National Science Foundation

Electromagnetic Spectrum Management

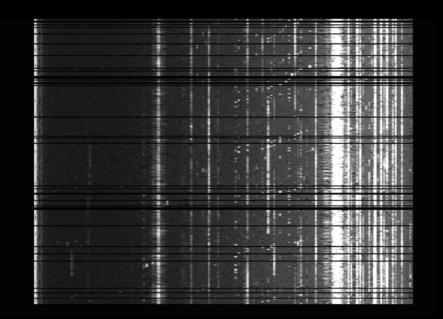
National Academy of Sciences Steering Committee of the Decadal Survey on Astronomy & Astrophysics Radio-Frequency Interference Meeting

B. Ashley Zauderer - bezauder@nsf.gov Jonathan Williams - jonwilli@nsf.gov

June 9, 2020

2020: A decade with new opportunities

Credit: LSST


Credit: almaobservatory.org

2020:
A decade with
new opportunities
and
new challenges

optical interference

radio interference

NSF 10 Big Ideas for Future Investments

RESEARCH IDEAS

UNDAMENTAL RESEARCH MOC C MACHINE
BURGETT DOMAIN
S' SCIENCE
S' SCIENCE
CHALLENGES
S' SCIENCE
CHALLENGES
S' SCIENCE
CHALLENGES
S' SCIENCE
S' SCI

Harnessing Data for 21st Century Science and Engineering Work at the Human-Technology Frontier: Shaping the Future

Navigating the New Arctic Windows on the Universe: The Era of Multimessenger Astrophysics

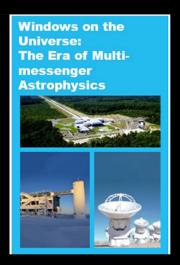
The Quantum Leap: Leading the Next Quantum Revolution

Understanding the Rules of Life: Predicting Phenotype

PROCESS IDEAS

Mid-scale Research Infrastructure

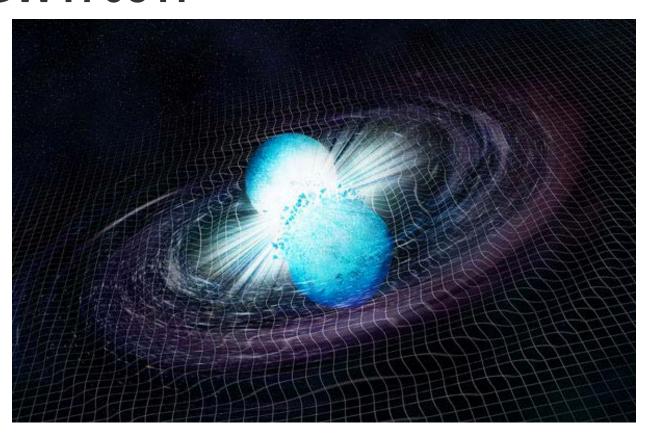
NSF 2050



Growing Convergent Research at NSF

NSF INCLUDES: Enhancing STEM through Diversity and Inclusion

NSF 10 Big Ideas for Future Investments



Multi-messenger & Time-Domain Astronomy

GW170817

Artist's illustration of the merger of two neutron stars. A new study suggests that the neutron-star merger detected in August 2017 might have produced a black hole.

NASA/CXC/M.Weiss

A radio counterpart to a neutron star merger

G. Hallinan^{1,*,†}, A. Corsi^{2,†}, K. P. Mooley³, K. Hotokezaka^{4,5}, E. Nakar⁶, M. M. Kasliwal¹, D. L. Kaplan⁷, D. A. Frail⁸, S. T. Myers⁸, T. ...

+ See all authors and affiliations

Science 22 Dec 2017:

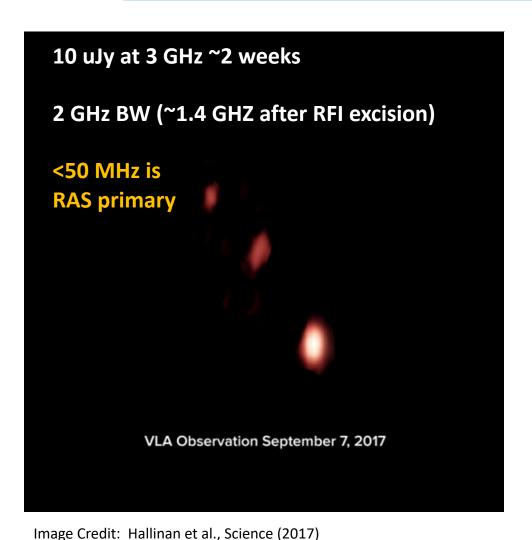
Vol. 358, Issue 6370, pp. 1579-1583 DOI: 10.1126/science.aap9855

Article

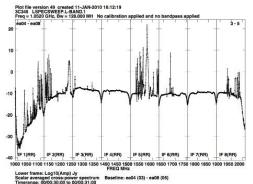
Figures & Data

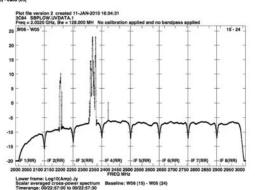
Info & Metrics

eLetters

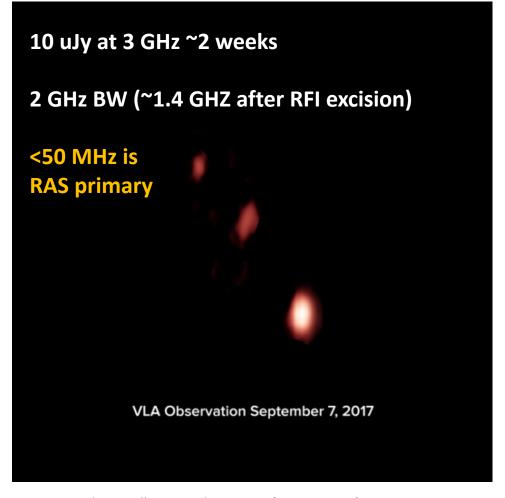


GROWTH observations of GW170817

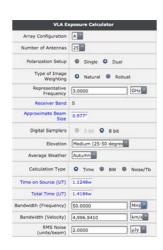

The gravitational wave event GW170817 was caused by the merger of two neutron stars (see the Introduction by Smith). In three papers, teams associated with the GROWTH (Global Relay of Observatories Watching Transients Happen) project present their observations of the event at wavelengths from x-rays to radio waves. Evans et al. used space telescopes to detect GW170817 in the ultraviolet and place limits on its x-ray flux, showing that the merger generated a hot explosion known as a blue kilonova. Hallinan et al. describe radio emissions generated as the explosion slammed into the surrounding gas within the host galaxy. Kasliwal et al. present additional observations in the optical and infrared and formulate a model for the event involving a cocoon of



Why does access to the radio spectrum matter?



Why does access to the radio spectrum matter?


To achieve 2 uJy RMS requires integration time on source of:

2 GHz bandwidth:

5.5 hours

1.4 GHz bandwidth:

6 hours

50 MHz bandwidth:

185 hours (more than one week)

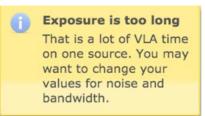
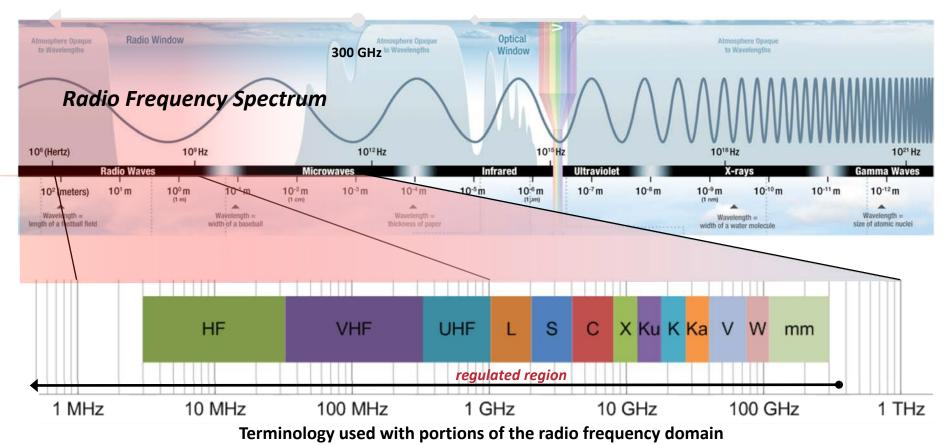
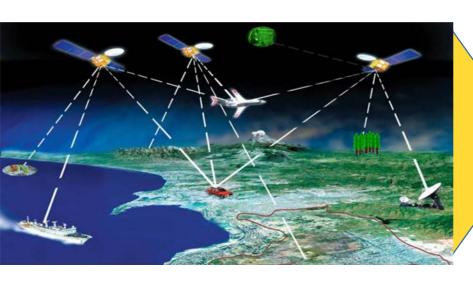
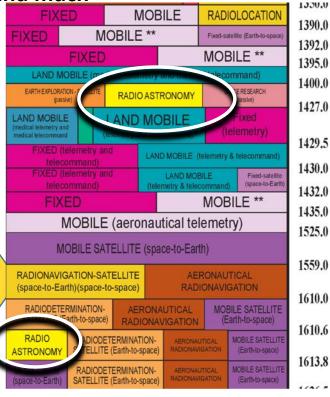



Image Credits: Hallinan et al., Science (16 Oct 2017)

Scientists use the entire spectrum but only 8.3 kHz to 275 GHz is regulated:

- Radio Frequency Spectrum: frequency region of the EM Spectrum that is managed via international and national laws and regulations
- Limited regulations in the near-infrared and optical region (e.g., laser coordination & safety standards)





 Protected frequency bands include <u>most important identified</u> <u>spectral lines for studying the local universe</u> (e.g. HI, CO, OH masers), but <u>doppler-shifted lines</u> from sources further away in the Universe fall into non-protected bands. Frequencies used for

observation are often non-interchangeable, and much

observation is done opportunistically.

Epoch of Reionization

HI: 21 cm -> 1.5 m Freq ~ 1420 MHz -> 200 MHz

$$1+z=rac{f_{
m emit}}{f_{
m obsv}}$$

Image Credit: w.astro.berkeley.edu

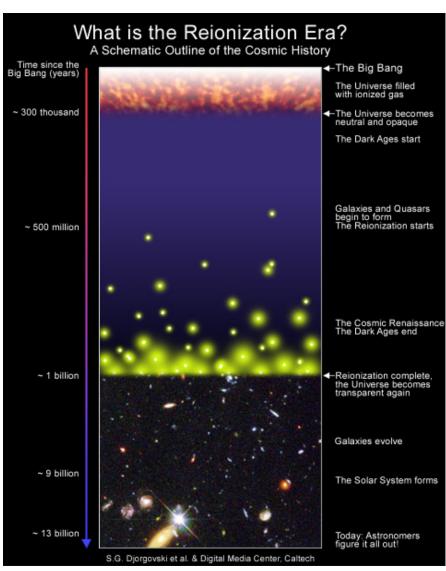
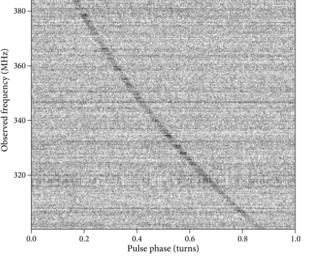



Image Credit: Djorgovski et al. (Caltech); www.haystack.mit.edu

 It is imperative that the increasing demands for spectrum take into consideration the challenges to scientific progress and NSF appreciates efforts to coordinate and to limit out-of-band emissions; Astronomy observations also include continuum emission (thermal, non-thermal).

Table 1: Overall EVLA Performance Goals									
Parameter	VLA	EVLA		Factor					
Continuum Sensitivity (1-σ, 9 hr)	10 µJy	1 µJy		10					
Maximum BW in each polarization	0.1 GHz	8 GHz		80					

At the same time there are large improvements in radio astronomy capabilities...

Log (Frequency Coverage over 1-50 GHz)

22%

100%

5

Table and Image Credit: NRAO

Demand for spectrum is unrelenting

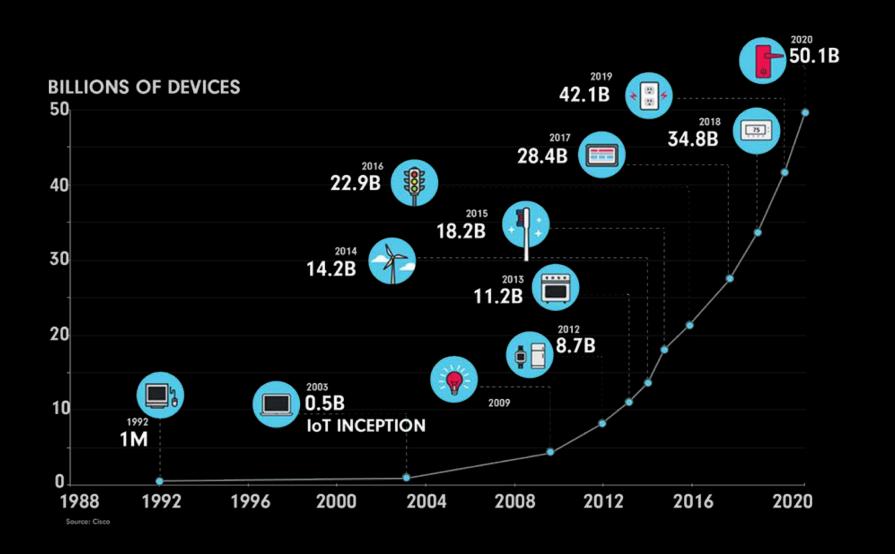


Image credit: almaobservatory.org

- The United States <u>has significant scientific assets / large facilities</u> outside of its national borders.
- Observatories tend to be in geographically remote sites, but radio emission from moving emitters: car radars, satellites and high altitude delivery systems will be an increasing challenge.

NRQZ (established 1958) needs updated protections from airborne transmitters;
 other radio telescopes need "quiet" dynamic coordination zones

The National Radio Quiet Zone (NRQZ) was established by the Federal Communications Commission (FCC) in Docket No. 11745 (November 19, 1958) and by the Interdepartment Radio Advisory Committee (IRAC) in Document 3867/2 (March 26, 1958) to minimize possible harmful interference to the National Radio Astronomy Observatory (NRAO) in Green Bank, WV and the radio receiving facilities for the United States Navy in Sugar Grove, WV. The NRQZ is bounded by NAD-83 meridians of longitude at 78d 29m 59.0s W and 80d 29m 59.2s W and latitudes of 37d 30m 0.4s N and 39d 15m 0.4s N, and encloses a land area of approximately 13,000 square miles near the state border between Virginia and West Virginia.

Credit: Green Bank Observatory

Credit: NRAO

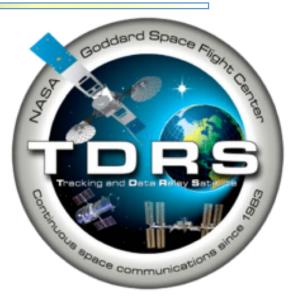


Image credit: NASA

Space observations are not "safe"... for example JWST currently plans to use a Kaband downlink (X band is saturated, not enough throughput in S-band downlinks)

What is coming...

 Constellations of thousands of satellites (10-50 GHz regime) such that from any location you would always "see" at least one, preferably (in mind of satellite providers) up to 3 or 4 satellites

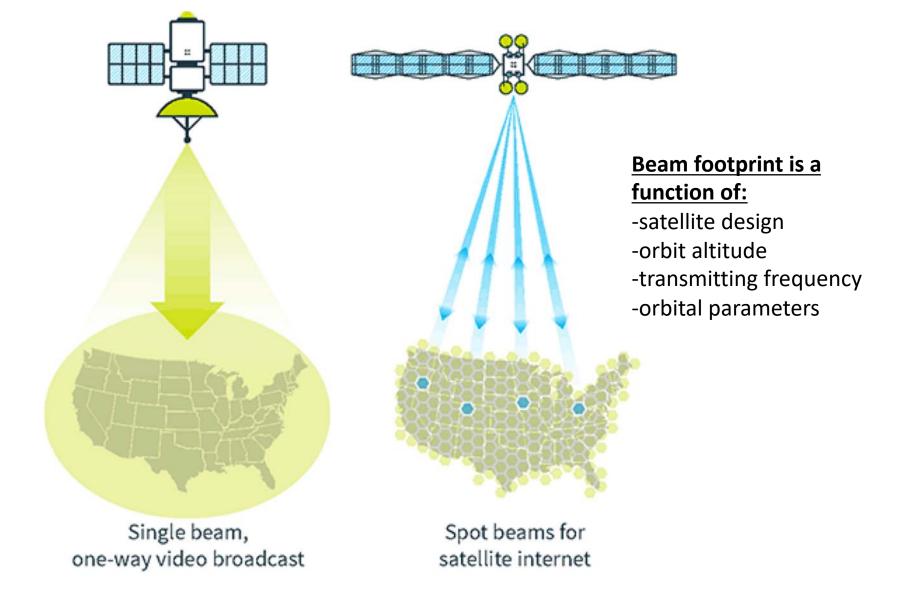
Changes in Satellite Constellations

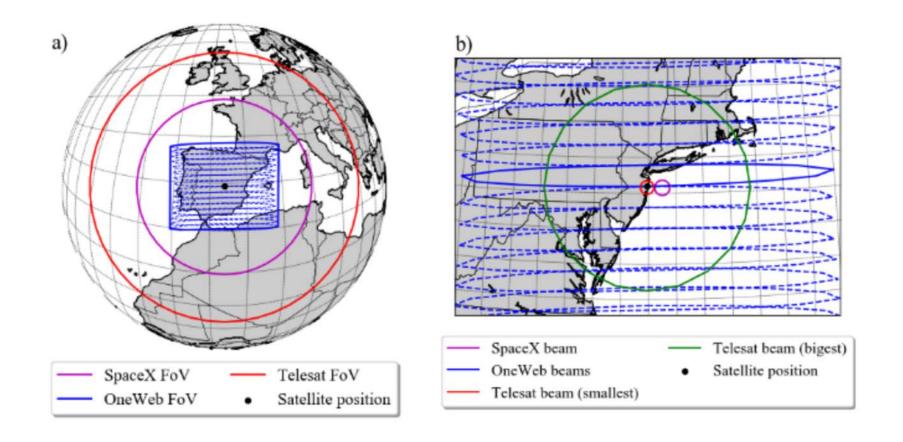
2020 ~6,000 satellites

2030 10,000+ satellites

2040 40,000+ satellites

- Numbers of satellites is increasing;
 -factor of 10 over the next 20 years
- Type of orbit is changing;
 - -GSO -> NGSO constellations in LEO; 500 1200 km
 - -Closer, brighter
- Radio frequencies utilized is increasing;
 -problem for radio astronomy

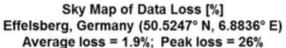

Images: Wikipedia SpaceX entry


What is coming... RFI at K-Band (18-26.5 GHz) by Emmanuel Momjian - last modified Jul 07, 2011 Frequency (MHz) Description Origin Clas 17800-20200 Satellite downlink Clarke Belt cont RFI at Ka-Band (26.5-40 GHz) by Emmanuel Momjian - last modified Mar 15, 2013 by He Frequency (MHz) Description Intermittent 29500-30000 local Wildblue VSAT Local residences 34875 Internal (June 2 to Oct. 8, 2010) Antenna EA10 Continuous plot 36286 Internal (June 2 to Oct. 8, 2010) Antenna EA10 Continuous plot

Radio Astronomy protections at 10.6 GHz

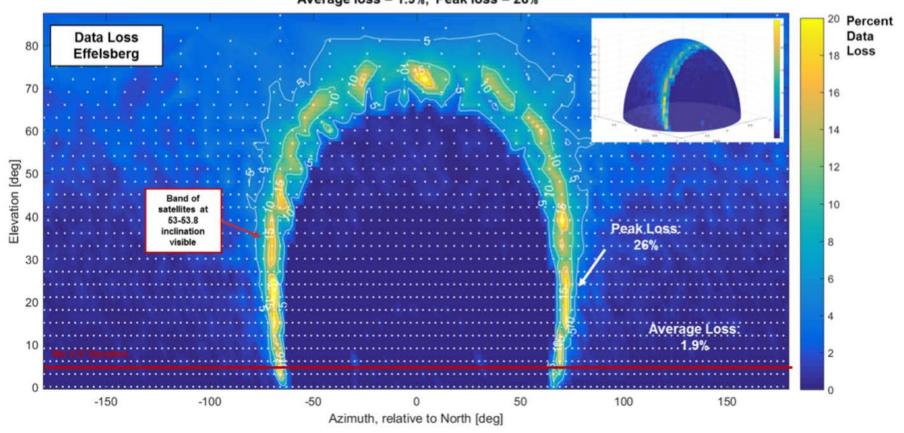
US131 In the band 10.7-11.7 GHz, non-geostationary satellite orbit licensees in the fixed-satellite service (space-to-Earth), prior to commencing operations, shall coordinate with the following radio astronomy observatories to achieve a mutually acceptable agreement regarding the protection of the radio telescope facilities operating in the band 10.6-10.7 GHz:

Observatory	1		C)	u)	α	0	1		
Arecibo Observatory, PR	15	0.01	10.45	10.0	0 0	0.0	7 0.0		7.7	7.7
Green Bank Telescope (GBT), WV	3	-			- 7	- +	- 7	-	- +	
Very Large Array (VLA), Socorro, NM	3						(ev			
Very Long Baseline Array (VLBA) Stations:		景	te c	П		8	Pass Pass			ı
Brewster, WA	4	Amate	Amateur Satellite	П			E E	FIXED	FIXED	ı
Fort Davis, TX	3	A	Z ix	ı			至雪	SATELLITE	SATELLITE	ı
Hancock, NH	4					MY	à	(S-E)	(S-E)	ı
Kitt Peak, AZ	3	-		Ó	П	ONO	iai		77.77	ı
Los Alamos, NM	3	atio	讀	ÄT		STR	9966			ı
Mauna Kea, HI	1_	Radiolocation	mate	8	/	A	S P			ı
North Liberty, IA	4	Rad	A	ಠ		X 4	SEAR	10		L
Owens Valley, CA	3			AD	П	E SE	RES			L
	.e			œ		SE		FIXED	Mobile **	L
United States (US) Footnotes	Ť	z	z			Ŧ)MY	PIACE	Mobile	L
	П	응을	응을	П	П	1	ONO			L
	П	PA SO	RA SO	П	П	Pass	STR			L
		3			Ц	SOR	A			ı
						7				
	•									



Figures from presentation by Portillo et al.; see
 http://www.mit.edu/~portillo/files/Comparison-LEO-IAC-2018-slides.pdf

Data loss is expected even in protected band



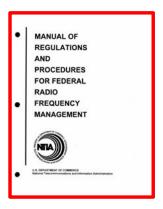
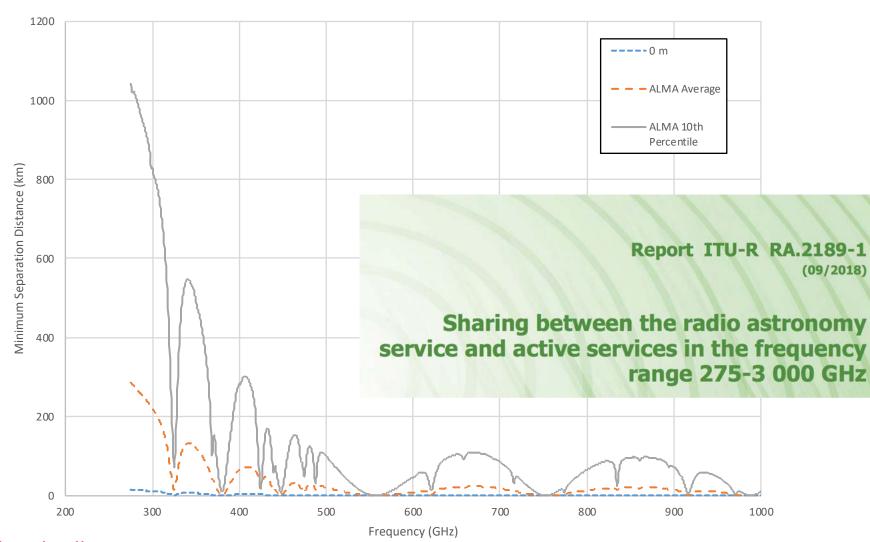


Figure 64: Effelsberg – Sky Map of Percent Data Loss

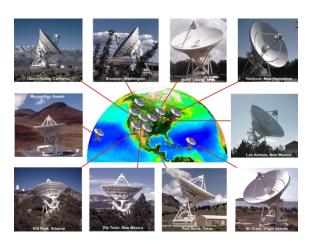
NSF ESM Unit Activities

 Represent NSF Domestically —to the National Telecommunications and Information Administration (NTIA); coordinate with the FCC, commercial companies, and other Federal Agencies


Represent NSF Internationally – serve on U.S.
 Delegations to the international preparatory meetings leading to World
 Radiocommunication Conference

Agenda Item 1.15: >275 GHz

http://www.itu.int/pub/R-REP-RA.2189-1-2018



NSF-funded Astronomy research relies on access to electromagnetic spectrum

ESM resides in MPS/AST because historically spectrum usage has been focused primarily around the needs of <u>a few large facilities</u> and <u>the National Radio Quiet Zone</u>.

Arecibo Observatory, Puerto Rico

Very Large Array, NM

Very Long Baseline Array

Green Bank Observatory National Radio Quiet Zone

NSF-funded research relies on access to electromagnetic spectrum (all Divisions)

NSF funds a wide variety of programs that <u>require usage of the radio spectrum</u> across Divisions:

- Geosciences
- Biological Sciences
- Computer and Information Science and Engineering
- Engineering
- Mathematical and Physical Sciences

Especially heavy use by these Directorates: Physics, Astronomy, Polar Programs, Atmospsheric and Geospace Sciences, Ocean Sciences and Earth Sciences.

Usage: Passive and Active

NSF ESM Coordination Group

- Formed March 2018
- Includes NSF input across all Directorates

Jonathan Williams

Chair, MPS/AST, ESM Unit

Patrick Smith

GEO/OPP

Thyaga Nandagopal

CISE/CCF

Carmiña Londoño

ENG/ECCS

Mangala Sharma

GEO/AGS

Ashley Zauderer

MPS/AST, ESM Unit

Li Yang

EHR

Nancy Lutz

SBE

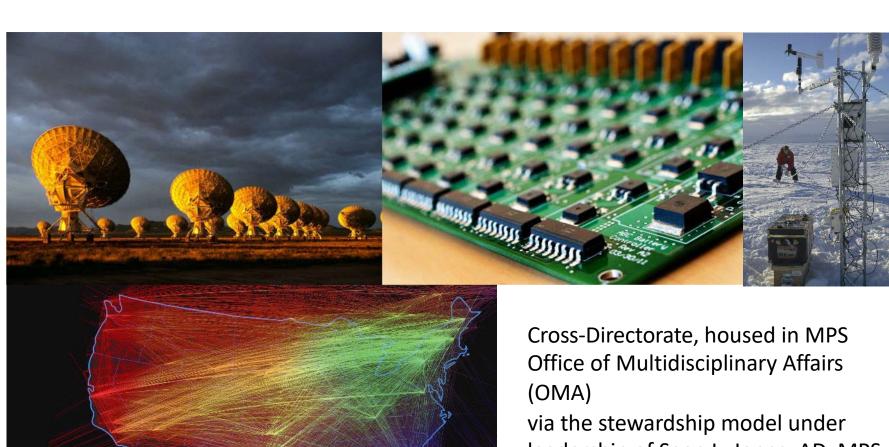
Also Contributing:

Lisa Winter (GEO)

Jenshan Lin (ENG)

Alex Sprintson (CISE)

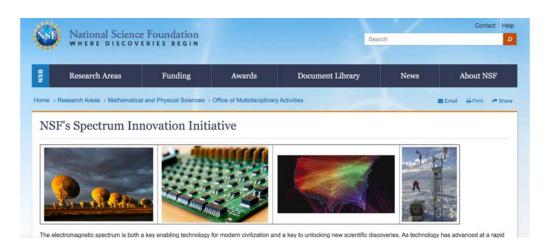
Mohammod Ali (ENG)


Larry Goldberg (CISE)

Jim Ulvestad

Chief Officer for Research Facilities,
Office of the Director

NSF's Spectrum Innovation Initiative



leadership of Sean L. Jones, AD, MPS

Spectrum Innovation Initiative

- National Radio Dynamic Zones
- National Center for Wireless Spectrum Research
- Research Integrative Activities
- Education and Workforce Development

https://nsf.gov/mps/oma/spectrum innovation initiative.jsp

NSF Goals: Innovate and Secure

- Keep protected scientific allocations as RFI-free as possible
 - Emissions may be prohibited at certain frequencies, out-of-band emissions can still be problematic
- Utilize technology developments and advancements to <u>increase</u> spectrum availability, esp. in strategic geographic locations
 - Research in advanced wireless, RFI excision techniques and receiver technology
 - "National Radio Dynamic Zone" for enhanced ESM geographical protections
- Coordination internal at NSF and external stakeholders
 - Spectrum sharing
 - Costs must be considered; resources are investment in the future

Conclusions

Physics and Astronomy Scientific Communities need to be aware of the spectrum environment and regulations:

- New technical concepts and scientific cases should demonstrate awareness of spectrum challenges
- R&D is needed
 - receiver design
 - RFI mitigation techniques
 - Dynamic quiet zones
- Regulatory change takes time (e.g. for new allocations)

Questions and Comments

esm@nsf.gov

Credit: Sophia Dagnello, NRAO/AUI/NSF; NASA, STScl

Thank you!