Disease Association Studies [WLWTZ09]
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Simply anonymizing data is unsafe!

Statistics on small data sets is unsafe!

Privacy

Data Size Accuracy

Need: rigorous definition of privacy



Privacy Definition



AN
N

The Setting

privacy barrier

I
summary

Private —
data set

!
/ statistic

Privacy-preserving ] I synthetic

sanitizer

D
T

non-public

' dataset
\ ML model

I

I public



Property of Sanitizer
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Differential Privacy
[Dwork-McSherry-Nissim-Smith 2006}



Differential Privacy [DMNSO06]
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Participation of a person does not change outcome

Since a person has agency, they can decide
to participate in a dataset or not



Adversary

Prior Knowledge:
A’s Genetic profile

A smokes




Case |: Study

Adversary

Prior Knowledge:
A’s Genetic profile
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Adversary

Prior Knowledge:
A’s Genetic profile

A smokes

Case |: Study
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Differential Privacy [DMNSO06]
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Data + Algorithm * Outcome
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Data + Algorithm * Outcome
- _J

Participation of a person does not change outcome

Since a person has agency, they can decide
to participate in a dataset or not



How to ensure this?

...through randomness

A( Data +

have close
distributions

Random
variables




How to ensure this?

A( Data +

have close
distributions

Random

variables
A(Data +

Randomness: Added by randomized algorithm A

Closeness: Probability of every event is close



Differential Privacy [DMNSO06]

For all D, D’ that differ in one person’s value,

If A = e-differentially private randomized algorithm, then for all t,

p(A(D) = t) < ep(A(D) = 1)

€ = privacy parameter



VVhat can we do with
Differential Privacy?



Statistics

® Counts, means,
variances

® Contingency tables,
histograms

® 2020 Census will use
differential privacy
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Estimation and prediction problems
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Statistical estimation: estimate a parameter or
predictor using private data that has good expected
performance on future data.



Examples: Estimation and Prediction

S5-gram

Can you please come here ?
1 |

History Word being predicted

Language Models HIV Epidemiology
[MRTZ’18] [SMVLC’18]
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Properties or € - Differential Brivacy
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Properties o €- Differential Privacy
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