Thermal transport beyond the quasiparticle paradigm

Sean Hartnoll (Stanford)

Frontiers in Thermal Transport and Energy Conversion @ NAS April 2019

Quasiparticle formulae

Diffusion invented to describe thermal transport.

"Heat, like gravity, penetrates all substances in the universe."

[Fourier, 1822]

Quasiparticle picture:

$$D \sim v_{\rm qp}^2 \tau_{\rm qp} \sim v_{\rm qp} \ell_{\rm qp}$$

[Maxwell, Boltzmann, Einstein ...]

 If the same quasiparticles carry charge as well as heat then

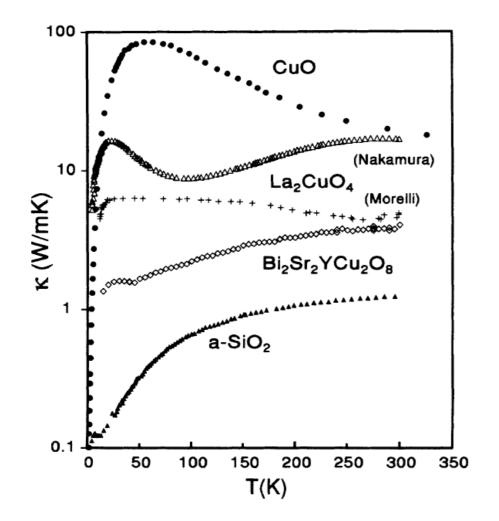
$$L \equiv \frac{\kappa}{\sigma T} \sim \frac{k_B^2}{e^2}$$

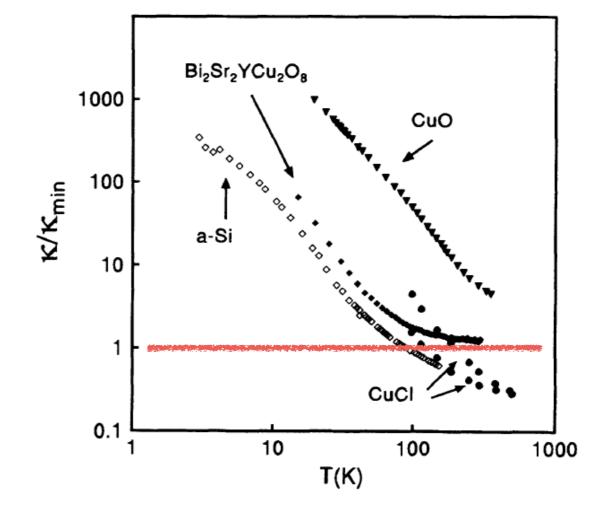
[Wiedemann-Franz, 1853]

- The emergence of well-defined quasiparticles from a quantum many body system is nontrivial (eg. in Fermi Liquid theory) and may not occur.
- Discuss evidence for non-quasiparticle physics:
 - Short mean free paths: $\ell_{\rm qp} \lesssim a, \lambda_{\rm qp}$
 - Strong violation of the WF law: $L \ll L_0$
- Non-quasiparticle physics may potentially lead to e.g. high figures of merit.

PHYSICAL REVIEW B

VOLUME 49, NUMBER 13

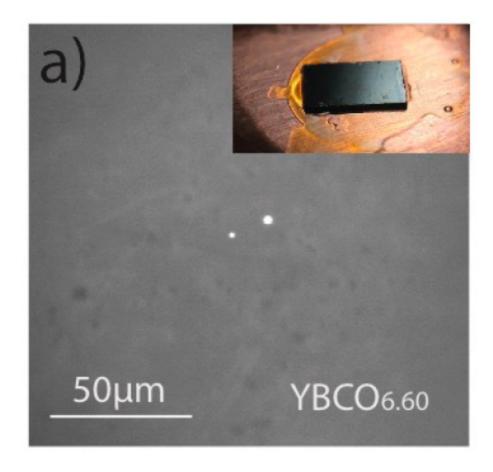

1 APRIL 1994-I


Thermal conductivity of insulating Bi₂Sr₂YCu₂O₈ and superconducting Bi₂Sr₂CaCu₂O₈: Failure of the phonon-gas picture

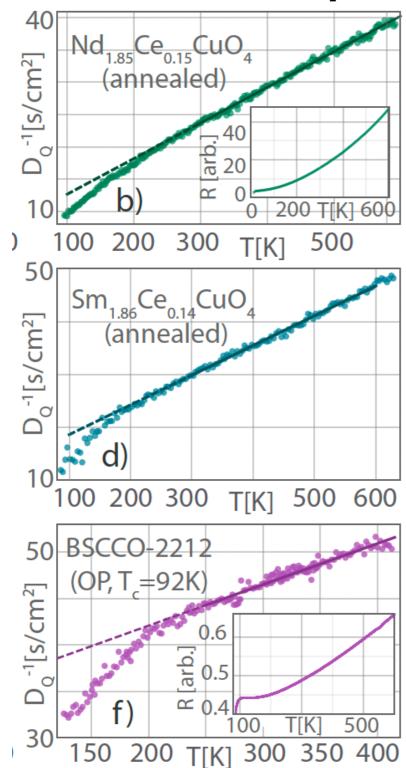
Philip B. Allen, Xiaoqun Du, and Laszlo Mihaly
Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3800

Laszlo Forro*

Department of Physics, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland (Received 28 October 1993)



Anomalous thermal diffusivity in underdoped YBa₂Cu₃O_{6+x}


Jiecheng Zhang^{a,b}, Eli M. Levenson-Falk^{a,b}, B. J. Ramshaw^c, D. A. Bonn^{d,e}, Ruixing Liang^{d,e}, W. N. Hardy^{d,e}, Sean A. Hartnoll^b, and Aharon Kapitulnik^{a,b,f,1}

^aGeballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305; ^bDepartment of Physics, Stanford University, Stanford, CA 94305; ^cLaboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853; ^dDepartment of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z1; ^eCanadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8; and ^fDepartment of Applied Physics, Stanford University, Stanford, CA 94305

Contributed by Aharon Kapitulnik, April 12, 2017 (sent for review February 28, 2017; reviewed by Kamran Behnia, Andrey Chubukov, and Andrew Mackenzie)

Thermal Diffusivity Above the Mott-Ioffe-Regel Limit

Jiecheng Zhang,^{1,2,*} Erik D. Kountz,^{1,2} Eli M. Levenson-Falk,³ Dongjoon Song,⁴ Richard L. Greene,^{5,6} and Aharon Kapitulnik^{1,2,7}

arXiv:1808.07564

$$D^{-1} \sim \frac{1}{v_s^2} \frac{k_B T}{\hbar}$$

Strongly reminiscent of widely observed "bad metal" T-linear resistivity:

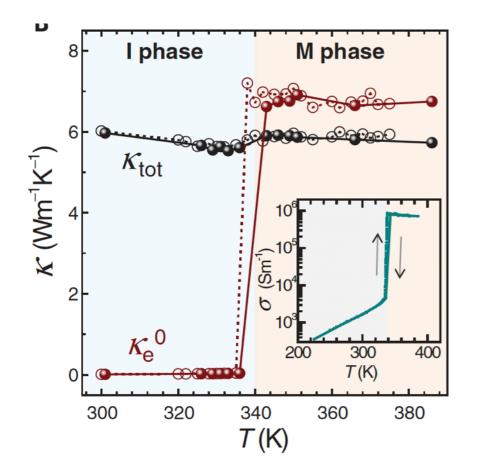
ARTICLES

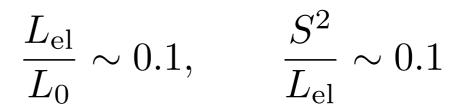
PUBLISHED ONLINE: 23 DECEMBER 2014 | DOI: 10.1038/NPHYS3174

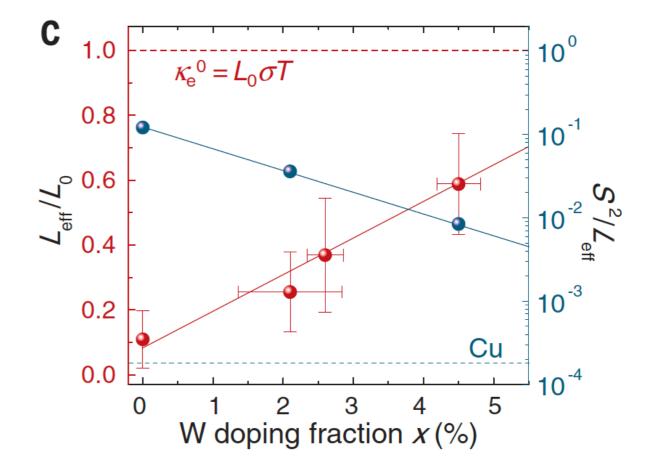
nature physics

Theory of universal incoherent metallic transport

Sean A. Hartnoll


$$D^{-1} \sim \frac{1}{v_F^2} \frac{k_B T}{\hbar}$$


SOLID-STATE PHYSICS


Science **355**, 371–374 (2017)

Anomalously low electronic thermal conductivity in metallic vanadium dioxide

Sangwook Lee,^{1,2*} Kedar Hippalgaonkar,^{3,4*} Fan Yang,^{3,5*} Jiawang Hong,^{6,7*} Changhyun Ko,¹ Joonki Suh,¹ Kai Liu,^{1,8} Kevin Wang,¹ Jeffrey J. Urban,⁵ Xiang Zhang,^{3,8,9} Chris Dames,^{3,8} Sean A. Hartnoll,¹⁰ Olivier Delaire,^{7,11}† Junqiao Wu^{1,8}†

Beyond quasiparticles

- What determines the diffusivity in the absence of quasiparticles?
- What concepts replace the quasiparticle velocity, lifetime and mean free path?
- Now discuss:
 - A general bound on diffusivity.
 - A concrete model for non-quasiparticle diffusion.

Bounding diffusion

PRL **119,** 141601 (2017)

PHYSICAL REVIEW LETTERS

week ending 6 OCTOBER 2017

Upper Bound on Diffusivity

Thomas Hartman,¹ Sean A. Hartnoll,² and Raghu Mahajan²
¹Department of Physics, Cornell University, Ithaca, New York 14850, USA
²Department of Physics, Stanford University, Stanford, California 94305, USA

PHYSICAL REVIEW LETTERS 121, 170601 (2018)

Locality Bound for Dissipative Quantum Transport

Xizhi Han (韩希之) and Sean A. Hartnoll Department of Physics, Stanford University, Stanford, California 94305, USA

A bound can identify fundamental constraints (cf. bound on efficiency of heat engines)

Key ingredients: Conservation law + locality

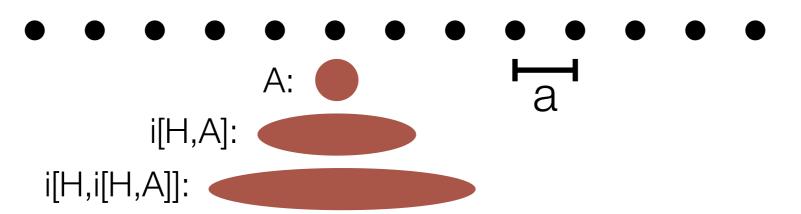
Diffusion recap

 Correlations functions of conserved densities about thermal equilibrium are strongly constrained.

[Kadanoff-Martin 63]

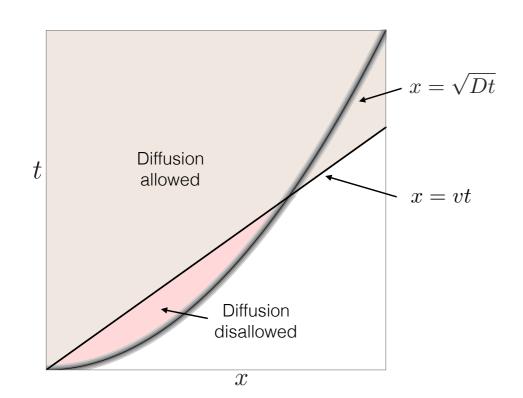
- At long times $t > \tau_{\rm th}$, excitations of non-conserved quantities have decayed. Details of their 'fast' dynamics control the transport coefficients.
- For example a single conserved density must diffuse at the longest times and distances:

$$\omega = -iDk^2$$


Lieb-Robinson velocity

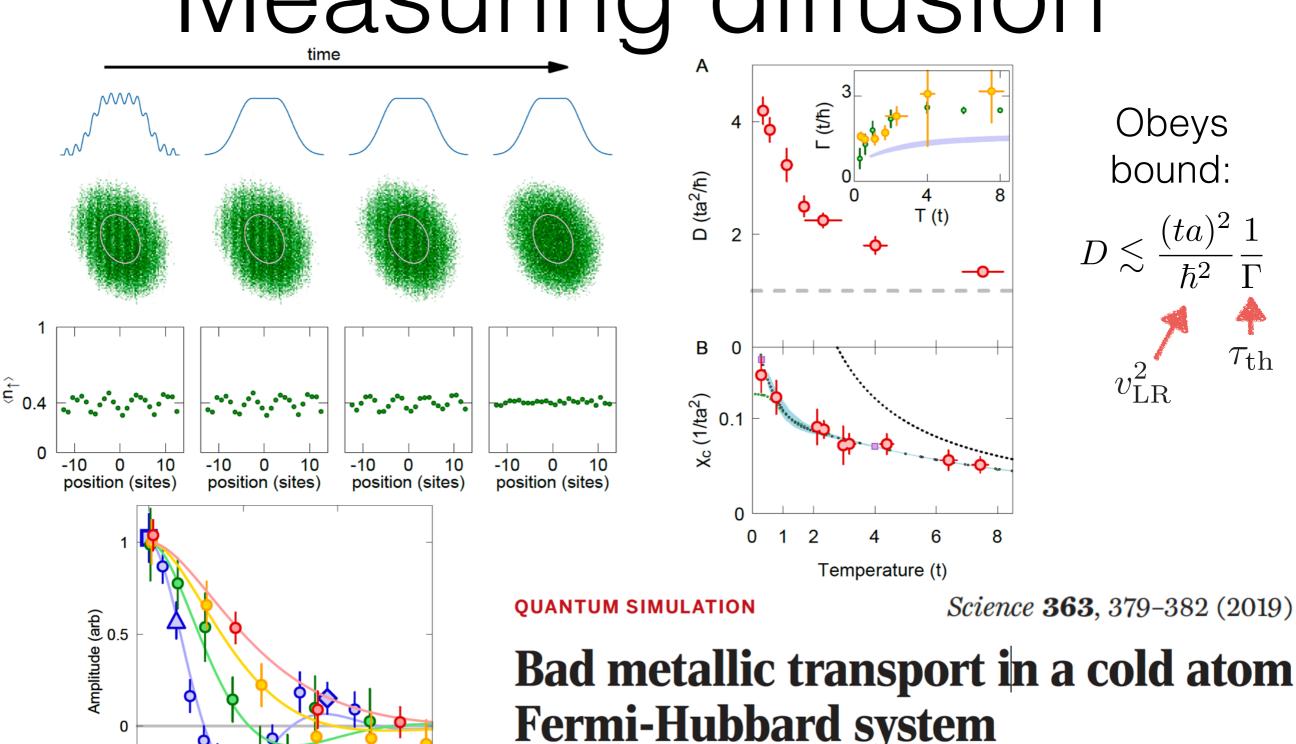
• Even non-relativistic systems have a 'lightcone': bounded propagation of signals from locality.

$$||[A(t,x),B(0,0)]|| \lesssim ||A||||B||e^{-\mu(|x|-vt)}$$
 [Lieb-Robinson 72]


Robinson 72]

- The "Lieb-Robinson" velocity: $v \sim \frac{J\,a}{\hbar}$
- This is a microscopic, state-independent velocity. It describes the growth of operators under time evolution.

Bounding diffusion


- The LR velocity clearly bounds ballistic transport (e.g. in ordered phases: V_{spin wave} < V_{LR}).
- It also bounds diffusivity: [Inspired by [Blake PRL 16]]

LR causality implies disallowed region must not be diffusive — i.e. must occur before local thermalization, so that:

$$D \lesssim v_{\rm LR}^2 \tau_{\rm th}$$

Measuring diffusion

-0.5

Time (ħ/t)

$$D \lesssim \frac{(ta)^2}{\hbar^2} \frac{1}{\Gamma}$$
 v_{LB}^2

Science **363**, 379–382 (2019)

Fermi-Hubbard system

Peter T. Brown¹, Debayan Mitra¹, Elmer Guardado-Sanchez¹, Reza Nourafkan², Alexis Reymbaut², Charles-David Hébert², Simon Bergeron², A.-M. S. Tremblay^{2,3}, Jure Kokalj^{4,5}, David A. Huse¹, Peter Schauß^{1*}, Waseem S. Bakr¹†

Beyond quasiparticles

- In systems with a finite on-site Hilbert space (spins, fermions), diffusion is bounded by:
 - The Lieb-Robinson velocity
 - The local thermalization time
- These concepts do not make reference to quasiparticles.
- Next: see this at work in an explicit model. Solvable, realistic model of non-Boltzmann transport.

High T transport

A handle on non-quasiparticle transport: High temperatures in electron systems (e.g. t << T,U in Hubbard model)

[cf. Beni PRB 74, Mukerjee-Oganesyan-Huse PRB 06, Mukerjee-Moore APL 07]

Perturbation in small t in the Hubbard model doesn't work, because the t=0 model is extensively degenerate.

Bad metallic transport in a modified Hubbard model

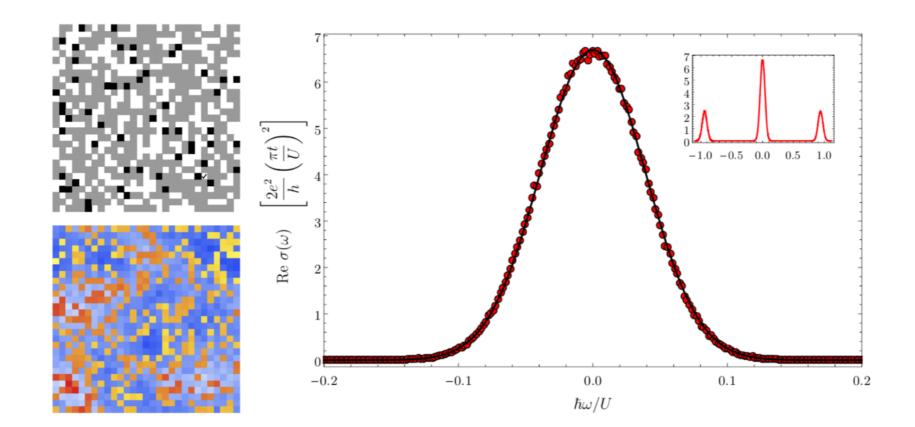
Connie H. Mousatov, Ilya Esterlis, Sean A. Hartnoll

arXiv:1803.08054

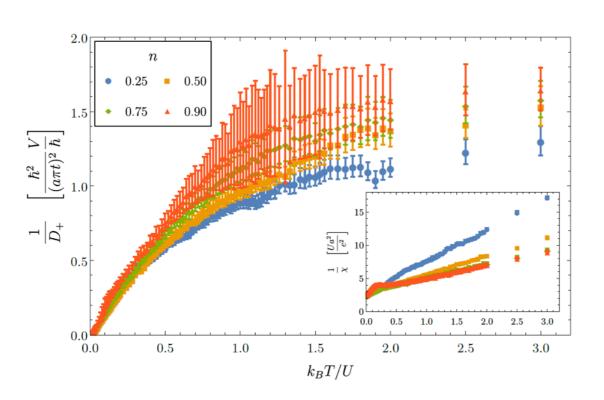
Restore exponential interactions:

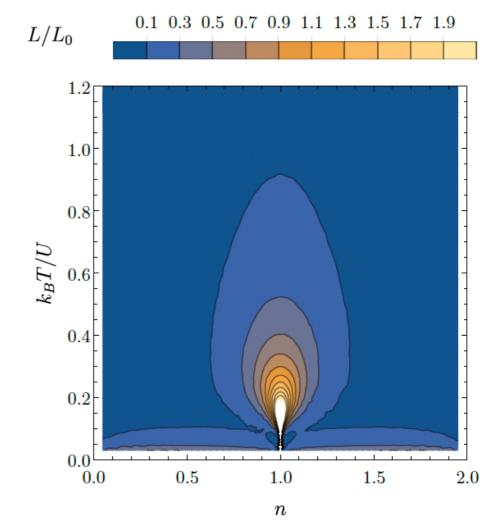
$$H = t \sum_{\langle ij \rangle, s} c_{is}^{\dagger} c_{js} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} + \frac{V}{2} \sum_{i \neq j} e^{-|\vec{x}_i - \vec{x}_j|/\ell} n_i n_j.$$

$$\ell > \ell_{\star} \approx 1.76a$$


Beyond quasiparticles

Transport: Hopping in an emergent disordered landscape:


$$\operatorname{Re}\sigma(\omega) = \frac{2e^2}{h} \frac{(\pi t)^2}{\hbar} \frac{1 - e^{-\beta\hbar\omega}}{\hbar\omega} \sum_{\{n\}} \frac{e^{-\beta(E_{\{n\}} - \mu N_{\{n\}})}}{\mathcal{Z}} \frac{a^2}{\operatorname{vol}} \sum_{i,s} \Delta_{is}(\omega)$$


Classical Monte-Carlo:

[cf. Beni 74]

Beyond quasiparticles

At high T: $D \sim \frac{(at)^2}{\hbar^2} \frac{\hbar}{V}$

Reason for $L \ll L_0$: at high T, chemical potential $\mu \sim T$

$$\Rightarrow \vec{Q} = \vec{J}_E - \mu \vec{J} \sim T \vec{J}$$

Heat and charge currents proportional: $\kappa = \overline{\kappa} - \frac{\alpha^2 T}{\sigma} \ll \overline{\kappa}$

Future challenges

- Phonons absent from theoretical discussion above:
 - Lieb-Robinson velocity not defined for infinite on-site Hilbert-space. Use butterfly velocity instead? (connection to quantum chaos).
 - High T expansion for transport more complicated.
- The bound does not tell you what the thermalization time $\tau_{\rm th}$ actually is. Is the value $\tau_{\rm th} \sim \hbar/k_BT$ special?

Two remarks

1. The cancellation $\kappa = \overline{\kappa} - \frac{\alpha^2 T}{\sigma} \ll \overline{\kappa}$, leading to dramatic violation of the WF law, occurs whenever the electric and heat currents become proportional.

A further circumstance where this occurs naturally is deep in a hydrodynamic regime, where both electric and heat currents are proportional to a collective velocity field:

$$\vec{\jmath} = n\vec{v} + \cdots, \qquad \vec{q} = s\vec{v} + \cdots$$

PHYSICAL REVIEW B 88, 125107 (2013)

Non-Fermi liquids and the Wiedemann-Franz law

Two remarks

2. There exist fluctuation corrections to classical diffusion. Nonlinear because thermal diffusivity D itself is a function of T.

Full consistent theory of these fluctuations:

PHYSICAL REVIEW LETTERS **122**, 091602 (2019)

Theory of Diffusive Fluctuations

Xinyi Chen-Lin, Luca V. Delacrétaz, and Sean A. Hartnoll Department of Physics, Stanford University, Stanford, California 94305-4060, USA

The magnitude of the fluctuations is controlled by $1/(c\ell_{\rm th}^d)$ In non-quasiparticle diffusion, $\ell_{\rm th} \to a$ or possibly smaller Fluctuation effects may become significant.

Conclusions

- Non-quasiparticle concepts are likely necessary to get a handle on quantum materials, and suggest the possibility of exotic material properties.
- The Lieb-Robinson velocity and the local thermalization time constrain diffusion (with or without quasiparticles).
- High temperature expansions can give an intuitive, tractable model of non-Boltzmann transport.
- Need to extend these ideas to phonons and understand constraints on thermalization time.