Decadal Assessment of Plasma Physics: Perspectives on Computational Plasma Physics

Zhihong Lin

University of California, Irvine

SciDAC ISEP Center

UCI, GA, PPPL, ORNL, LBNL, LLNL, PU, UCSD

Plasma Physics at UCI Experiment, Theory & Simulation

Chris Barty

Franklin Dollar

William Heidbrink

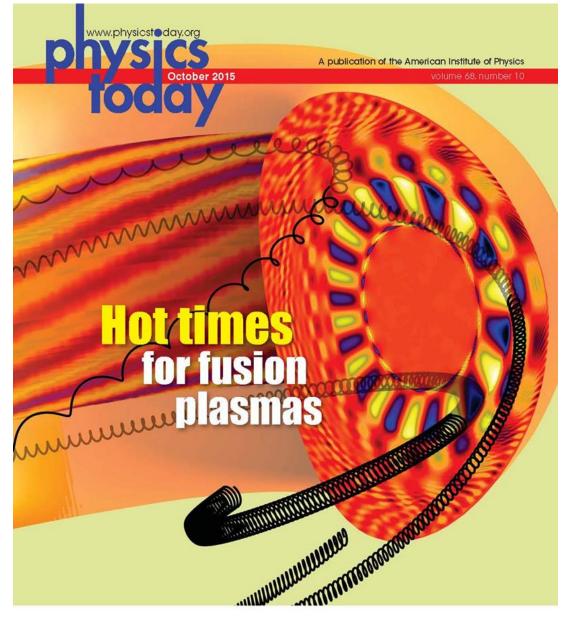
Zhihong Lin

Roger Mcwilliams

Toshiki Tajima

APS Wilson Prize 2019

EPS Alfven Prize 2019


AAPPS Chandraskhar Prize 2018

Liu Chen, *Emeritus APS Maxwell Prize* 2012 *EPS Alfven Prize* 2008

Outlines

- Integrated fusion simulation requires coordinated program
- Case study: SciDAC ISEP
- International collaborations
- Public-Private partnership

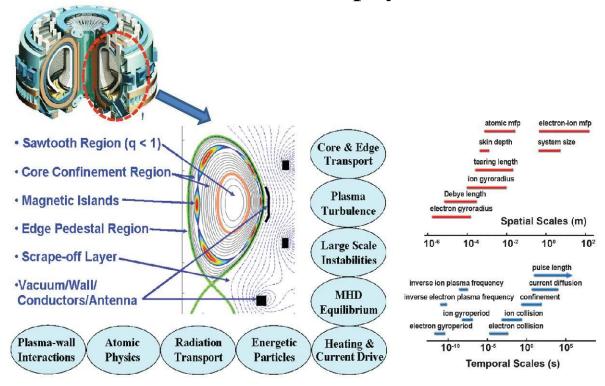
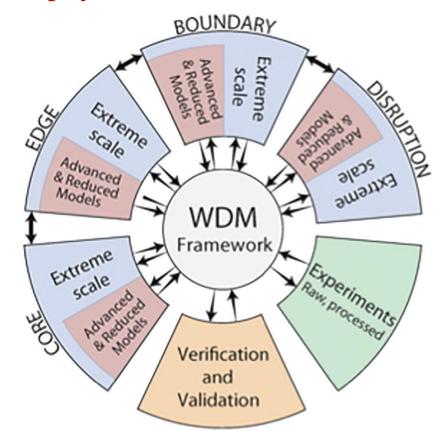
[D. Pace, W. Heidbrink, M. Van Zeeland, 2015]

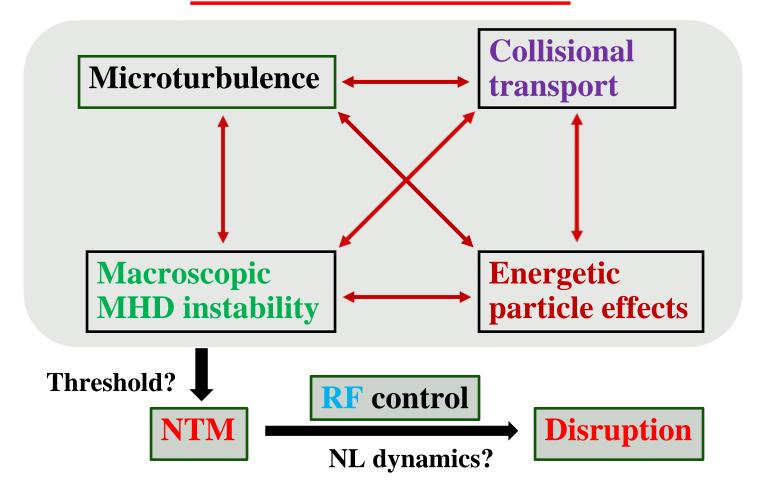
also

- Imaging for proton-beam therapy
 - A galaxy in the cosmic web
 - Solids under tension

Integrated Simulation Needed to Fill Physics Gap in Whole Device Modeling

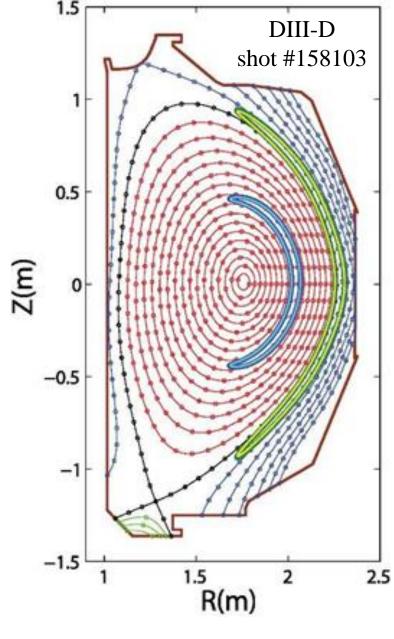
- Whole device modeling (WDM): full discharge modeling, mostly reduced models, loosely coupled codes (modules), validity of extrapolation to new regime of burning plasmas?
- Integrated simulation: first-principles simulation of multiple physical processes to provide a WDM module for critical physics, more efficient in a multi-physics code


Figure 3: Multiple physics processes, spatial scales, and temporal scales that must be accounted for in the whole device model of a tokamak [10].

[Report of the Workshop on Integrated Simulations for Magnetic Fusion Energy Sciences, June 2 – 4, 2015]

[FUSION ENERGY SCIENCES, EXASCALE REQUIREMENTS REVIEW, JANUARY 27–29, 2016]


<u>Integrated Simulation Needed to Study Nonlinear Interactions of Multiple</u> Kinetic-MHD Processes

- Neoclassical tearing mode (NTM) is the most likely instability leading to disruption
- NTM excitation depends on nonlinear interaction of MHD instability, microturbulence, collisional transport, and EP effects. NTM control requires radio frequency (RF) waves

US Leadership in Fusion Simulation: Most Advanced Tokamak Simulation Capability Developed by DOE Coordinated Collaboration

- Gyrokinetic toroidal code GTC: PPPL 1993-2002, UCI 2002-
- First-principles, integrated simulation capability for nonlinear interactions of multiple kinetic-MHD processes
- Current capability in the central version
 - ✓ Global 3D toroidal geometry & experimental profiles for tokamak, stellarator, FRC
 - ✓ Microturbulence: 5D gyrokinetic ions & electrons, electromagnetic fluctuations, collisionless tearing modes
 - ✓ MHD and energetic particle (EP): Alfven eigenmodes, kink, resistive tearing modes
 - ✓ Neoclassical transport: Fokker-Planck collision operators
 - ✓ Radio frequency (RF) waves: 6D Vlasov ions

Z. Lin et al, Science 281, 1835 (1998) open source: <u>Phoenix.ps.uci.edu/GTC</u>

Advanced Models for Gyrokinetic Simulation of Kinetic-MHD

- Kinetic effects at microscopic scales and coupling of multiple physical processes play a crucial role in excitation and evolution MHD modes, in fusion, space, and astro plasmas
- Global simulation solving nonlinear gyrokinetic equation, Poisson equation, Ampere's law

$$\frac{\partial F}{\partial t} + (v_{\parallel} \mathbf{b} + \mathbf{v}_{d}) \cdot \frac{\partial F}{\partial \mathbf{R}} + \dot{v}_{\parallel} \frac{\partial F}{\partial v_{\parallel}} = 0 \qquad \phi - \widetilde{\phi} = -\sum_{s} 4\pi e Z_{s} \overline{n}_{s} \qquad \nabla^{2} A_{\parallel} = -\sum_{s} \frac{4\pi e}{c} Z_{s} \overline{n}_{s} u_{s}$$

- Gyrokinetic system recovers linear MHD modes including Alfven wave, interchange mode, kink mode, kinetic ballooning mode (KBM), resistive & collisionless tearing modes
- Global integrated simulation requires advanced, efficient models

A conservative scheme of drift kinetic electrons for gyrokinetic simulation of kinetic-MHD processes in toroidal plasmas, J. Bao, D. Liu, Z. Lin, Phys. Plasmas 24, 102516 (2017)

KBM
$$\frac{\omega(\omega - \omega_{*P})}{v_A^2} \nabla_{\perp}^2 \delta \phi - i \boldsymbol{B}_0 \cdot \nabla \left\{ \frac{\boldsymbol{b}_0 \cdot \nabla \times [\nabla \times (k_{\parallel} \delta \phi \boldsymbol{b}_0)]}{B_0} \right\}$$

$$-\frac{i \omega}{c} \delta \boldsymbol{B} \cdot \nabla \left(\frac{\boldsymbol{b}_0 \cdot \nabla \times \boldsymbol{B}_0}{B_0} \right) \qquad \text{kink drive}$$

$$-i \omega \frac{4\pi}{c} \left[\nabla \times \boldsymbol{b}_0 \cdot \nabla \left(\frac{\delta P_{\parallel}}{B_0} \right) + \boldsymbol{b}_0 \times \nabla B_0 \cdot \nabla \left(\frac{\delta P_{\perp}}{B_0^2} \right) + \frac{\nabla \times \boldsymbol{b}_0 \cdot \nabla B_0}{B_0^2} \delta P_{\perp} \right]$$

$$= 0 \qquad \text{interchange drive}$$

Outlines

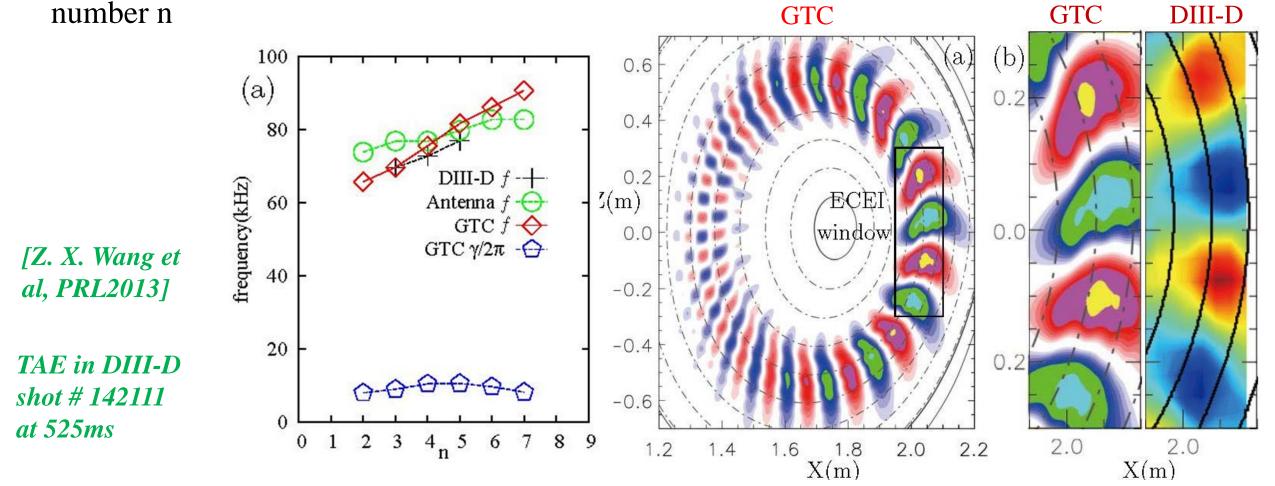
- Integrated fusion simulation requires coordinated program
- Case study: SciDAC ISEP
- International collaborations
- Public-Private partnership

[D. Pace, W. Heidbrink, M. Van Zeeland, 2015]

also

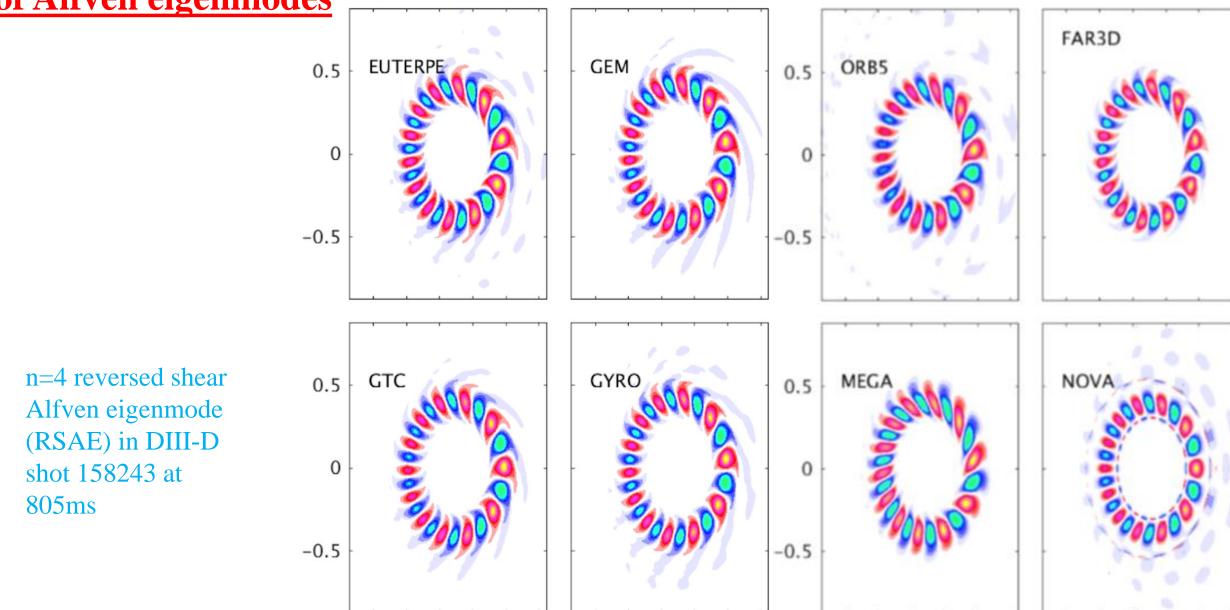
- Imaging for proton-beam therapy
 - A galaxy in the cosmic web
 - Solids under tension

SciDAC ISEP: Integrated Simulation of Energetic Particles


- Confinement of energetic particles (EP) is a critical issue for burning plasma experiments since ignition in ITER relies on self-heating by energetic fusion products (α -particles)
- Plasma confinement properties in *new* ignition regime of self-heating by α -particles is one of the most uncertain issues when extrapolating from existing fusion devices to ITER
- EP turbulence and transport: EP excite meso-scale instabilities (AE) and drive large transport, which can degrade overall plasma confinement and threaten machine integrity
- Interaction between EP and thermal plasmas: since EP constitute a significant fraction of plasma energy density in ITER, EP can strongly influence microturbulence responsible for turbulent transport and macroscopic magnetohydrodynamic (MHD) instabilities potentially leading to disruptions
- SciDAC ISEP: new paradigm of nonlinear kinetic simulations of EP turbulence by treating relevant physical processes from micro to macro scales on same footing: non-perturbative, kinetic effects of thermal plasmas

ISEP Objectives Require Coordinated Collaboration

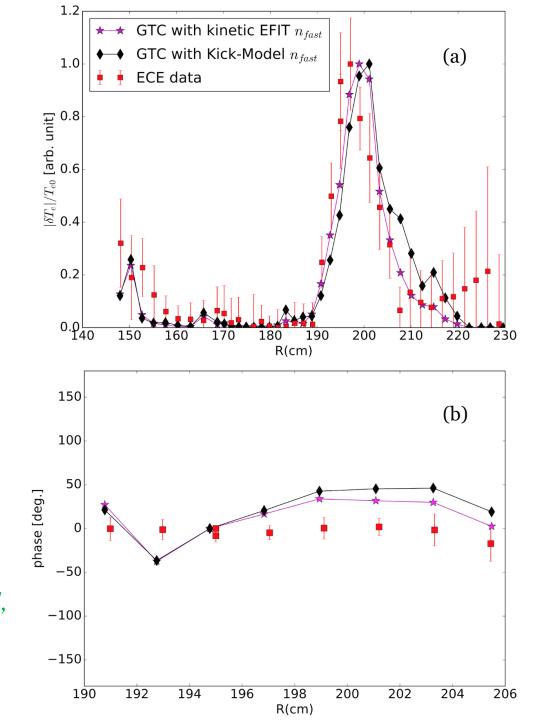
- Study EP physics needed for predictive capability using first-principles simulation
 - ► EP transport by mesoscale EP turbulence
 - ► EP coupling with microturbulence and macroscopic MHD modes
- Develop integrated simulation capability for EP physics
 - ► First-principles ISEP framework based on GTC
- Develop EP module with predictive capability for WDM
 - ► Reduced EP transport models (CGM, RBQ, machine learning)
 - ► First-principles ISEP framework
- EP module V&V
- Computational partnership: workflow/data management, solvers, optimization & portability
- Lin, Heidbrink, Chen (UCI), Waltz (GA), Gorelenkov (PPPL), Spong (ORNL), Williams (LBNL), Falgout (LLNL), Tang (PU), Bass (UCSD)


Full Physics Simulation: Comparison of TAE Mode Structures between Simulation & Experiment

- EP non-perturbative effects break radial symmetry of toroidal Alfven eigenmode (TAE), induce TAE radial localization: TAE moves rapidly while thermal plasma profiles barely change
- Thermal ion & electron kinetic effects induce TAE frequency dependence on toroidal mode

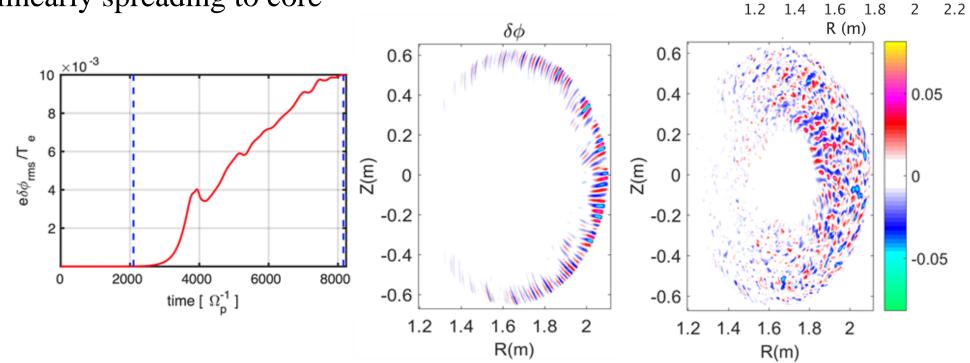
Coordinated Collaboration Facilitates Verification of Gyrokinetic Simulations

of Alfven eigenmodes


ISEP Validation via Synthetic Diagnostics

Comparison of GTC simulation with experimental ECE data using Synthetic Diagnostic Platform [L. Shi et al, 2017]. (a) Radial structure of δT_e of n

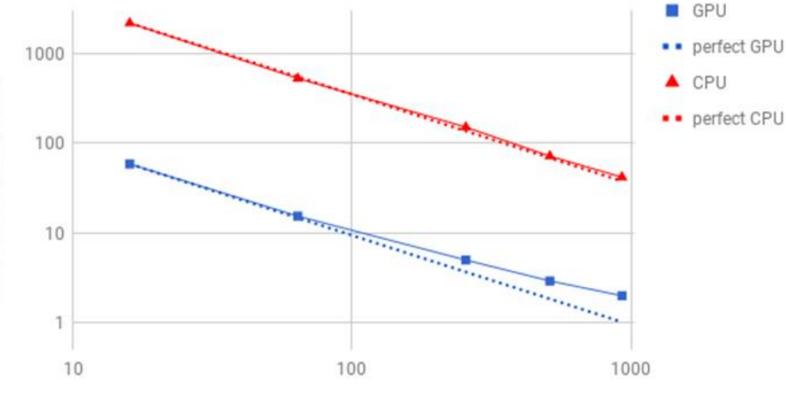
= 4 mode. (b) Mode phase with


respect to R = 195.0 cm. [Collins, Heidbrink et al, PRL2016]

[S. Taimourzadeh et al, NF 2019]

Integrated Simulation of Nonlinear Interaction of RSAE, TAE, Microturbulence

- Using EP profile from kick model, GTC finds strongly unstable RSAE in the core and weakly unstable TAE in the edge of DIII-D shot 158243
- GTC finds strong microinstability in outer edge, nonlinearly spreading to core



GTC Performance on Pre-exascale Computer Summit

- GTC speeds up 40x from CPU to GPU on 384 GPUs; 20x on 5556 GPUs (>20% of Summit); scalable to 27,456 GPUs (>99% of Summit) in Summit acceptance test
- 3-year INCITE award with ~2% time of Summit (\$200M computer)

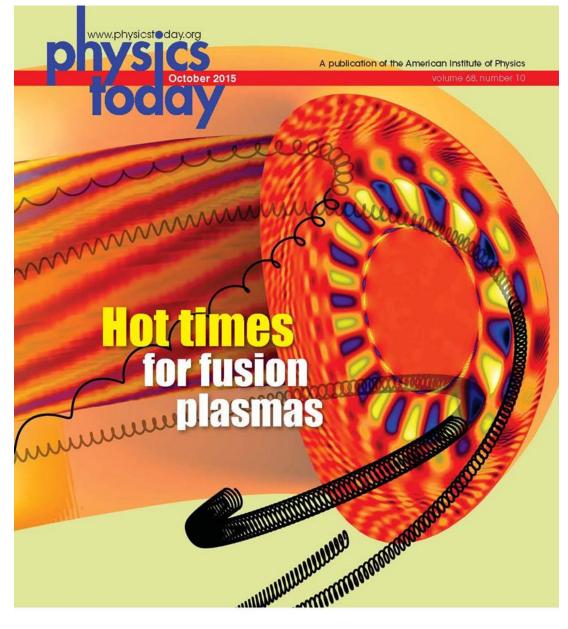
Ported to Tianhe-3 prototype

wall-clock time for one trillion particle pushes in GTC weak scaling test on Summit

HPC Collaborations Enable GTC GPU Optimization

- Use MPI-OpenMP for CPU and one MPI process per GPU
- Use OpenACC and CUDA on GPU
- Move all computing-intensive particle and field data to GPU
- Group MPI toroidal communicator, not particle communicator, to speed up shifting particles
- Particle radial binning to improve data locality
- OpenACC atomic directive for scattering operations
- Enable texture cache for gather operations
- Optimize local memory access and data structure of large array
- Use NVidia GPU sparse linear solver *AmgX*

GTC CAAR team: P. Wang (NVIDIA), W. Joubert (ORNL), M. Niemerg (IBM), B. Wang, W. Tang (PU), W. Zhang, S. Taimourzadeh, C. Lau, L. Shi, J. Bao, Z. Lin (UCI)


Big Data ML/DL Connection to SciDAC-4 ISEP

- Fusion Energy Mission: -- Most critical problem for tokamaks/ITER is to avoid/mitigate large-scale major disruptions.
- Machine Learning Connection to FES HPC Discovery Science:
 - -- Rapid Advances now demonstrated of predictive methods via large-data-driven "machinelearning/deep learning" statistical methods
 - -- Key Approach: Deep Learning Convolutional and Recurrent Neural Nets
 - -- Significance: Demonstrably faster and more accurate predictive alternative to main-line "hypothesis-driven/first principles" path-to-exascale predictive methods.
 - -- COMPLEMENTARITY/CONVERGENCE of ML & HPC: Exascale HPC can develop DL Classifiers from reduced-models emerging from path-to-exascale simulations of key burning plasma/EP physics such as NTM's (also a key SciDAC-4 ISEP target!).
- Associated Challenge:
 - → Need to achieve > 95% success rate, <5% false positives at least 30 ms before disruptions
 - -- with portability of software to ITER via enhanced physics fidelity (capturing multi-D) with improvement in execution time enabled by access to advanced HPC hardware (e.g., large GPU systems such as SUMMIT.

NOTE: Recently achieved DL capability to move from only scalar ("zero-D") signals to 1D and possibly higher-D can realistically enable incorporating reduced-model NTM classifiers.

Outlines

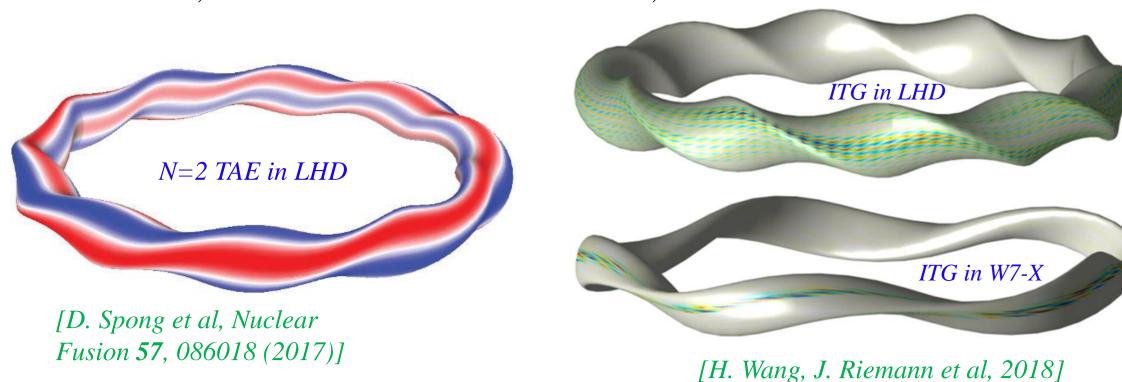
- Integrated fusion simulation requires coordinated program
- Case study: SciDAC ISEP
- International collaborations
- Public-Private partnership

[D. Pace, W. Heidbrink, M. Van Zeeland, 2015]

also

- Imaging for proton-beam therapy
 - A galaxy in the cosmic web
 - Solids under tension

GTC Project Greatly Benefits from Collaborations with ITER-CN Simulation Project


- Collaborations between US SciDAC GSEP/ISEP project (2008-present) and ITER-CN Large Scale Fusion Simulation Project (2013-present)
- GTC team includes ~40 developers and users in US, China, India
- Collaborations resulted in >50 US-China joint GTC papers on energetic particle physics, MHD modes, microturbulence, and RF simulations
- **HPC**: GTC porting & optimization on GPU and MIC; used 100s M hours on supercomputers in China: Tianhe-1A, Tianhe-2, ported to Tianhe-3 prototype
- Two GTC HPC talks by international collaborators at supercomputing conferences:

Heterogeneous Programming and Optimization of Gyrokinetic Toroidal Code and Large-scale Performance Test on TH-1A, Xiangfei Meng et al, International Supercomputing Conference, Leipzig, Germany, 2013

he Gyrokinetic Particle Simulation of Fusion Plasmas on Tianhe-2 Supercomputer, Endong Wang et al,
Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA), SC2016, Salt Lake City

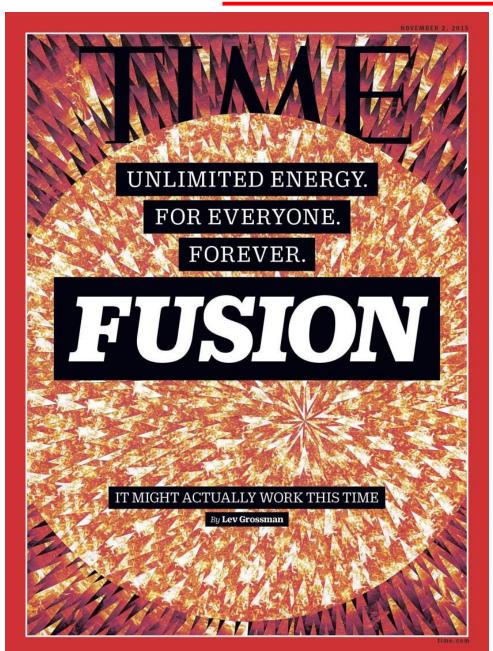
V&V on Unique International Fusion Devices: GTC Simulations of LHD & W7-X Stellarators

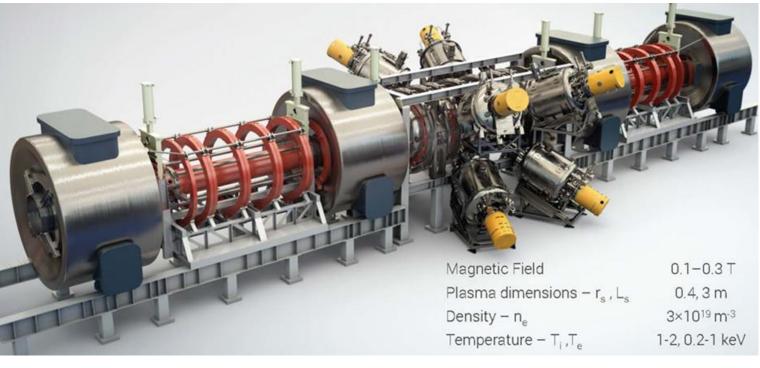
- What are the properties of turbulent transport and energetic particle confinement in stellarators optimized for neoclassical transport?
- GTC linear simulations of toroidal Alfven eigenmode (TAE) in LHD carried out
- GTC growth rate & frequency of ion temperature gradient (ITG) instability agree with EUTERPE; Mode structure in W7-X localized, LHD extended in toroidal direction

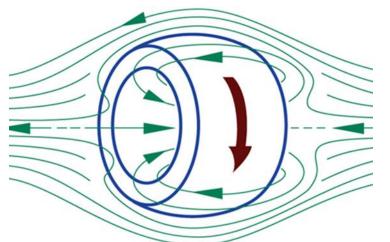
 θ 0

Outlines

- Integrated fusion simulation requires coordinated program
- Case study: SciDAC ISEP
- International collaborations
- Public-Private partnership




[D. Pace, W. Heidbrink, M. Van Zeeland, 2015]

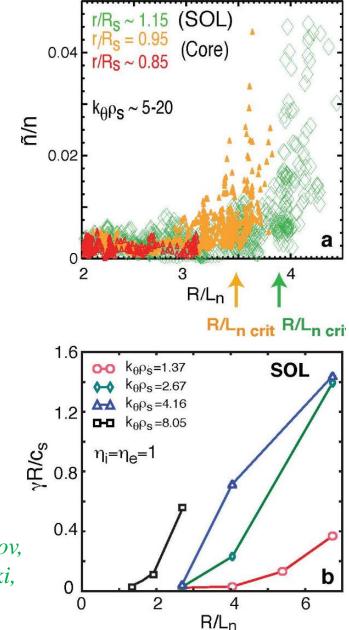

also

- Imaging for proton-beam therapy
 - A galaxy in the cosmic web
 - Solids under tension

"IT MIGHT ACTUALLY WORK THIS TIME"

FRC fusion experiment at TAE Technology

Norman Rostoker Mchil Binderbauer Toshiki Tajima


Integrated Simulation of FRC Confinement

- Field-reversed configuration (FRC) emerged as promising alternate concept for compact fusion reactor thanks to remarkable TAE achievements in C-2 series experiments
 - ✓ Reliably controlling macroscopic instability; Surprisingly good ion energy confinement in core
- Can FRC plasmas be heated to and sustained at fusion-relevant regime $(nT\tau)$?
- Thanks to DOE-TAE support, initial progress made in FRC turbulent transport
- However, better understanding of FRC global confinement properties urgently needed
 - FRC core-SOL coupling? sheared rotation? energetic particle confinement? mirror effects? boundary and divertor physics? electromagnetic fluctuations? high frequency modes? kinetic equilibrium?
- Require multiphysics, multiscale integrated simulation at exascale: IS-FRC
- Leverage tokamak simulation (SciDAC, ECP, CAAR, INCITE, ALCC): physics insights, simulation models, V&V, applied math, computer science
- Can DOE be the steward of IS-FRC, a coordinated public-private partnership?
 - ✓ Building community, coordinated collaborations and goals, computing resources

Simulaitons of FRC Turbulent Transport by DOE-TAE Support

- Effective DOE-TAE joint support for GTC development
 - ✓ Supported by DOE ~100 FTE-year & TAE ~10 FTE-year
- Fruitful UCI-TAE collaborations
 - ✓ Initial physics understanding of FRC turbulent transport
 - ✓ Trained UCI graduate students for TAE research team (Fulton, Lau)
 - ✓ Initial development of TAE turbulence simulation code ANC
- Physics: microscopic driftwave expected to be unstable due to bad curvature, but GTC finds ion-scale modes stable in FRC core
 - ✓ Stabilized by magnetic gradient, large Larmor radius, short field lines
- GTC finds SOL driftwaves unstable with critical pressure gradient, agree with C-2 FRC; SOL turbulence spreads into core

Suppressed ion-scale turbulence in a hot high-β plasma, L. Schmitz, D. P. Fulton, E. Ruskov, C. Lau, B. H. Deng, T. Tajima, M. W. Binderbauer, I. Holod, Z. Lin, H. Gota, M. Tuszewski, S. A. Dettrick, L.C. Steinhauer, Nature Communications 7, 13860 (2016)

Workforce in fusion simulation in high demand: UCI theses during past 5 years

- Fusion simulation faces challenges in workforce development: competing talent in job market, unconventional career path for interdisciplinary researchers, shrinking/aging plasma faculty
- Sam Taimourzadeh (2018): Gyrokinetic simulation of RMP effects on turbulent Transport in DIII-D tokamak edge; Employer, Toyota Inc.
- Calvin Lau (2017, Rostoker Fellowship): *Gyrokinetic simulation of driftwave instability in FRC*; Employer, TAE Technologies *Inc*.
- Onnie Luk (2016, Gates Millennium Scholars), *Gyrokinetic simulation of nonlinear interaction of kinetic shear Alfven waves*; Employer, Max-Planck Institute for Plasma Physics, Garching, Germany.
- Joseph McClenaghan (2015), Gyrokinetic simulation of current-driven instabilities; Postdoc, General Atomics.
- Daniel Fulton (2015, Rostoker Fellowship), *Gyrokinetic simulation of driftwave instability in FRC;* Employer, TAE Technologies *Inc*.
- Zhixuan Wang (2014), *Gyrokinetic simulation of TAE in DIII-D;* Postdoc, General Atomics.

Conclusions

- Coordinated collaborations, SciDAC program (2001-present), are crucial for the success of ISEP project
 - Build a critical mass for sustainable and collaborative code development to provide a first-principles EP module of WDM for burning plasmas
 - Facilitate model development, V&V, physics discovery, and building user community
 - Enhance fusion-HPC collaboration for new technologies (e.g., ML), evolving hardware & software ecosystem
- ISEP benefits greatly from international collaborations: HPC, V&V etc
- Public-private partnership: growing area for fusion simulation
- Fusion simulation needs workforce development