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2019 Monthly Webinar Series, 2-3pm ET

February 12: Machine Learning October 8: Mathematics of Quantum
for Materials Science* Physics

March 12: Mathematics of Privacy* November 12: Quantum Encryption

April 9: Mathematics of Gravitational December 10: Machine Learning for Text
Waves*

May 14: Algebraic Geometry* * Webinar posted

. / / *
June 11: Mathematics of Transportation Made possible by support for BMSA from the

National Science Foundation
Division of Mathematical Sciences

July 9: Cryptography & Cybersecurity*

August 13: Machine Learning in and the
Medicine* Department of Energy
eaicine Advanced Scientific Computing Research

September 10: Logic and Foundations*

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers
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Wave theory

* We should not forget that quantum theory is
“just” another wave theory.

 Much of classical wave physics (sound, water,
earthquake,...) applies to quantum waves, but
the classical waves came much earlier
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Quantum Physics in many dimensions

has been a wellspring of mathematics

e guantum entanglement, entropy
 decoherence,

e quantum information theory,

* quantum computing,

e quantum chaos theory and semiclassical theory
* string theory

All these aspects and many more are a wellspring
of new mathematics
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String theory

e String strives to be the ultimate quantum
theory.

* Robbert Dijkgraaf writes: “The number of
[mathematical] disciplines that it [string
theory] touches is dizzying: analysis,
geometry, algebra, topology, representation
theory, combinatorics, probability — the list
goes on and on.”
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Example-Green function

* The Dirac delta function, with antecedents from
the work of Cauchy, Poisson, Kirchhoff, Green,
Helmholtz, Kelvin

* Feynman path integral

e Stationary phase evaluation (Stokes, Kelvin) of
the path integral leads to the (semi)-classical limit
and a window on our reality

* The Feynman path integral is darn close to
Huygen’s principle and Kirchhoff diffraction

theory
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Feynman path integral
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Stationary phase on the Feynman path
integral — the classical paths emerg
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Quantum Chaos

e Suppose the classical path is (deterministically)
chaotic. Does the stationary phase still work?

 This leads to

— Van Vleck-Morette-Gutzwiller semiclassical
propagator

— Selberg trace formula
— Gutzwiller trace formula

— Deep connections between quantum chaos, random
matrices, and distribution of prime numbers
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Quantum Chaos

 Understanding the connections between
classical chaos theory and quantum physics
leads to beautiful and very deep mathematics,
including number theory and the complex
zeros of the Riemann zeta function,

.1 1
C(s) = ST |1 =

n=1 D prime
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Discover and theory of scars

e Scars were discovered graphically, by plotting
eigenfunctions. This was done with a
computer program implementing a new
mathematical approach to finding them.

* Then, the theory of why they appear was
given, using asymptotic semiclassical
arguments for time domain quantum
mechanics and its Fourier transform.
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Many body

* Another realm, many body physics, is truly
intractable; models of the real thing must be
used. They are better than the exact answer
anyway, because we get an intuitive grasp.

* The search for “emergent phenomena” in

many body models is mathematical; pure or
computational.
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More Feynman quotes

e “If all mathematics disappeared today, physics
would be set back exactly one week,”

* To which a mathematician replied
“True — if you mean the week that God
created the Universe!”

e “Shut up and calculate” (attributed to
Feynman, but David Mermin claims it).
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The mathematical challenges

e All but the simplest quantum systems are far too
difficult to understand exactly.

* The super-challenges facing quantum physics
are explaining emergent phenomena, like

superconductivity, an unexpected many body
effect.
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What do Electrons Look Like in Molecules?

Quantum Physics

— from math to electron wave functions
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What do Electrons Look Like in Molecules?

Quantum Physics

— from atoms to molecules
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What do Electrons Look Like in Molecules?

Time-Dependent Quantum Physics

— from quantum physics to spectroscopy
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From Quantum Physics to Spectroscopy
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Electron Dynamics and Spectroscopy
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From Time-Dependent Quantum Theory to Spectroscopy
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Photophysics of Superposition State
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Mixed Quantum-Classical Mechanics
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Photophysics of Chirality

2,3-(S,S)-dimethyloxirane
Resonant excitation at 11.0 eV
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Spin-Physics
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