

MATHEMATICAL FRONTIERS

*The National
Academies of* | SCIENCES
ENGINEERING
MEDICINE

nas.edu/MathFrontiers

**Board on
Mathematical Sciences & Analytics**

MATHEMATICAL FRONTIERS

2019 Monthly Webinar Series, 2-3pm ET

February 12: *Machine Learning for Materials Science*

March 12: *Mathematics of Privacy*

April 9: *Mathematics of Gravitational Waves*

May 14: *Algebraic Geometry*

June 11: *Mathematics of Transportation*

July 9: *Cryptography & Cybersecurity*

August 13: *Machine Learning in Medicine*

September 10: *Logic and Foundations*

October 8: *Mathematics of Quantum Physics*

November 12: *Quantum Encryption*

December 10: *Machine Learning for Text*

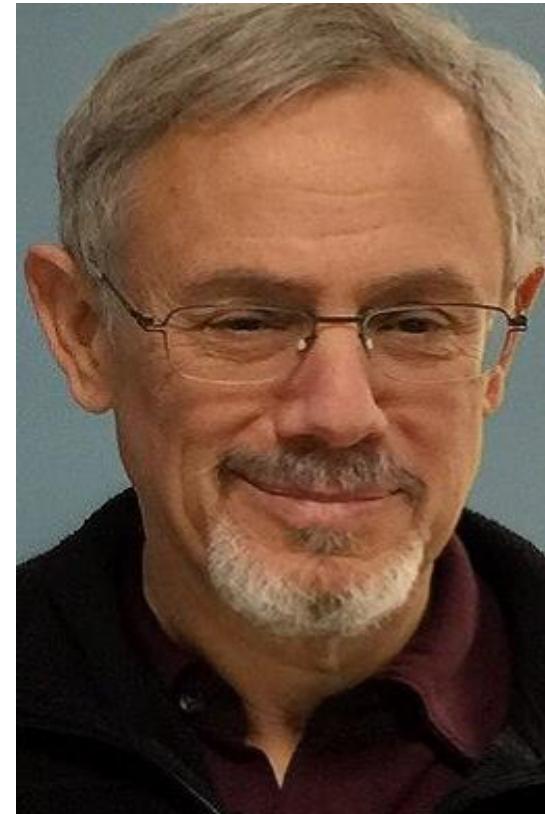
*Made possible by support for BMSA from the
National Science Foundation
Division of Mathematical Sciences
and the
Department of Energy
Advanced Scientific Computing Research*

MATHEMATICAL FRONTIERS

Mathematics of Privacy

**Kamalika Chaudhuri,
UC San Diego**

**Katrina Ligett,
Hebrew University**



**Mark Green,
UCLA (moderator)**

MATHEMATICAL FRONTIERS

Mathematics of Privacy

*Associate Professor of Computer Science
and Engineering*

The Mathematics of Differential Privacy

**Kamalika Chaudhuri,
UC San Diego**

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers

The Mathematics of Differential Privacy

Kamalika Chaudhuri
(UCSD)

UC San Diego

Sensitive Data

Medical Records

Genetic Data

Search Logs

AOL Violates Privacy

AOL Violates Privacy

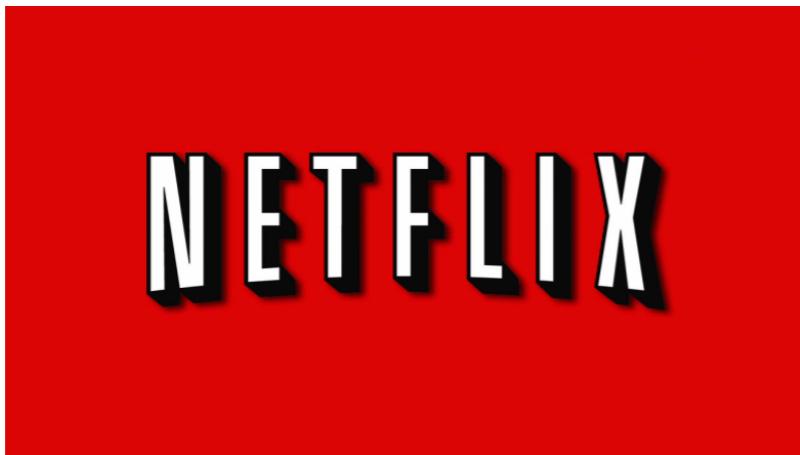
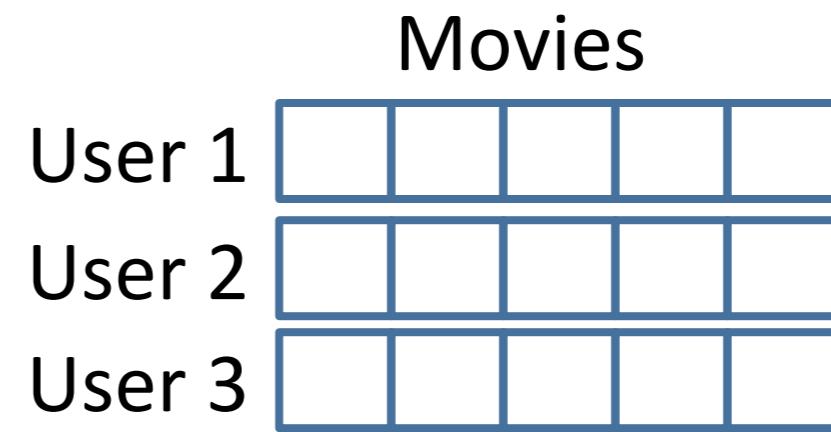
A Face Is Exposed for AOL Searcher No. 4417749

By MICHAEL BARBARO and TOM ZELLER Jr.
Published: August 9, 2006

Buried in a list of 20 million Web search queries collected by AOL and recently released on the Internet is user No. 4417749. The number was assigned by the company to protect the searcher's anonymity, but it was not much of a shield.

No. 4417749 conducted hundreds of searches over a three-month period on topics ranging from "numb fingers" to "60 single men" to "dog that urinates on

Netflix Violates Privacy [NS08]



2-8 movie-ratings and dates for Alice reveals:
Whether Alice is in the dataset or not
Alice's other movie ratings

High-dimensional Data is Unique

Example: UCSD Employee Salary Table

Position	Gender	Department	Ethnicity	Salary
Faculty	Female	CSE	SE Asian	-

One employee (Kamalika) fits description!

Simply anonymizing data is unsafe!

Disease Association Studies [WLWTZ09]

Cancer

1.00
.190 1.00
.216 .251 1.00
.186 .117 .047 1.00
.154 .011 .170 .083 1.00
.190 .140 .102 .095 .139 1.00
.270 .215 .294 .248 .140 .141 1.00
.101 .085 .170 .056 .234 .099 .175 1.00
.239 .071 .163 .111 .161 .093 .199 .157 1.00
.471 .117 .243 .094 .144 .123 .283 .216 .274 1.00
.179 .202 .132 .094 .087 .159 .207 .108 .092 .294 1.00

Healthy

1.00
.141 1.00
.099 .175 1.00
.093 .199 .157 1.00
.123 .283 .216 .274 1.00
.159 .207 .108 .092 .294 1.00
.088 .152 .075 .163 .156 .220 1.00
.046 .161 .092 .072 .157 .143 .147 1.00
.078 .392 .122 .229 .160 .172 .145 .177 1.00
.045 .155 .135 .139 .110 .048 .126 .104 .169 1.00
.178 .135 .102 .258 .314 .165 .147 .158 .131 .074 1.00

Correlations

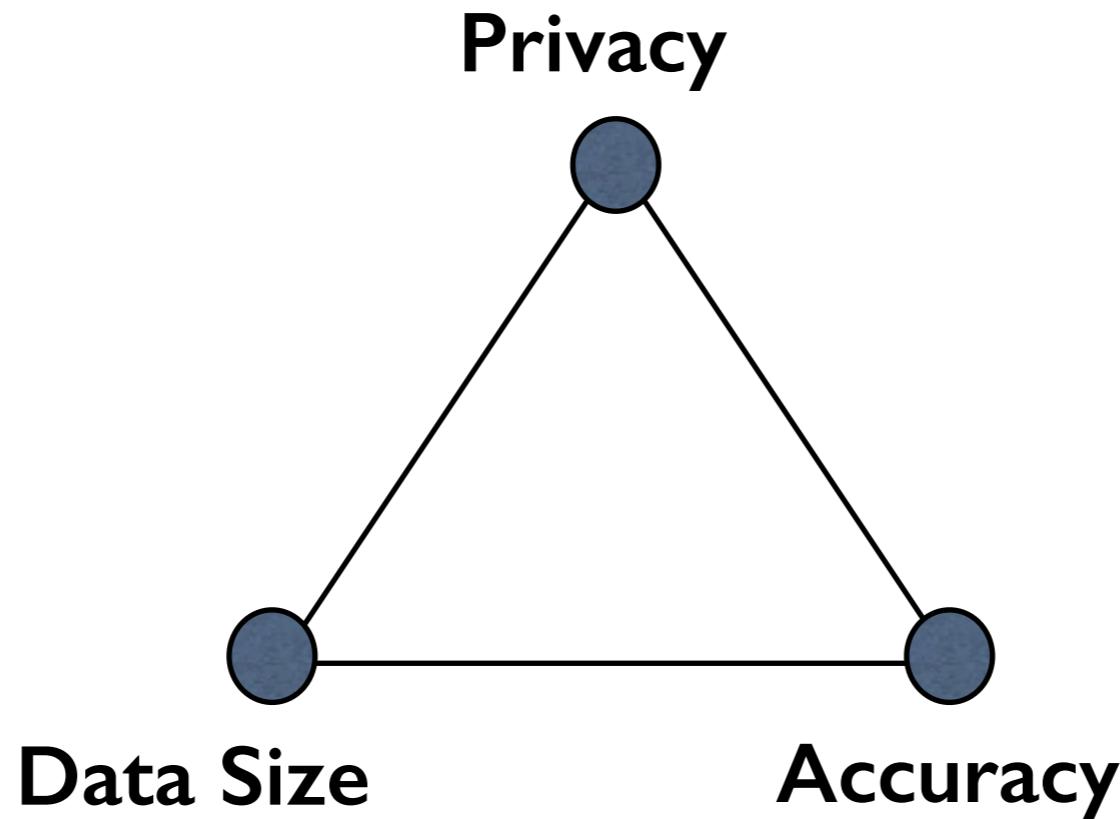
Correlations

Correlation (R^2 values), Alice's DNA reveals:

If Alice is in the **Cancer** set or **Healthy** set

Simply anonymizing data is unsafe!

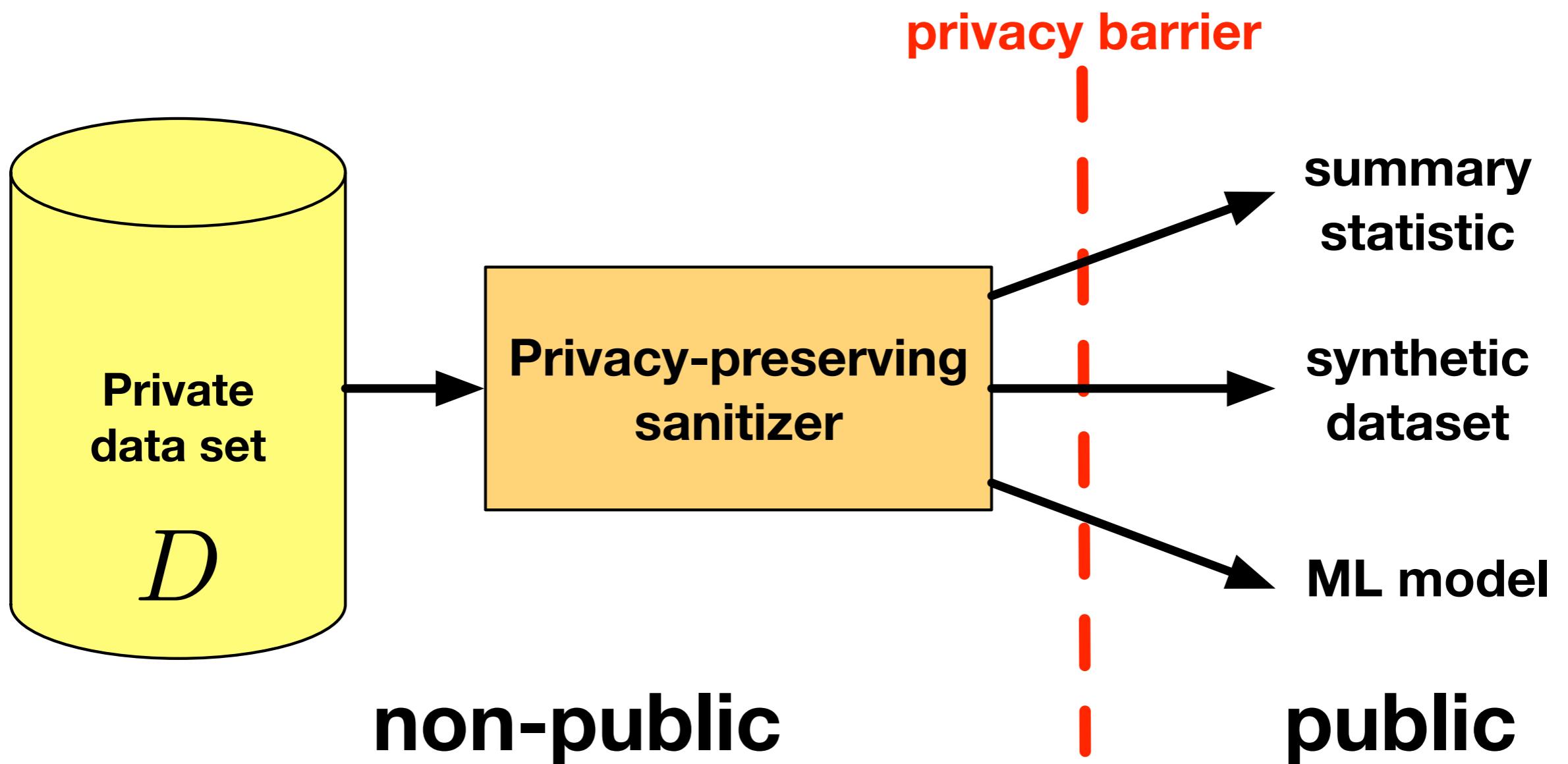
Statistics on small data sets is unsafe!



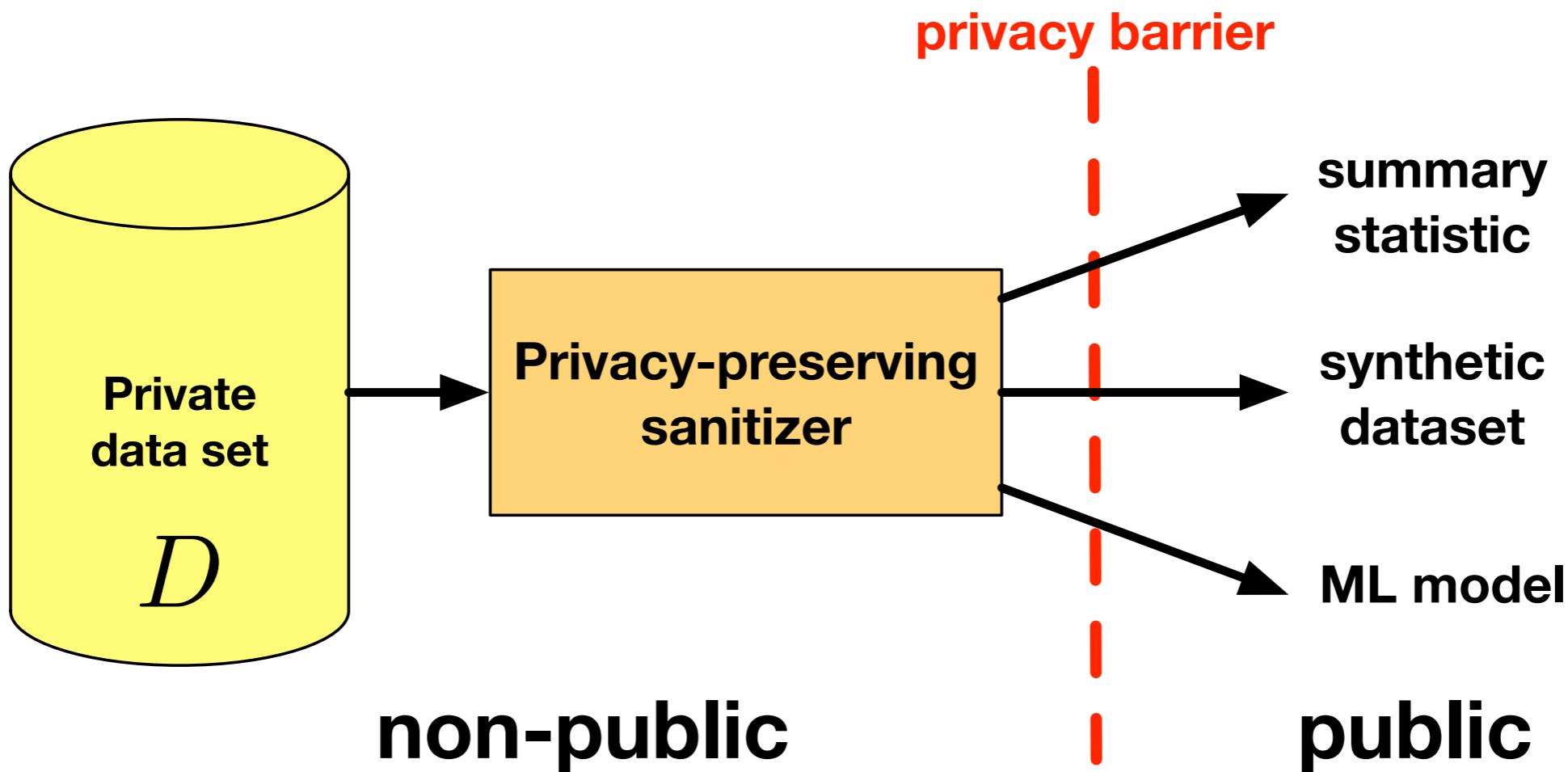
Need: rigorous definition of privacy

Privacy Definition

The Setting



Property of Sanitizer



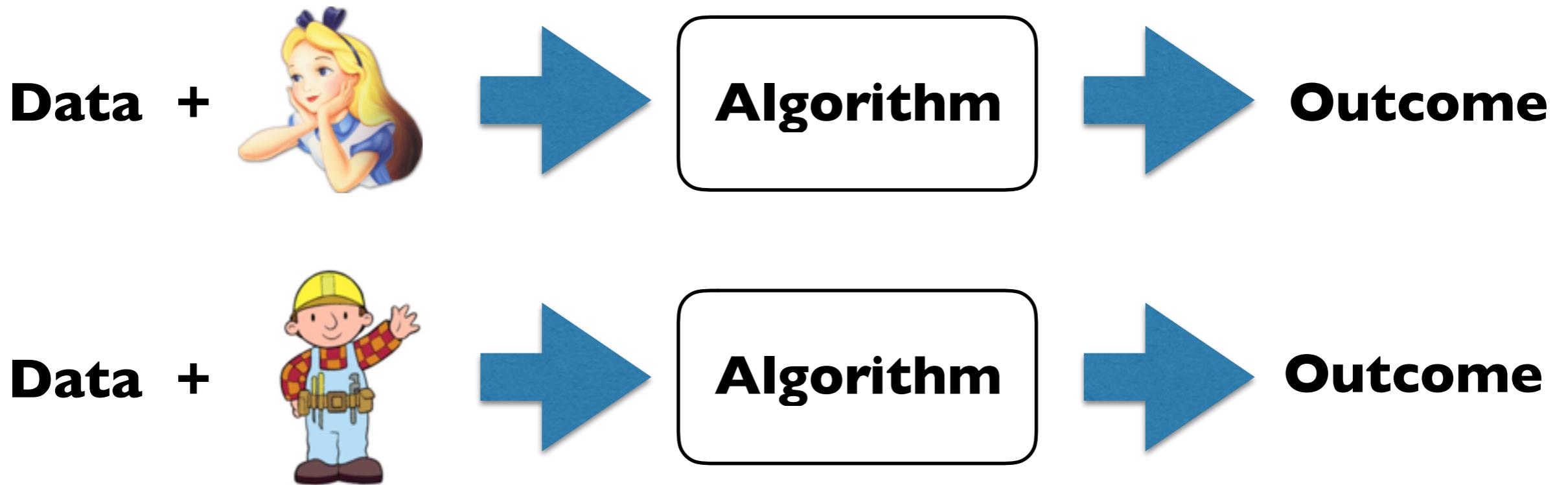
Aggregate information computable

Individual information protected
(robust to side-information)

Differential Privacy

[Dwork-McSherry-Nissim-Smith 2006]

Differential Privacy [DMNS06]



Participation of a person does not change outcome

Since a person has agency, they can decide to participate in a dataset or not

Adversary

Prior Knowledge:

A's Genetic profile

A smokes

Adversary

Prior Knowledge:
A's Genetic profile
A smokes

Case I: Study

1.00										
.190	1.00									
.216	.251	1.00								
.186	.117	.047	1.00							
.154	.011	.170	.083	1.00						
.190	.140	.102	.095	.139	1.00					
.270	.215	.294	.248	.140	.141	1.00				
.101	.085	.170	.056	.234	.099	.175	1.00			
.239	.071	.163	.111	.161	.093	.199	.157	1.00		
.471	.117	.243	.094	.144	.123	.283	.216	.274	1.00	
.179	.202	.132	.094	.087	.159	.207	.108	.092	.294	1.00

Cancer

[Study violates A's privacy]

A has
cancer

Adversary

Prior Knowledge:
A's Genetic profile
A smokes

Case I: Study

1.00										
.190	1.00									
.216	.251	1.00								
.186	.117	.047	1.00							
.154	.011	.170	.083	1.00						
.190	.140	.102	.095	.139	1.00					
.270	.215	.294	.248	.140	.141	1.00				
.101	.085	.170	.056	.234	.099	.175	1.00			
.239	.071	.163	.111	.161	.093	.199	.157	1.00		
.471	.117	.243	.094	.144	.123	.283	.216	.274	1.00	
.179	.202	.132	.094	.087	.159	.207	.108	.092	.294	1.00

Cancer

[Study violates A's privacy]

A has
cancer

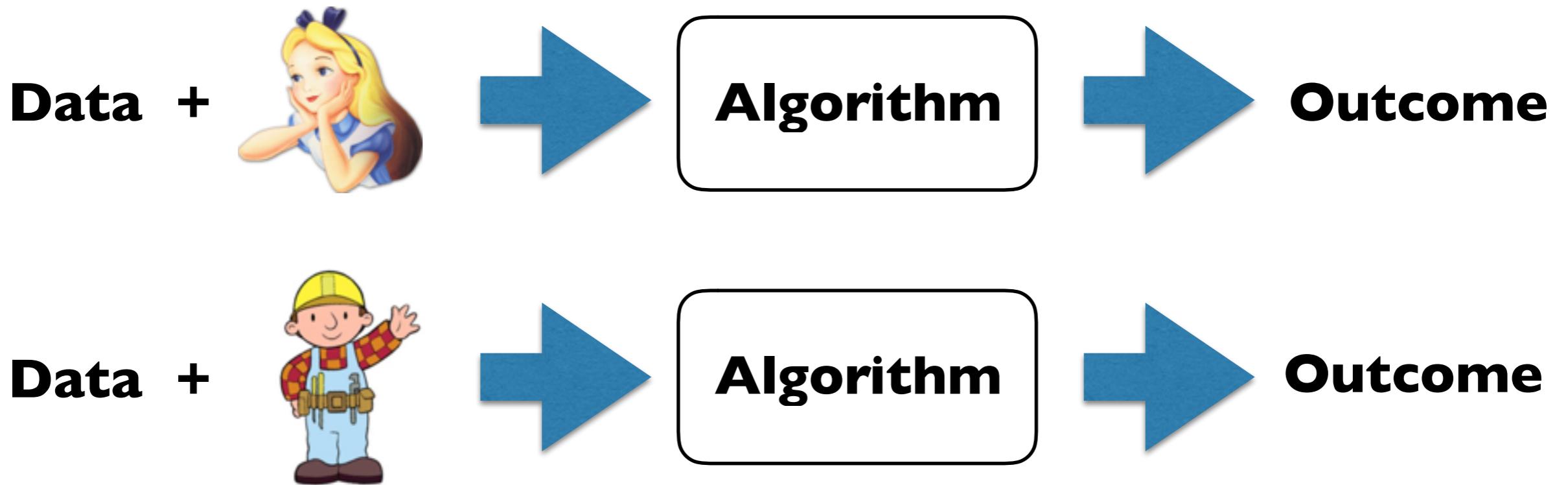
Case 2: Study

Smoking causes cancer

A probably
has cancer

[Study does not violate privacy]

Differential Privacy [DMNS06]



Participation of a person does not change outcome

Since a person has agency, they can decide to participate in a dataset or not

How to ensure this?

...through randomness

$A(\mathbf{Data} + \mathbf{ }$

Random
variables

have close
distributions

$A(\mathbf{Data} + \mathbf{ }$

How to ensure this?

Random variables

$A(\mathbf{Data} +)$

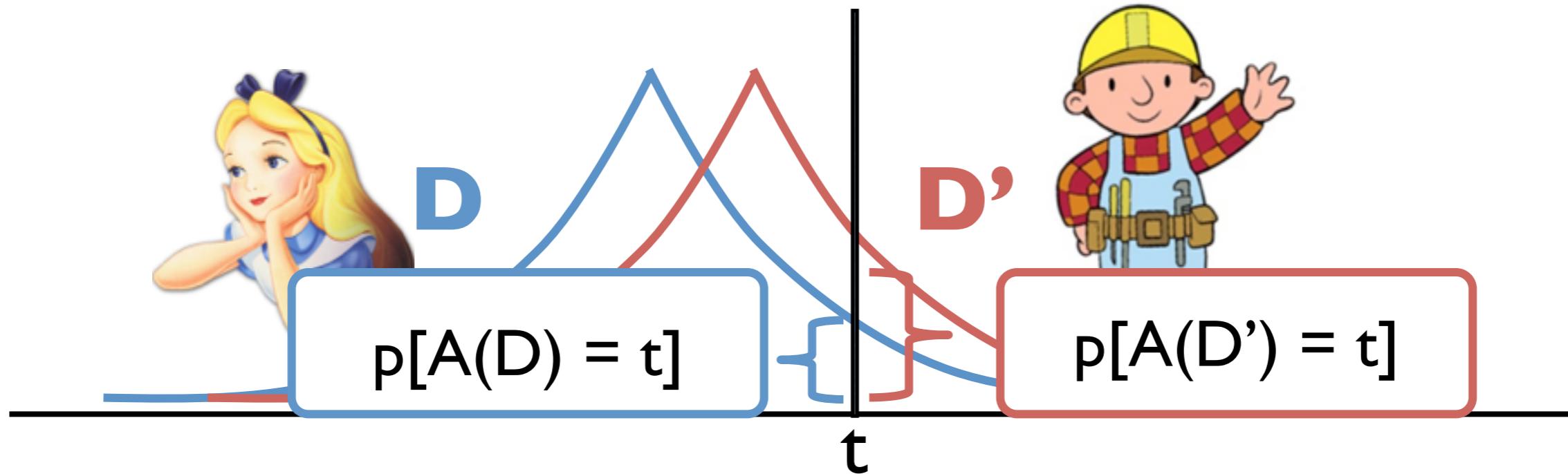
have close distributions

$A(\mathbf{Data} +)$

Randomness: Added by randomized algorithm A

Closeness: Probability of every event is close

Differential Privacy [DMNS06]



For all D, D' that differ in one person's value,

If $A = \epsilon$ -differentially private randomized algorithm, then for all t ,

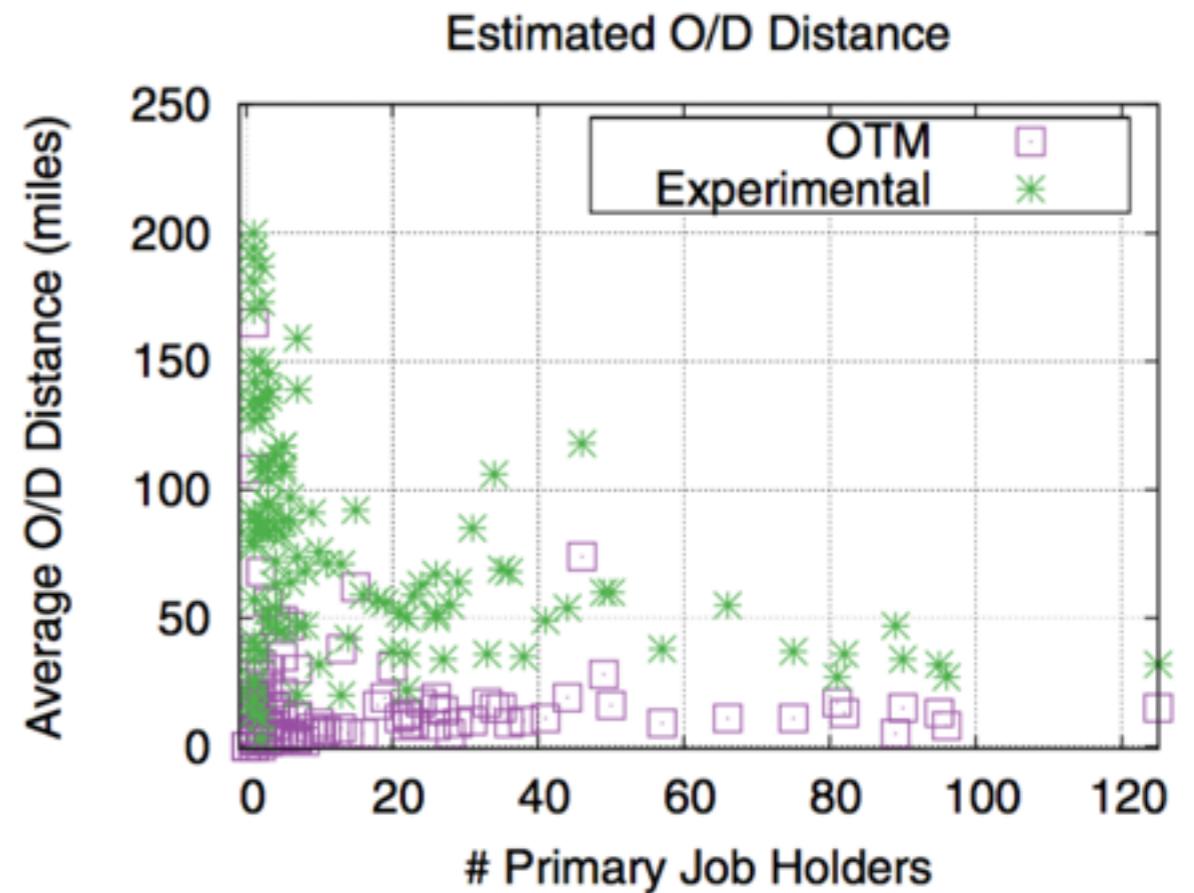
$$p(A(D) = t) \leq e^\epsilon p(A(D') = t)$$

ϵ = privacy parameter

What can we do with
Differential Privacy?

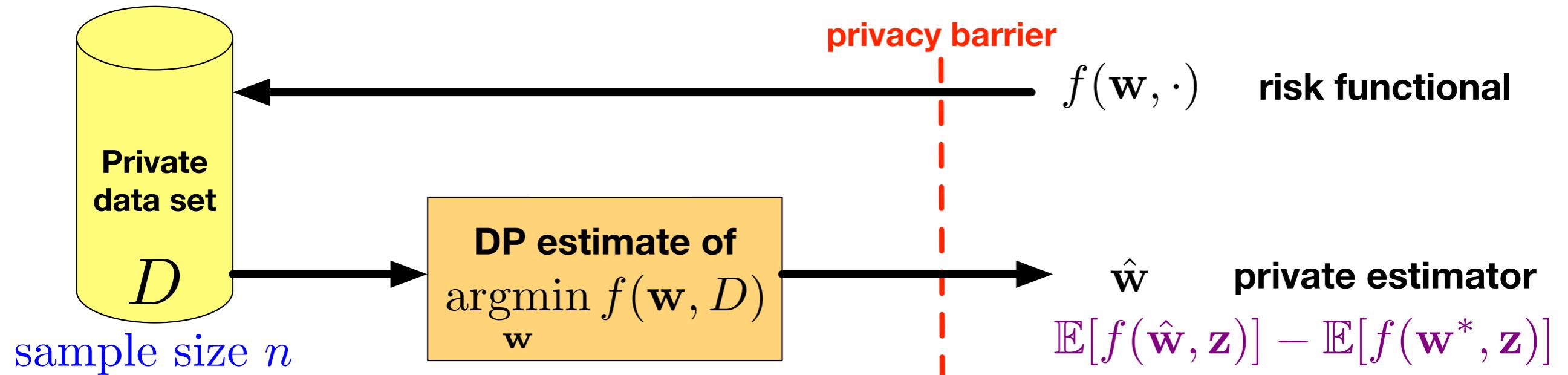
Statistics

- Counts, means, variances
- Contingency tables, histograms
- 2020 Census will use differential privacy



[MKAGV'08]

Estimation and prediction problems



Statistical estimation: estimate a parameter or predictor using private data that has good expected performance on future data.

Examples: Estimation and Prediction

Language Models

[MRTZ'18]

HIV Epidemiology

[SMVLC'18]

References

- [DMNS06] Calibrating Noise to Sensitivity in Private Data Analysis, C. Dwork, F. McSherry, K. Nissim, A. Smith, TCC 2006
- [NS08] Robust Deanonymization of Large Sparse Datasets, A. Narayanan, V. Shmatikov, IEEE-S&P, 2008
- [WLWTZ09] Learning your identity and disease from research papers: Information leaks in GWAS, Wang et al, CCS 2009
- [MKAGV08] Privacy: Theory meets practice on the map, Machanavajjhala et al, ICDE 2008
- [SMVLC18] Differentially Private Continual Release of Graph Statistics, Song et al, Arxiv 2018
- [MRTZ18] Learning Differentially Private Recurrent Language Models, McMahon et al, Arxiv 2018

MATHEMATICAL FRONTIERS

Mathematics of Privacy

Katrina Ligett,
Hebrew University

Associate Professor of Computer Science

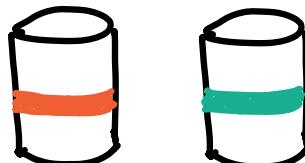
What Does Differential Privacy Offer?

What does
differential privacy
offer?

Katrina Ligett
Hebrew University of Jerusalem

ϵ -Differential Privacy [DMNS 06]

For all



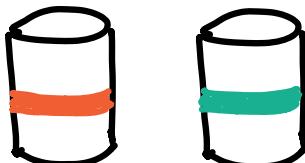
, t :

$$D \sim D'$$

$$\sup_t \left| \log \frac{P(A(D) = t)}{P(A(D') = t)} \right| \leq \epsilon$$

ϵ -Differential Privacy [DMNS 06]

For all



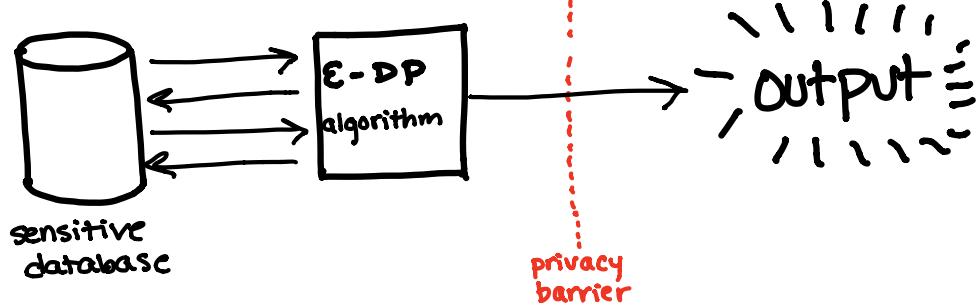
$$D \sim D'$$

, t :

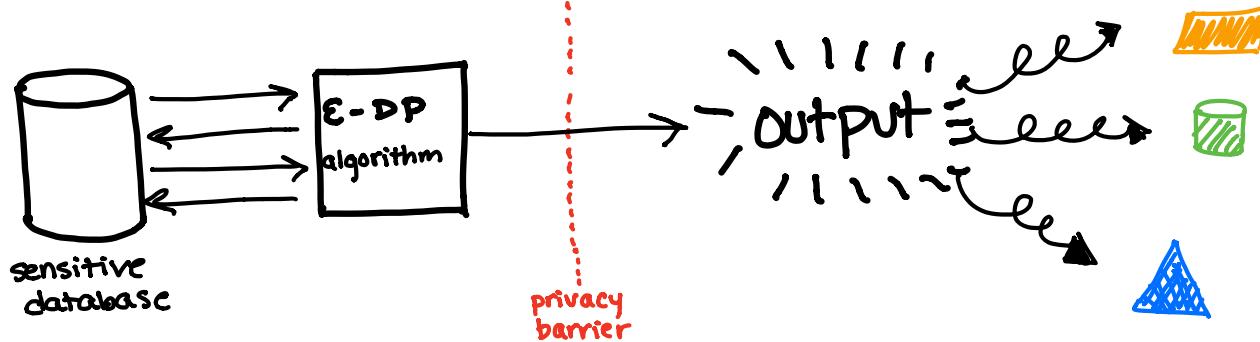
$$\sup_t \left| \log \frac{P(A(D) = t)}{P(A(D') = t)} \right| \leq \epsilon$$

property of mechanism

Properties of ϵ -Differential Privacy

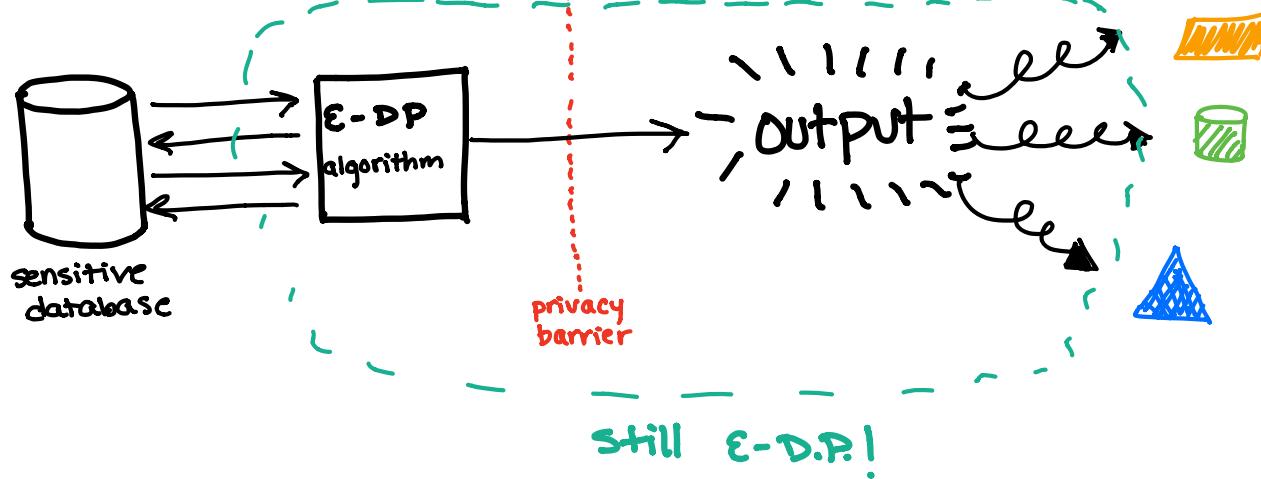


Properties of ϵ -Differential Privacy



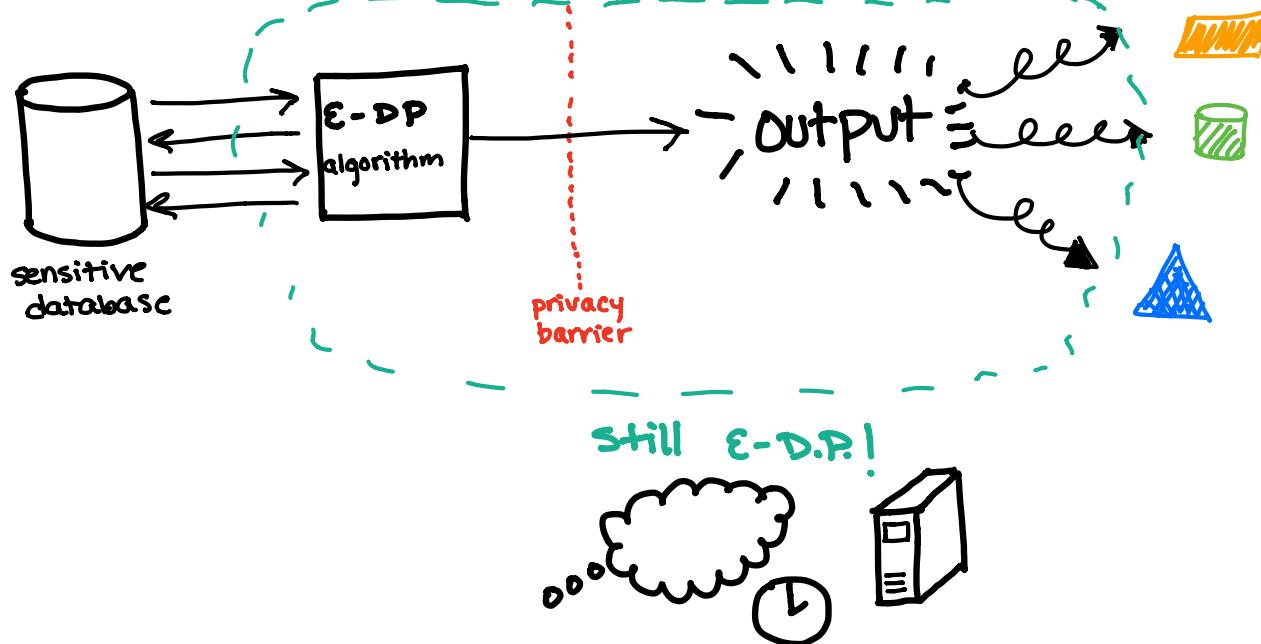
1. post-processing

Properties of ϵ -Differential Privacy



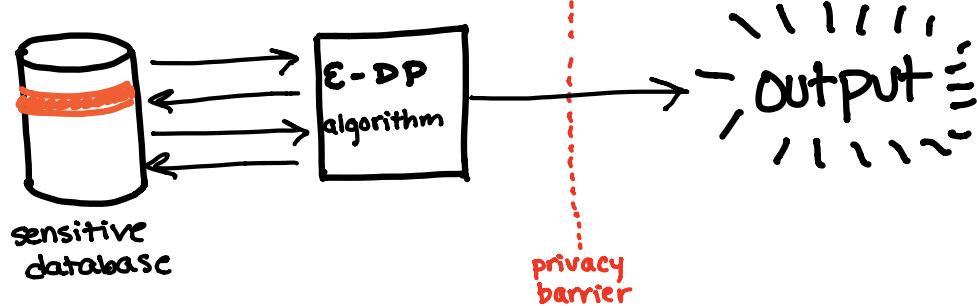
1. post-processing

Properties of ϵ -Differential Privacy



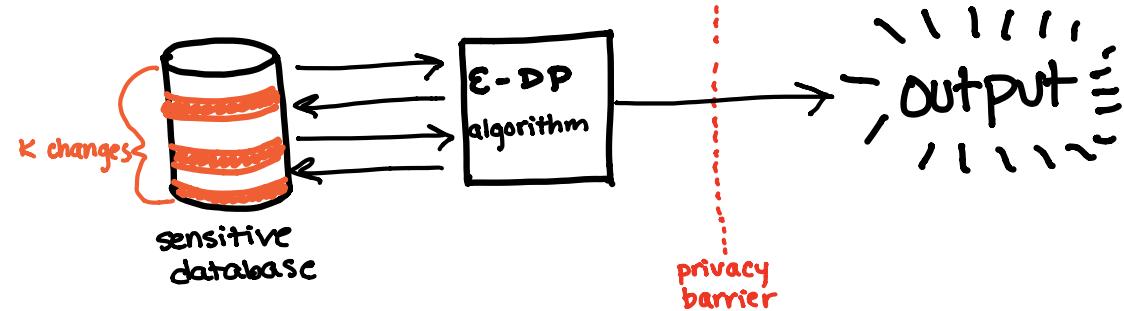
1. post-processing

Properties of ϵ -Differential Privacy



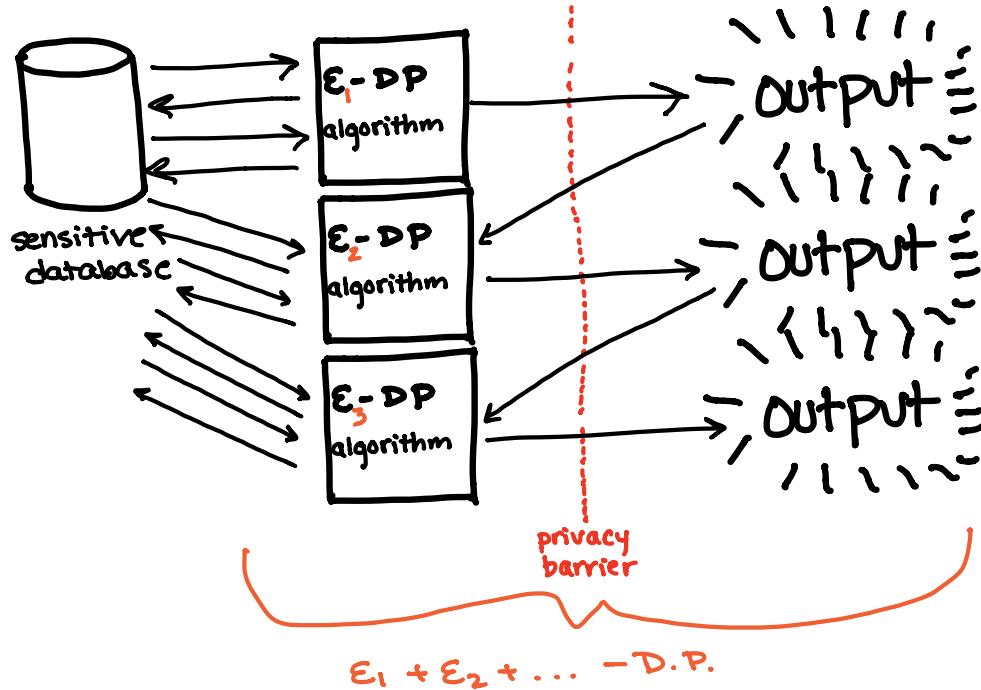
2. group privacy

Properties of ϵ -Differential Privacy



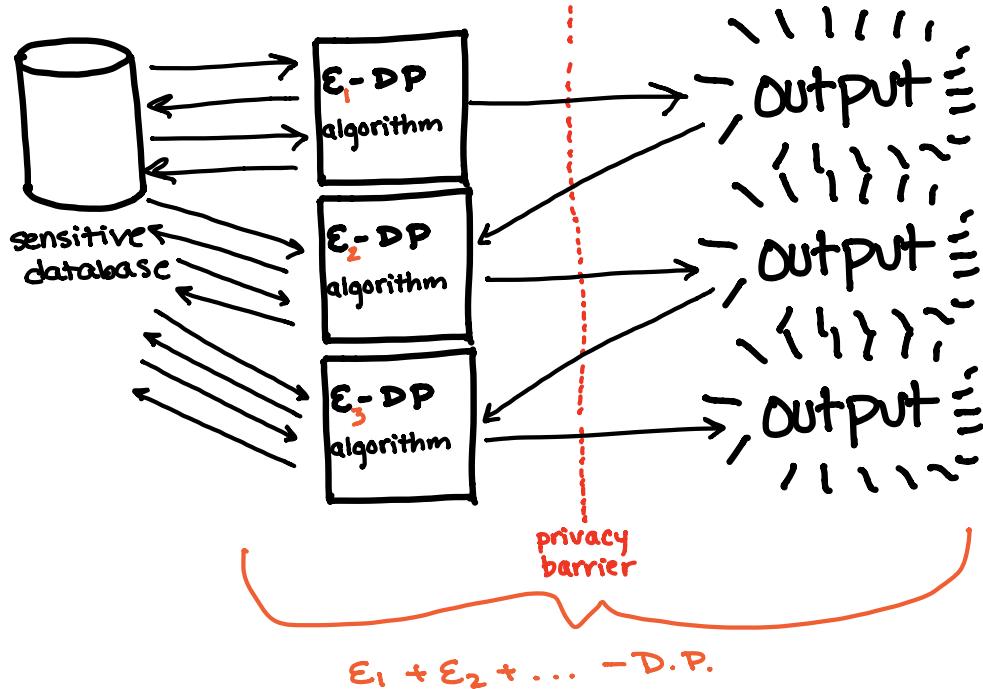
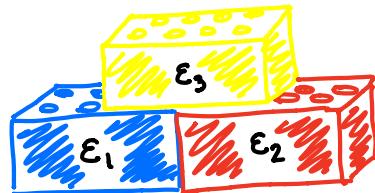
2. $K\epsilon$ - group privacy

Properties of ϵ -Differential Privacy



3. composition

Properties of ϵ -Differential Privacy



3. composition

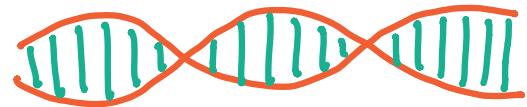
What does D.P. protect against?

- attacker knows all of database except you

What does D.P. protect against?

- attacker knows all of database except you

- your data is correlated with a few other people

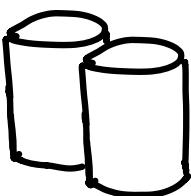


What does D.P. protect against?

- attacker knows all of database except you

- your data is correlated with a few other people

- attacker gains complementary database



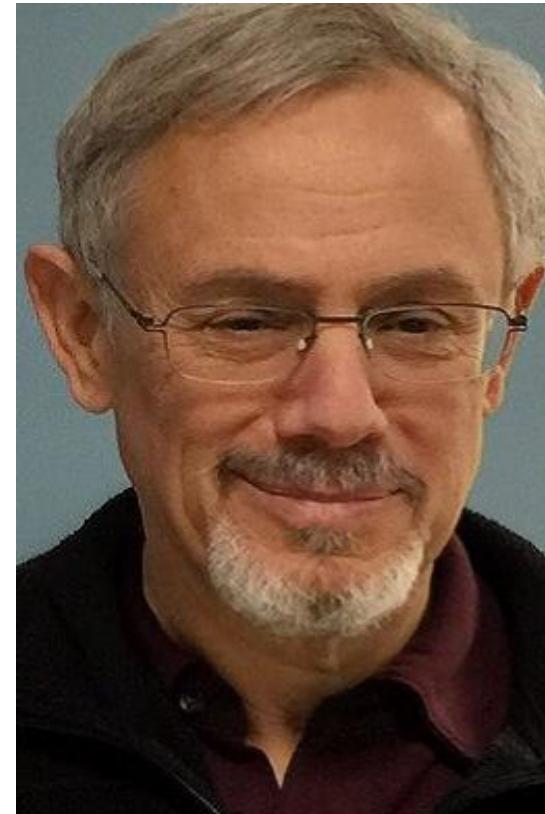
Ori Heffetz and Katrina Ligett
"Privacy and Data-Based Research"
Journal of Economic Perspectives
2014

MATHEMATICAL FRONTIERS

Mathematics of Privacy

**Kamalika Chaudhuri,
UC San Diego**

**Katrina Ligett,
Hebrew University**



**Mark Green,
UCLA (moderator)**

MATHEMATICAL FRONTIERS

2019 Monthly Webinar Series, 2-3pm ET

February 12: *Machine Learning for Materials Science*

March 12: *Mathematics of Privacy*

April 9: *Mathematics of Gravitational Waves*

May 14: *Algebraic Geometry*

June 11: *Mathematics of Transportation*

July 9: *Cryptography & Cybersecurity*

August 13: *Machine Learning in Medicine*

September 10: *Logic and Foundations*

October 8: *Mathematics of Quantum Physics*

November 12: *Quantum Encryption*

December 10: *Machine Learning for Text*

*Made possible by support for BMSA from the
National Science Foundation
Division of Mathematical Sciences
and the
Department of Energy
Advanced Scientific Computing Research*

