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It’s an exciting time for high energy density science and plasma
physics!

= Amazing capabilities have been developed over the past decade to perform
fascinating science on the boundary of what is possible.

= Plasma physicists/HED scientist are exploiting these capabilities and delivering
fabulous science. The work is being well received by the broader scientific
community.

= “Discovery Science” allocations play an important role in enabling innovation and
addressing the most fundamental questions facing our field

= We are just scratching the surface of the many scientific grand challenges that can be
addressed by our community

= Pursuit of fusion ignition is a tremendous scientific and engineering challenge, which
drives innovation
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Most of the matter in the universe is far from Standard
Temperature and Pressure!
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New experimental tools and new diagnostics enable us to produce and accurately

characterize the states and processes over this broad range of conditions



We have more reasons than ever to understand matter at
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Stockpile Stewardship Program: Maintain safe, secure, effective
US nuclear deterrent without further underground nuclear
testing

Science Based Stockpile Stewardship

Hngh Energy DenSIty

in nuclear weapon science

1945 1992 2018 2032

Increasing role of S&T as we
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A number of studies of high energy density science
were performed in the “2000’s”
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A number of studies of high energy density science
were performed in the “2000’s”
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At the same time, significant construction and upgrades were
being performed on world class capabilities for creating and
studying high energy density science

" National Ignition
ZR Pulsed Power Facility Facilﬁy

Omega and Omega EP
Laser Facilities

These investments all
came online in the 2007-
2009 timeframe, continuing
US clear world leadership
in this field
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NIF concentrates 192 laser beams (~10 kJ each at 351
few mm3in a few nanoseconds
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Matter

temperature

Radiation

temperature >3.5 x 10° K
Densities >102 g/cm3
Pressures >10M atm
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The challenges of building, maintaining, and improving NIF require
world leading innovation in a number of areas

Systems Engineering (SE)
& Target Physics

User Optics Cryogenic Target
- ' System

Personnel and Environmental
Protection

Diagnostics

] BAT

’Qi_
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HED scientists are exploiting these capabilities to push the

scientific boundaries

LETTER

601:10. 1038/ nature 14048

A higher-than-predicted measurement of iron
opacity at solar interior temperatures

e r : ). E. Bailey', T. Nagayama', G. P. Lossed', G. A. Rochan', C. Blancard®, ). Colgan®, Ph. Cosse®, G. Faussurier”, C. J. Fontes”’,
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PUBLISMID ONLINE 2 MARCH 2015 | DO 30 M0IA/ NGIO2 369

Impact vaporization of planetesimal cores in the
late stages of planet formation

Richard G. Kraus'?*, Seth Root?, Raymond W. Lemke®, Sarah T. Stewart'®, Stein B. Jacobsen'
and Thomas R. Mattsson*
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COMMUNICATIONS

ARTICLE

Mncuresed & My 2014 | Accpied £ lan 015 | Feblshed 4 feb 200 D0H: W T

A laboratory study of asymmetric magnetic
reconnection in strongly driven plasmas

ML Rosenbarg', CK UL W For®, | igumensheher”, B, Sipan’. P Town®, LA Frenje’. { Stoack?,

V. Glebon & RD. Petrassa’
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1.-C., Pain®, A. K. Pradhan’, M. Sherrill” & B. G, Wilson®

LETTERS

PUBLISHED ONLIME 19 JANUARY 2098 | DO »

Observation of magnetic field generation via the
Weibel instability in interpenetrating plasma flows

C. M. Huntington'®, F. Fiuza', J. S. Ross', A, B. Zylstra®, R. P. Drake’, D. H. Froula®, G. Gregori®,
N. L Kugland®, C. C. Kuranz’, M. C. Levy’, C. K. Li%, J. Meinecke®, T. Morita”, R. Petrasso?, C. Plechaty’,
B. A. Remington', D, D, Ryutov', Y. Sakawa’, A. Spitkovsky®, H, Takabe” and H.S. Park'

AVAAAS

ARTICLES

PLEBLISHED OMLINE 23 MARCH 2015 | DOI: 1001038,/ NPHOTON 2 0M5.41

Direct observation of an abrupt insulator-to-metal transition in dense
liquid deuterium

M. D. Knudson et al.

Science 348, 1455 (2015);

DOI: 10.1126/science.aaa7471

nature .
photonics

Ultrabright X-ray laser scattering for dynamic
warm dense matter physics

L B. Fletcherz*, H. ). Lee, T. Déppner?, E. Galtier’, B. Magler', P. Heimann', C. Fortmann®, 5. LePape?,
T. Ma®, M. Millot>*, A. Pak? D. TurnbulP, D. A. Chapman®%, D. O. Gericke®, J. Vorberger’, T. White®,
G. Gregon®, M. Wei®, B. Barbrel?, R. W. Falcone?, C.-C. Kao', H. Nuhn?, J. Welch', U. ZastrauV'?,

P. Neumayer", J. B. Hastings' and S. H. Glenzer™
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The HED Science community is delivering on the promise
that was identified in the 2000’s

HEDBcienceHigh-Impact@rticlesk
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Impact factor > 10, e.g. Nature, Science, etc., does not include PRL’s
Courtesy of Rulon Lindford )
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Just a few years ago, ultra-high pressure phase diagrams
for materials were very simple

Melt curves typically followed a Lindeman law Physics
and high pressure structures were simple
900 Gets
Simple!
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As we study this regime in more detail, complexity
emerges

Core electrons have a profound effect on structure and
melt at high pressure
900 |
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Neaton and Ashcroft, Marqués, Hanfland et al, Syassen, K, Gregoryanz, E., J. Raty et al)
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NIF’s allocates a small fraction of its time to “Discovery Science”. Most
recent call for proposals was ~5x oversubscribed.
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instabilities

T’ A

Iron melt curve,
magnetospheres,
and habitable
Super Earths

Metastability
of dynamically

compressed C

30 Vo
3y

LT

e ’ﬁx L,

= - lll'l’o

‘ o 23
s

o Time(ns)

sk
&

g e | .

Wark (Oxford)  Hemley (CIW), Stewart (UCD) Neumayer(GSl), Falcone(UCB) Casner(CEA), Shvarts(Israel), Drake(Mich)

o« Scattered intensity

Proton radiograph

00 600 90§
0 Photon energy (eV)

0 100 0 300 400
Raé?us (um)

Charged particle Stellar and Big Bang Turbulent dynamo Collisionless
stopping powers nucleosynthesis B field amplification astrophysical shocks

1 vPxvp _:(”‘3] Nonrelativistic shgcks (e.g. SNRs)

Relativistic shocks (e.g. GRBs)

Ve i S
. :
5 o - >

Zylstra (LANL), C.K.Li (MIT) Gatu-Johnson (MIT) Gregori (Oxford), Lamb (Chicago) Sakawa(Osaka), Spitkovsky(Princeton)
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The Discovery Science program is generating high impact

scientific results

Selected 2018 Publications

Science

AV aaas
Insulator-metal transition in dense
fluid deuterium

Peter M. Cellbers'", Marius Millot", Stephanie Brigoo”, B Stewan MoWilllams",

Dagme E, Fratanduons’, J, Ryan Rype™*. Alexander F, Goncharm®, Panl Lesbeyre”,

Jon 1. Eggert', 1. Loug Peterson”, Nathan I Meezan', Schastion Le Pape',
Cedlhert W, Codiing™ !, Raymomd Jeanboa™, Russell 1. 1lembey

Ehe New ork Eimes

Science

Settling Arguments About Hydrogen With 168 Giant Lasers

nature
astronomy

Hard as\nails ~ : o
Equation of state of iron under core
conditions of large rocky exoplanets

F. Smith ™ Dayne E. Fratanduono, David G. Sraun, T

All, Amalia Femandez Pafeila, Richard G. Kraus, Damian C. Swift, Gibert W

ns & Jon M, Egpert

Notere Astromomy 2, 452 -458 [2018) ed: 02 November 2007

dot:10.10368/541550-018-0437-9 3: O5 March 2018

Nature Communications

3

Forward
shock

\ RT unstable
\ interiace

| Reverse
shock

Vo X csm
(low density)

How high energy fluxes may affect Rayleigh-Taylor
instability growth in young supernova remnants

CL Ewae' H-5 Pad © M Hesingua® & & Mis® BA Remingior’, T Pleas’ MR Trantham!

HE_ Rsbey, D Shaets®S, A Simoey®S £ Rarar?, § Macloren?, W Wiae o L%, FWL Dens®, 1 Kiine®
EA, Figpe®, G Malamud'™ T A Handy', 5 Prisbrey®, C00 Kpdand”. 5B Kein’, EC. Haeging®, B Wallace®
ML | Geeashepd® DT Mariasd, . Kalartord, E Girgldes” & P Degie 7
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The collisionless shock collaboration on NIF shows how large, diverse
collaborations can arise to work on these fascinating problems

Collisionless shocks are ubiquitous in Experiments with CD-CD targets -
universe; Weibel instabilities can generate observed x-rays, neutrons and protons
magnetic fields to form these shocks from the central shock-forming region

Nonrelativistic shocks (e.g. SNRs)

CD foll

X-ray brightening
from self-emission of
hot plasmas

N141021 Proton TOF

-
o

(-]

Signal

Time (ns)

[Courtesy of Hye-Sook Park (2015); '
C.M. Huntington, Nat. Phys. (2015) W om ow ow @ e
S. Ross, Phys. Rev. Lett. (2013) Time at detector (ns)
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Providing a small percentage of NIF, Z, and Omega time to the academic
community provides significant benefits to the nation
Engages world-leading scientists with Lab scientists

Innovation

= Many new ideas that benefit SSP have come from outsiders

= Ensures we are aware of what is possible to avoid technological surprise
Academic pipeline

= Helps create cadre of academic scientists who do research in HEDP,

essential for pipeline =it .
= Students of world leading scientists recruited to Lab | INS”][
= High profile science attracts staff to Lab J U P I '|' [ R
Staff engagement 6[,\

B5 RATERNAL 1RNATINR FREIITY

= Enables LLNL staff to continue to publish and develop in their field, a major by
component of retaining world-class scientists in the SSP

= Enables LLNL staff to engage with outside scientists and students

High profile publications

= Provides peer review of techniques and
methods that are also applied to SSP

= Attracts high quality scientists to the Lab

= Provide a visible manifestation of the

= credibility of our deterrent

= (not possible with classified work)

A broader constituency of users for the NIF
A richer national scientific enterprise

Lawrence Livermore National Laboratory
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Like many areas of science, we not only want to

understand nature, we want to control it ‘
Q) . 2 PR, T
2 For ignition I'R » 0.4g/cm
— Energy  conditions: T » 5keV/ v A ¢
Fusion @ <‘>
. (r SR ) T3 ’ v ‘
Ly l"lmHSTHS M7y R s Ty K P2
HS
EniF ~15k] > P ~400 GBar R~30/mb and r~130g/cm’
R
L, ~—~30ps

S

High velocity implosions can achieve these conditions

Note for magnetic
confinement fusion
ignition

Toont ~ few seconds P ~fewBars r~few 10 g/cm’
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The primary ICF approach on NIF uses the lasers to indirectly drive

the capsule implosion (Laser Power-> X-ray Power)

Laser entrance hole (LEH)

Plastic
Ablator

Gold .~
hohlraum
wall

Total Power (TW)

g

g

Laser "Pulse-shape”

N120321-001-999
EXP:MX 8 DT C1_S07a

PEAK POWER (moas) = 3.3510402 TW

5

10
Time (ns)

15

20
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We are navigating the large parameter

space available for ignition
235 .

50 4 ' - Hohlraum

/CH Beryllium DiamonE

4 (.1 g/cc) (1.85g/cc) (3.5g/cc)
Capsule
1cm — DT fuel 0
Fill tube ___
! ”Tent"

capsule
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We are making progress in controlling inertial
confinement fusion implosions

2012/13

Yield ~ 2 kJ
Pressure ~ 150 GB
(7e14 DT neutrons)

Better
hydro

4

2014/15

Yield ~ 27 kJ
Pressure ~ 250 GB
(9 €15 DT neutrons)

50

X (zam)

2017/18
Better LPI, : -
symmetry | 88
Reduce fill = ¢
tube . °

X

Yield ~ 55 kJ

Pressure ~ 350 GB
(2 €16 DT neutrons)
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Post the National Ignition Campaign NNSA began an effort to
develop transformative diagnostic capabilities, which is enabling

new measurements

Transformative diagnostic Institutions New capability-program

Many measurements on one shot for all missions.
Short gating capability for implosions measure
shape change during the stagnation process.

Single LOS imaging (h-CMOS, dilation)
Optical Thomson Scattering (OTS)

3D n/gamma imaging (NIS)

Gamma spectroscopy (GCD)

Time resolved n spectrum (MRS-t)

Hi Res. X-ray spect. ( HiRes)

Hard x-ray imaging (Wolter)

Time resolved diffraction TARDIS-t

SNL,GA, LLNL,LLE,
AWE

LLE, LLNL, LANL,
NRL

LANL, LLNL

LANL, AWE,
GA,LLNL

MIT LLNL, GA, LLE

LLNL,LLE,PPPL,
NSTec, SNL

SNL, LLNL

SNL, LLNL

Hohlraum ne, Te, Ti, Z-All: Radiation channel flow:

discovery science

3D shape of burn

Burn duration, mix

Alpha heating diagnostic - burn

T warm compressed hi Z-strength: density of

burning plasmas

Higher areal density backlighting for strength,
complex hydro. Time & space resolved T of burning

plasmas.

Material phase change versus time for strength &

discovery science

Lawrence Livermore National Laboratory
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NIF’s goal is to achieve fusion energy out = laser energy in
We are making steady progress

lgnition (with G>1 at NIF, ~ 2MJ) *“Burning plasma”: energy deposited in
'''''''''''''''''''''''''''''' DT hot spot by alpha particles exceeds
! : ‘ . compressional work
1000 |EcHLF 1
L CHHF ]
is ]
300 | @rioc oF Capsule gain > 1 (~150-200 kJ) 1
100 Q.71 burning plasma (~70k)) . 7 /
I D
§ £ Y0 S 1 = Smaller fill tube, Diamond Capsule,
= . ~ . Improved hydro stability, LPI and
T -
K3, Alpha-heating (~28 k) = Diamond,2017/18 hohlraum drive symmetry
> 10+ g
3 (High Foot, 2014/15) = |mproved hydro stability
’ T (NIC, 2012) 1 ’
1 3 ] = Degraded by hydro instability, LPI
[ J’ ] and asymmetry
0.3 —— (March 2011) i

01 0.2 03 04 05 06 0.7 0.8 09 1

Pressure * Confinement
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Path forward is to work on improving implosions while
also exploring scaling to higher energy

1017§

Neutron Yield

1015

1016§

Data from HDC implosions

‘ ”Qua“t\)"

L - ______________\__ o
: (faster, rounder,f } 5

denser, cleaner)

Increasing
Size

/=

0 [ Increasing velocity

2
Laser Energy (MJ)

1

3

= Scientific understanding aided by new
measurements leading to quality
improvements:

Improved understanding of
hohlraums and time dependent
symmetry

Optimization of design (Higher
coupling efficiency)

Improved understanding of
implosion dynamics, instability
growth, and degradations

Reduced engineering features (fill
tubes, tent)

Improved capsule fabrication
Higher laser power and energy

Innovative and alternate designs
(e.g. magnetized targets, double
shells, ...)



The next decade will be a pivotal time for inertial confinement
fusion and inertial fusion energy research
= NIF, Z, and Omega will continue to deliver high energy density (HED) data needed for the
Stockpile Stewardship program while advancing our fundamental understanding of HED

science

= The achievement of inertial confinement fusion ignition in the Laboratory and eventually
high yield will continue to be a significant goal of the Stockpile Stewardship Program
— Steady progress is being made on understanding and improving inertial confinement
fusion target performance on NIF (as well as Z and Omega)
— New diagnostics and simulations are providing critical insights that will lead to further
progress and may motivate facility upgrades
— New HED investments by the nation will be needed. By the end of the 2020’s we will have

achieved ignition or have an ignition facility under construction
= Worldwide effort in ICF and HED will grow significantly over this time frame

= Continued advances in important related technologies will make leveraging these
technologies for IFE research an attractive path

Lawrence Livermore National Laboratory N ‘TS{% 26
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Laser Megajoule, in France, has performed its first experiments and
will be ramping up the number of beams over the next few years

LMJ ramps up power gradually, allowing a
robust roadmap towards ignition

1418 quadsePW  22-80 quads+PW  #4 quads+PW
230320 K] 033-1M) 13M]

= Plan has 40 beams coming on line in 2019 eventually 176

Lawrence Livermore National Laboratory INVSE 2
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Both Russia and China are investing significantly in the area of
lasers for high energy density physics

UFL-2M Shenguang Il (180 kJ) is now operating
e 192 beams, 2.8 MJ (1.5x NIF energy) * 48 beams arranged in polar configuration
« Construction underway « 80 diagnostics

* World’s second most energetic laser
» Discussion of bigger facility taking place

Physica dagnestic room

Integraton Computer control room

Malti fanction esperment a'ea

Cpte Assambly Building

Switchyans

Lawrence Livermore National Laboratory
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The recently passed Department of Energy Research and
Innovation act calls for research into IFE

NAS 2013 Study “An Assessment of the Prospects for Inertial Fusion Energy” had a number of

conclusions and recommendations including:

» “The appropriate time for the establishment of a national, coordinated, broad-based inertial
fusion energy program within DOE would be when ignition is achieved”.

* Nevertheless the committee also concluded: “The potential benefits of energy from inertial
confinement fusion ... also provide a compelling rationale for including inertial fusion energy
R&D as part of the long-term R&D portfolio for U.S. energy.”

A modest IFE program in the US would leverage significant investments:

« World leading capabilities in ICF research (including NIF, Omega, and Z) funded by NNSA

« Advances in rep-rated lasers and pulsed power drivers, advanced manufacturing, new
materials, machine learning, ...

The Department of Energy Research and Innovation Act (H.R. 589):

INERTIAL FUSION ENERGY RESEARCH AND DEVELOPMENT.—The Director
shall support research and development activities for inertial fusion for energy
applications.

*An Assessment of the Prospects for Inertial Fusion Energy, Committee on the Prospects for Inertial
Confinement Fusion Energy Systems, NRC (National Academies Press, Washington, D.C., 2013).

Lawrence Livermore National Laboratory N ‘TS{% 29
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Intermediate scale facilities play a critical role in the health
of High Energy Density Science. LLNL operates the Jupiter
Laser Facility as a flexible, hands on user facility for

training, innovation, and exploration

Laser Bay * ‘—

Two 1-kJ ns beams
(presently 0.7kJ)

or

One 300-) ps beam +
One 1-kJ ns beam

One or two beams
0.5ps—2ns
Upto 7]
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National Academy of Sciences: “U.S. Has Lost Its Dominance in Highly
Intense, Ultrafast Laser Technology to Europe and Asia”

= 2017 National Academy of Sciences report “Opportunities in

Intense Ultrafast Lasers: Reaching for the Brightest Light”
— surveyed and took a snapshot of high-intensity science research

and related technology, the impact of applications, and the status
of US technical capabilities

considered whether a national strategy exists for stewarding
high-intensity laser science and technology

. . OPPORTUNITIES IN
reported conclusions and recommendations INTENSE ULTRAFAST
constituting a roadmap for action LASERS

Reaching for the Brighteat Light

= NAS report conclusions:

1.

b wn

High-intensity lasers enable a large and important body of science.

Intense ultrafast lasers have broad applicability.

A large and talented US technical community exists, but it is fragmented.

No cross-agency stewardship exists in the United States

The US originally led innovation and applications, but Europe and Asia now dominate
through coordinated research and infrastructure programs.

Co-location with existing infrastructure is essential and a key advantage

over the ELI concept in Europe

Academia/Laboratory/Industry cooperation is necessary to retain and

renew the talent base.
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High-average Power, High-Intensity Lasers are poised to have far
reaching impact on science, industry, and society

Betatron X-rays

Y (o
3 - b | R
\ } } . \ Non-Destructive

High-resolution x-ray microscopy X

: @ENERGY DISA

Effective confidence in parts

SNM Detection

Laser Pulse
102%* W/cm?

Compact laser-based accelerators

Hadron therapy — cancer treatment

Lawrence Livermore National Laboratory
P3491298.ppt — Wisoff — NIF&PS Overview — September 20, 2018



My two cents:

= Inclusive vision of plasma physics

= Utilization of NNSA facilities for plasma physics has tremendous payoffs for science
and for national security

= A new Basic Research Needs Workshop for High Energy Density Laboratory Plasmas is
needed

= While fusion is hard, pursuit of it is essential for our field and the nation
= Improving diagnostics are an essential part of making scientific progress

= The nation should have a modest inertial fusion energy program, to be cognizant of
technology advances and their implications

= Intermediate scale facilities play an essential role in the ecosystem, and yet support
for them is at risk

= US leadership in HEDP will shrink. We need deliberate investment to avoid falling far
behind in some areas
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There are many exciting scientific directions for
future HED research (Materials)

“Electrides”
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= Shedding light on materials behavior
at high pressures, addressing
fascinating complexity in quantum
behavior of solids under
compression. Could there be new
metastable material forms that can
be generated only under HED
conditions?

Dai, et al. PRL 109,
175701 (2012)

= Helping (via measurements of
material properties) address
fundamental questions regarding
planetary structure, supporting both
solar system planetary missions and

e e e ——" exo-planet research. Can we help
eQe e . provide constraints on which

e~@0-00¢ee@i exoplanets may have magnetic

'YXIXXI K ‘ fields, potentially enabling life?
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There are many exciting scientific directions for
future HED research (Plasma Astrophysics and Radiation
Hydrodynamics)

Collisionless Shock = Creating and diagnosing in the laboratory
2 . W plasmas that can help explain ubiquitous

' ; processes in the universe, like collisionless
shocks, particle acceleration/generation of
cosmic rays, generation and amplification
magnetic fields.

= Generating and explaining jets that are
extraordinarily collimated and appear in many
astrophysical situations

= [lluminating fundamental issues in the
bubble evolution of nonlinear HED flows and the
merger transition to turbulence.
simulatio
ns (G.
Malamud

2014)
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There are many exciting scientific directions for
future HED research (High intensity laser matter interactions and
magnetic fields)
| = Creating and understanding well behaved high
intensity laser heated plasmas that have sufficient
control for the application at hand and that enable
applications beyond what is currently possible

= Exploring the limits of high intensity laser science,
the unique sources that can be created, and
generating new plasmas such as dense electron
positron pair plasmas

= Studying the effect of magnetic fields on the plasma
astrophysics and radiation hydrodynamics. Exploring
the limits of what field can be produced in the
laboratory.

= Assessing whether or not magnetic fields can
significantly reduce the pressure needed for ignition
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Ignition is a grand scientific challenge and a critical enabling
capability for HED science

Creating, controlling, and diagnosing matter at the energy
densities needed for ignition in the laboratory is a
daunting challenge.

Deuterium

nucleus Fusion

reaction

reaction m Qur goal on NIF is to achieve ignition or understand the

products

e L oY science well enough to answer the question of what
’ - capability would be needed to achieve it

= Achieving/Understanding what is required for ignition
Deuterium-Tritium (DT) fuel provides the most stringent constraints on our entire field.
In doing so it pushes diagnostics, codes, drivers, optics,
targets, capabilities and operations

= There is lots of room for innovation in the quest for
ignition, including alternate approaches and new ideas!

= |f achieved, ignition will open a whole new window into
the HED science that can be performed in the laboratory,
and may pave the way for even more extreme capabilities
in the future
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