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Engineering
How to get from memristors to neuromorphic computing?
What qualifies as a nheuromorphic process?
A memristor is a nonlinear dynamical system

Two types of memristors: nonvolatile and ‘locally active’

Examples of mem-elements and computation using them



neuroscience < ‘neuromorphic computing’ Far] oo e vnensir

Engineering
1940 1960 1980 2000 present -
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From “A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic
computing applications.” C. D. James, et al. Biologically Inspired Cognitive Architectures (2017)



The Chua Lectures: A 12-Part Series with HP Labs _ Eﬁ;ﬁ&ﬁéé‘ﬁ“ﬁg

From Memristors and Cellular Nonlinear Networks to the Edge of Chaos
https://www.youtube.com/playlist?list=PLtS6YX0YO0X4eAQ6IrOZSta3xjRXzpcXyi

or enter “The Chua Lectures” into your favorite browser

L

‘Linearize then analyze’ is not valid for I I
understanding nanodevices or neurons -
a nhonlinear dynamical theory of
electronic circuits is needed, and was
developed 50 years ago by Leon Chua.

The memrristor is one of many nonlinear |
dynamical circuit elements with memory! I |



https://www.youtube.com/playlist?list=PLtS6YX0YOX4eAQ6IrOZSta3xjRXzpcXyi

Mathematical (Axiomatic) Definition of a Memristor:

v=R (W, |)| Quasi-static conduction eq. — Ohm'’s Law
dw : . . .
—— = T (w,1) Dynamical eq. — evolution of state under stimulus

dt

L. O. Chua, “Memristor - the missing circuit element,” IEEE Trans. Circuit Theory 18, 507-519 (1971).
L. O. Chua and S. M. Kang, "Memristive devices and systems," Proc. IEEE, 64 (2), 209-23 (1976). —

w Is the state variable (or variables)

Instead of a disembodied mathematical entity, w should
describe real physical properties of the circuit element

Need to use correct physics so that it applies in this universe!



Memristors have ‘pinched’ hysteresis loops

When driven by a cyclic voltage or current

Nonvolatile Memristor Locally Active Memristor
- Digital memory/storage device - “Selector” in crossbar memories
- Synapse in neuromorphic circuit - Emerging neuronal computing devices
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Find or Invent Materials that Posses Memristance: Engineering

Nonvolatile: Locally Active:
‘Synaptic’ ‘Neuronic’
State stored as resistance State transmitted as spike
Continuously variable Threshold switching, NDR
Real numbers Looks digital
Memory and storage Gain, logic, chaos
ReRAM, PC RAM, STT RAM Mott transitions, mobile ions
Ta0,, Ge,Sb,Tes, magnetics VO, & NbO,, molecular redox, CDW,

ionic diffusion
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Memristor Crossbars for Computational Acceleration
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Dot Product Engine: memristor arrays accelerate _ Engineering
vector-matrix multiplication

Input % - - Parallel multiply & add through Kirchoff's and Ohm’s laws
Voltage . '\G'Z’M. \;{’}- \;{/}« 1961, K. Steinbuch “Die Lernmatrix“— suggests using “ferromagnetic toroids”
vector : “GZ@ R - - Memristors as highly scalable, tunable analog resistors
" r; r{\?_‘L rg‘; High ON/OFF ratio (~10°), supporting multiple levels
Output w v Ve 2 - Well suited for streaming workloads like neural nets

0— YA
current [9=3%, G; "V, . Many ways to scale up

Memristor levels, array size, wire pitch, 3D layer, DAC/ADC speed &
width etc.

- Performance (execution time) improvements >1000x and
energy efficiency >100x over GPUs for particular applications
« Commercial products in development




Memristor-Based Analog Computation and Neural Network Jy E);:Sg;\i&r:ﬁeuzvr?ﬁg
Classification with a Dot Product Engine |

Miao Hu, Catherine E. Graves, Can Li, Yunning Li, Ning Ge, Eric Montgomery,
Noraica Davila, Hao Jiang, R. Stanley Williams, J. Joshua Yang,* Qiangfei Xia,*
and John Paul Strachan*

Adv. Mater. 2018, 1705914

- . gs . . i ~90 i
MNIST digit classification, single layer network Crude system with ~2% bad devices
(b)SIB ' " = Software I | (C) 1 ) .. .
36 = Experimental (in.corr) y | Vector-matrix multiplication:
< a4 niiol ~8x 4 bit digital ASIC
£ >
E 32 — § 07+
3 3 Ll
% 2,3 S osf Full inference output (estimated):
& .
5 26 | & 957 15x inference rate
o = . .
1Y) S I - S| 5.5x power efficiency
03+ . .
= & 1 8 ) 7.5x area efficiency
> a9} ’
48 { % g . .
a7l L 0 | | Significant improvements over time
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
Digit to Classify Digit to Classify



IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 26, NO. 1, JANUARY/FEBRUARY 2020

Photonic Multiply-Accumulate Operations for A Engineering
Neural Networks

Mitchell A. Nahmias™, Thomas Ferreira de Lima"’, Alexander N. Tait*”, Hsuan-Tung Peng ",
Bhavin I. Shastri, Member, IEEE, and Paul R. Prucnal, Fellow, IEEE

o : 4-bit Analog Photonic Care g TABLE 1
E 1077 ] . CoMPUTE DENSITY PERFORMANCE FOR IDEALIZED ELECTRONIC AND
R Sub-A Nanophotonics Pruoronic MaTrIX CORES WITH N = 1024, SUBIECT TO
1040 4 . A g 2
3 ] ® PowER DENSITY <1 W /mm
£ 104 ] 7
2 ] Co-integrated Silicon Photonics
g 1073 ° Noise Energy Compute Density
o 1017 Hybrid Spiking Laser TEE.].I]I]I'HE}' 3
g [ Precision | (aJ/MAC) (PMACSs/s/mm=)
g 1o JprmTTT T , )
5§01 ey Groae | ® M2l Approach Electronic 4 bit 4.0 250
10 4 idia i )
] R ) S, Crosshar % hit 5.0 198
104 = r—r=rrr—r—frrr—r——frr—— T[T T T— T
107 107 107F 1077 107 107F 107 1077 107 Photonic 4 bit 2.0 513
Efficiency (J/MAC)
Core 8 bit 81.9 122
Fig. 7. Comparison of deep leaming hardware accelerators with photonic
platforms discussed in Section V1, modified from Ref. [7]. Photonic systems can . .. .
support high bandwidth densities on-chip while consuming minimal energy both At 8 blt preC|S|on a memristor CrOSSba r has 16X
transporting data and performing computations. Metrics for digital electronic . .
architectures taken from varous sources [12], [124]-[127]. Also included are better energy efflClenCy and CompUte denSIty
b log limits for photonic and el i i ith N = 1024 and e .
£'bits of precision, from Table L cores o than an optimized photonic system.



Solving matrix equations in one step with cross-point TEXAS AL UNIVERSITY
. L. Engineering
resistive arrays -

Zhong Sun?®, Giacomo Pedretti®, Elia Ambrosi®, Alessandro Bricalli®, Wei Wang?, and Daniele lelmini®!
“Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milana, 20133 Milan, Italy

Edited by Eli Yablonovitch, University of California, Berkeley, CA, and approved January 17, 2019 (received for review September 11, 2018)

Proceedings of the National Academy of Sciences 116, 4123-4128 (2019)

General idea: run a dot product engine in reverse!

Store matrix as conductance values in crossbar

Inject currents corresponding to b values into columns
After transients dissipate, measure voltages on rows (x)
Can speed up any linear algebra operation by n?

Highly parallel and reversible - almost no energy

Can sweep inputs and look for nulls dynamically
Precision can be improved by iteration with small cost

Can solve Ax=b for known A and b in O(1)
Can find maximal eigenvalue in O(1)

Can solve 15t order ODEs in O(1)

Can compute AB and A in O(n)
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Hopfield Network solving 60-node el £ ering
b

max-cut problems (NP) a ryeryssssrms bl rm——
using noise

Optimal decaying noise | annealing
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Harnessing Intrinsic Noise in Memristor Hopfield _ .
- Engineering

Neural Networks for Combinatorial Optimization

Fuxi Cai'*", Suhas Kumar"’, Thomas Van Vaerenbergh'’, Rui Liu'#, Can Li', Shimeng Yu*,
Qiangfei Xia®, J. Joshua Yang®, Raymond Beausoleil', Wei Lu’, and John Paul Strachan’

https://arxiv.org/abs/1903.11194

Table 1. Comparison of the mem-HINN and cwrent state-of-the-art annealing accelerators, such as a GPU implementation of the
noisy mean-field algorithm!?, our own sinmlations using the previously suggested® parallel tempering implementation on a CPU
(cfr. SM 1.8.3) and experimental results for the D-wave annealer and the measurement-feedback CIM discussed in Ref®. A hybrid

I

update mechanism wpdates some, but not all the nodes at a given iteration

mem-HNN (zeq.) | mem-HNN (par.) NAFA PTUFD Dr-wrave 20000 CTA
memristor i GPUT single-core CPT | su itz | fiber-optics

Clock frequency 1 GH= 1GH= 1.582 GH= 26 GH= 1 GH=
Annealing time Typp 300 ns 300 ns 123 ms (N =100} X3 6us 1 ms{MN=53) 150 us
Time-to-zolution 33ps 0.3 us 10 s 223 6us 10* s (N=55) 600 s
Power 56 mW T92 mW <250W 20 W 25 KW
Energy-to-solution 0.22 uld 022 ul =2 5ml 4 mT 250m17
Solutions/s Watts 4.6 = 105 4.6=10° = 400 250 41079
TUpdate mechanizm hybrid hybrd asynchronous asynchronows synchronous asynchromons
Connectivity all-to-all all-to-all all-to-all all-to-all Chimera all-to-all
Scahng pry as N as N ae N as BN as BN as N
Cryvogenic cooling no o no no ves oo
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Dynamical measurements:

oscillations, neuristors, chaotic attractors




Integrated NbO, (Mott) Memristor and Capacitor

Engineering

—____-—-—————_~~
- ~\

Pt top electrode

“ Thermal
Design

R4Ci, 0.1 ns
R, =105 K/W
| C, <1026 )/K




Measured (solid) and calculated (dashed) V-I curves for CC EXAS ARM UNIVERSITY

- Engineering
0] 0.2 0.4 0.6
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G Gibson et. al., Appl. Phys. Letts. 108 (2016)
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Locally-active memristor model for S-type NDR W Froineering

Temperature (State) Dependent Ohm’s Law: 3D Frenkel-Poole Conduction Model

o , kaT\ pVF 3 ao(T)F
P.TT — ]_( — ’1' —_— l 1 _l chfuf '
JIE.T) = oF = gyl )< ﬁ) { (m{g’f' ){ } 3

N 2 Btk
ao(T) = euN, (ﬁ) ¢ T

!

Dynamical Equation: Newton’s Law of Cooling (Sasha Alexandrov Model)

dl'y Ty — Tn , Negative Differential Resistance (Local Activity)
th= 1 - R, -1V is a result of feedback among thermally activated
o transport, Joule heating and heat transport!

~

G Gibson et. al., Appl. Phys. Letts. 108 (2016) What happened to the Mott transition?



‘DC’ Electrical Characterization of a NbO, ‘Mott” Memristor TEXAS ABM UNIVERSITY
Engineering

Experimental V-l Data

o

Data collected by slowly sweeping
current and measuring voltage.

Pushed to much higher currents
and thus internal temperatures.

See two ‘NDR’ regions!

Current (mA)
o -
U1

_ 200 Sweep
voltage

00 05 1.0 :u )
Voltage (V) v
I e |




New tools for experiments:

. TEXAS A&M UNIVERSITY
Therm.oreflectance Imaging of NbO, current source KM Engineering
beh\a}wor
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namre . LETTERS TEXAS A&M UNIVERSITY
materlals PUBLISHED ONLINE: 16 DECEMBER 2012 | DOL 10.1038,/NMAT3510 A'Il'd _ Engineering

A scalable neuristor built with Mott memristors (NbO,)

Matthew D. Pickett*, Gilberto Medeiros-Ribeiro and R. Stanley Williams

H Super-threshold input AV =03V

‘integrate and fire’ pulse * v
amplifier for threshold logic @
and communication hd

Cell body

| mput

Axon

{
§ Superthreshold cutput AV=033V

7 |'|I Sub-thresholdinput AV =02V

J'kb-thramumput AV =28 mV

T T T T T T
i) 50 100 150 200 250 300
Tirme {us)




ARTICLE

ot 1esess/mssc as-aress KEIEEY

Biological plausibility and stochasticity in scalable
VO, active memristor neurons

Wi Yi !, Kemne K Tmang® |, Stephen K_ Lam!, Xiwesi Bai!, ladk A Crowslll & Biss A Flares!

a  Tonlcneunn b Phesicneuron
Tonic spiking Phasic splking “Here we report that
Tanic: bursting (Cilass 3 axchabia) . .
o — P neurons built with nano-
== Febound burt scale vanadium dioxide
Bistzolity Rafractory pered Thrashold variabiiity . .
oo vaset gy E"“ﬁ"&ﬁ'ﬂ?m g active memristors possess
Excation biock _ all three classes of
It W Output ey P Cutput . -
fﬂ'] % .:J %x; ol %ﬂn ol %k excitability and most (23)
+ ~Etia £ . H
K *i"- | o= . of the known biological
= e neuronal dynamics, and are
Mauron H H H )
S intrinsically stochastic.
Ingut T"r‘v]'- "-H‘; Dhutput
Gl o W™ Wei Yi et al., HRL!
“J Ha T



Memristors with diffusive dynamics as synaptic IT: [venteiraii

. . Engineering
emulators for neuromorphic computing |
Zhongrui Wang'', Saumil Joshi'", Sergey E. Savel'ev?, Hao Jiang’, Rivu Midya', Peng Lin', Miao Hu?,
Ning Ge?, John Paul Strachan?, Zhiyong Li?, Qing Wu*, Mark Barnell®, Geng-Lin Li®, Huolin L. Xin®,
R. Stanley Williams?, Qiangfei Xia' and J. Joshua Yang'™
NATURE MATERIALS 2017
Emulating Ca ions in biosynapses with Ag in Oxides lon dynamics produce synaptic plasticity
Quantitative models mirror experiments
a Extracellular Ca?* € s - . 20
CaZ Ca?) Ca?) Ca? . _lfl PPF PPD | PPD N
L L L A 4 {0Hz 121 5000k 1 196 Hz g
] PPDD e L 15
2 31
L1 1 LLF ' L1 Q
( yNNHNHHHHH ~. ( .
{0\ CE '?f??e‘?f???i??f??? WSCE// S 7
S0000000000008 el ’.\ >
\ 4/ K © }
@ @
(%2 0-
Intracellular Ca2+ Ag filament between 0.0 02 0.4 06 0.8 10 12

nanoclusters Time (s)

(W) U



Fully memristive neural networks for pattern T [
.po . . . . Engineering
classification with unsupervised learning -

Zhongrui Wang"é, Saumil Joshi©'6, Sergey Savel'ev?, Wenhao Song', Rivu Midya', Yunning Li’,
Mingyi Rao', Peng Yan', Shiva Asapu’, Ye Zhuo®', Hao Jiang', Peng Lin', Can Li®", Jung Ho Yoon',
Navnidhi K. Upadhyay’, Jiaming Zhang3, Miao Hu®3, John Paul Strachan3, Mark Barnell4, Qing Wu?*,
Huaqgiang Wu®5, R. Stanley Williams*, Qiangfei Xia™ and J. Joshua Yang ©™

NATURE ELECTRONICS | VOL 1| FEBRUARY 2018 | 137145 |

Emulate a leaky integrate and fire neuron Unsupervised learning in all-memristor network
b | ey o
@ %‘ i i " A g 07 Pooling and signal conversion
ST N e T § 1o
| L N ) £1610|0] 6|00 8
EE’ E' ---------- i i ; U_;J 12345678 Wﬁiiﬁ’&’&ﬁ‘&
= 1 . 4
(.-::% :_ Pulse number -i—l & y &i && & &




Robust resistive memory devices using solution-processable TEXAS ABM UNIVERSITY

metal-coordinated azo aromatics, S. Goswami et al. AM Engineering
Nature Materials 16, 1216-1224 (2017) Switching is field driven
~ e o = 7
| \x <. I device structure - - si.C ;:E; 10 ?;’\ '
P e, 2
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A self oscillating molecular-film device (Memrisys 2019) TEXAS ABM UNIVERSITY

Sreetosh Goswamy and T. Venkatesan, NUS outpur carrede AM Englneerlng
w Our device
=-- ---I:Our device RS:SOOkQ E E
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0.8
€06
S04

0.2

0 2 4 6 8 10 12

Time(micro sec ]
Zone-2: 18 microA to 300 microA (~ 11 MHz)

VI

400




Dynamical nonlinear memory capacitance in
biomimetic membranes

Joseph S. Najem® 2, Md Sakib Hasan?, R. Stanley Williams® *, Ryan J. Weiss®, Garrett S. Rose?,
Graham J. Taylor® >, Stephen A. Sarles' & C. Patrick Collier®

NS | (2019102239 | httpsy Adoiorg NON03 8/ s41467-019-112.22-8

Reductionist biology: simplest cell model Signal processing via
.,__Mmemcapacitance
Organic o T T T T
— 0T Hz :
or o E:-::?H:t i/

|
f a
|
3 -100 W, ~—140 mV i
— |
9 ol vV, =0mv i
0] ;
|
|
_ssol :
|
|

0.2 01 0 0.1 0.2

TEXAS A&M UNIVERSITY
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Need to revise the
Hodgkin-Huxley Model?

Quantitative modeling

d seee Exp —— Niodel

1E C10 — 0.17 Hz
0 20 40 50
T
1.4
o 1
o 1.2
1 C10 — 0417 Hz
0 10 20
Time {s)



Chaotic oscillations in the NbO, S-NDR

(a) ‘\/\/\, (b) 800 V,,=1.20V
1 kQ < ]
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S. Kumar et al., Nature (2017)

TEXAS A&M UNIVERSITY
iF‘ - Engineering

Extreme voltage sensitivity —
oscillation amplitudes, frequency
and regularity —

sinusoidal, chaotic and random )
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Locally active memristors at edge of chaos for computation




IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS_I: REGULAR PAPERS |1 press

Theoretical Foundations of Memristor Cellular
Nonlinear Networks: Memcomputing
With Bistable-Like Memristors

Ronald Tetzlaff, Senior Member, IEEE, Alon Ascoli™, loannis Messaris, and Leon O. Chua, Fellow, IEEE

I:'|"|'__| + !:".ii + | m-:' I-,_| IE.F rII'.I|-|_-, rll:llll-_f | - |!-I'-u_-.-\. E'i_h-ll !_r I:. !'It'll.; +
|'_-|:I-.I LN L] p}ul. i %
E-TLT : |;n||__| R'n-'
- » * L E L 4 _

A single cell of a cellular nonlinear neural network
Power, capacitor, memristor(s), inputs and outputs

TEXAS A&M UNIVERSITY

“"F‘ - Engineering

By itself, this cell
will settle into a
stable steady state
- it will ‘8o to sleep’
If the memristor is
on the ‘edge of
chaos’, connecting
two or more cells
with resistors will
‘wake them up’




Constructing a Cellular Nonlinear Network

X;; - state/ y; - output

A & & & 0
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Attractor based computing
with a
Cellular Neural Network
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"\F' - Engineering

Wolfram Global Problem

Most neural networks rely on
multidimensional minimization
techniques. That is like driving
around on a mountainous
terrain with no roads and no
maps, always trying to figure
out which way is ‘down’.

Yoshio Bengio, Deep Learning Summer School, Aug. 15, 2015



‘volcano in a basin’
p— —— Strange Attractor-based

computing is more like flying

<— The transient chaotic
trajectory of a nonlinear
dynamical system

~106° faster than
random search



Memristors, Nonlinear Dynamics,

Neuromorphic Computing

Computation (Brain Inspired and Other)

Turing O-machines

Multinary Logic (ternary and higher)
Neural Networks (of all kinds)
Hebbian Learning, STDP
Boltzmann/Ising Machines
Hopfield Networks (NP problems)
Bayesian Inference, Markov Chains

Nonlinear Dynamical Circuit Theory

Principle of Local Activity

Oscillators and Amplifiers (e.g. neuristors)
Chaos and Edge of Chaos

Complexity and Emergent Phenomena
Connection to Non-equilibrium Thermo

TEXAS A&M UNIVERSITY
EF" Engineering

Electro-lono-Thermo-Device Physics

Drift-Diffusion-Thermophoresis
Thermally activated transport
Phase Transitions (e.g. Mott)
Negative Differential Resistance
Negative Differential Capacitance
Non-equilibrium Thermodynamics
Spontaneous Symmetry Breaking

Materials Science and Discovery and Design

Materials by Design and Discovery
Correlated Electronic and Spin States
Topological Properties of Materials
Tailored Bulk and Interface Properties
Nanoscale Structural Phenomena
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