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How to get from memristors to neuromorphic computing?

What qualifies as a neuromorphic process?

A memristor is a nonlinear dynamical system

Two types of memristors:  nonvolatile and ‘locally active’

Examples of mem-elements and computation using them
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From “A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic 
computing applications.” C. D. James, et al. Biologically Inspired Cognitive Architectures (2017)

neuroscience ↔ ‘neuromorphic computing’

Enabled by 
Linear Algebra 
Accelerators:
GPU and TPU

spiking, SyNAPSE, 
True North, Loihi,
Tianjic

Nonlinear 
dynamical systems,
Chaotic attractor 
based computing 
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From Memristors and Cellular Nonlinear Networks to the Edge of Chaos
https://www.youtube.com/playlist?list=PLtS6YX0YOX4eAQ6IrOZSta3xjRXzpcXyi

or enter “The Chua Lectures” into your favorite browser

‘Linearize then analyze’ is not valid for 
understanding nanodevices or neurons –
a nonlinear dynamical theory of 
electronic circuits is needed, and was 
developed 50 years ago by Leon Chua.

The memristor is one of many nonlinear 
dynamical circuit elements with memory!

The Chua Lectures:  A 12-Part Series with HP Labs

https://www.youtube.com/playlist?list=PLtS6YX0YOX4eAQ6IrOZSta3xjRXzpcXyi


Mathematical (Axiomatic) Definition of a Memristor:

iiwRv ),(=
( , )dw f w i

dt
=

Quasi-static conduction eq. – Ohm’s Law

Dynamical eq. – evolution of state under stimulus

w is the state variable (or variables)

Instead of a disembodied mathematical entity, w should 
describe real physical properties of the circuit element

Need to use correct physics so that it applies in this universe!

L. O. Chua, “Memristor - the missing circuit element,” IEEE Trans. Circuit Theory 18, 507–519 (1971).
L. O. Chua and S. M. Kang, "Memristive devices and systems," Proc. IEEE, 64 (2), 209-23 (1976). –



Memristors have ‘pinched’ hysteresis loops

Nonvolatile Memristor
- Digital memory/storage device
- Synapse in neuromorphic circuit

Locally Active Memristor
- “Selector” in crossbar memories
- Emerging neuronal computing devices

When driven by a cyclic voltage or current

Differen
t states 
at v=0

Voltage sweep
of NbO2
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Find or Invent Materials that Posses Memristance:   

Nonvolatile:
‘Synaptic’
State stored as resistance
Continuously variable

Real numbers
Memory and storage
ReRAM, PC RAM, STT RAM
TaOx, Ge2Sb2Te5, magnetics

Locally Active:
‘Neuronic’
State transmitted as spike
Threshold switching, NDR

Looks digital
Gain, logic, chaos
Mott transitions, mobile ions
VO2 & NbO2, molecular redox, CDW, 
ionic diffusion
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Memristor Crossbars for Computational Acceleration
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• Parallel multiply & add through Kirchoff’s and Ohm’s laws
1961, K. Steinbuch “Die Lernmatrix“– suggests using “ferromagnetic toroids”

• Memristors as highly scalable, tunable analog resistors
High ON/OFF ratio (~105), supporting multiple levels

• Well suited for streaming workloads like neural nets

• Many ways to scale up
Memristor levels, array size, wire pitch, 3D layer, DAC/ADC speed & 
width etc.

• Performance (execution time) improvements >1000x and 
energy efficiency >100x over GPUs for particular applications

• Commercial products in development

Ij
O= ∑i Gij

. Vi
I

Input 
Voltage 
vector

Output 
current

Dot Product Engine:  memristor arrays accelerate         
vector-matrix multiplication
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MNIST digit classification, single layer network Crude system with ~2% bad devices

Vector-matrix multiplication:
~8x 4 bit digital ASIC

Full inference output (estimated):
15x inference rate
5.5x power efficiency
7.5x area efficiency

Significant improvements over time
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At 8 bit precision a memristor crossbar has 16x 
better energy efficiency and compute density 
than an optimized photonic system.
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Proceedings of the National Academy of Sciences 116, 4123-4128 (2019) 

Can solve Ax=b for known A and b in O(1)
Can find maximal eigenvalue in O(1)
Can solve 1st order ODEs in O(1)
Can compute AB and A-1 in O(n)

General idea:  run a dot product engine in reverse!

Store matrix as conductance values in crossbar
Inject currents corresponding to b values into columns
After transients dissipate, measure voltages on rows (x)
Can speed up any linear algebra operation by n2

Highly parallel and reversible - almost no energy 
Can sweep inputs and look for nulls dynamically
Precision can be improved by iteration with small cost 



13

Hopfield Network solving 60-node
max-cut problems (NP)
using noise
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https://arxiv.org/abs/1903.11194
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Dynamical measurements:  

oscillations, neuristors, chaotic attractors
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Integrated NbO2 (Mott) Memristor and Capacitor

Thermal 
Design
RthCth ≤ 0.1 ns
Rth ≥ 106 K/W 
Cth ≤ 10-16 J/K

SiO2

W bottom electrode

SiNx

Pt top electrode

TiN

TiN
Nanovia

NbOx

Tamb

TN

C
e

≤ 0.1 nF
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Measured (solid) and calculated (dashed) V-I curves for CC-NDR 
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Temperature (State) Dependent Ohm’s Law:  3D Frenkel-Poole Conduction Model

Dynamical Equation:  Newton’s Law of Cooling (Sasha Alexandrov Model)

G Gibson et. al.,  Appl. Phys. Letts. 108 (2016) 

Locally-active memristor model for S-type NDR

Negative Differential Resistance (Local Activity)
is a result of feedback among thermally activated 
transport, Joule heating and heat transport!

What happened to the Mott transition?
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Experimental V-I Data

S-NDR (Alexandrov)

Mott transition

‘DC’ Electrical Characterization of a NbO2 ‘Mott’ Memristor

Data collected by slowly sweeping 
current and measuring voltage.

Pushed to much higher currents 
and thus internal temperatures.

See two ‘NDR’ regions!

Sweep 
voltage
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New tools for experiments:
Thermoreflectance Imaging of NbO2 current source 
behavior

S Kumar et al., Nature Communications (2017)

Expt

Model
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(NbO2)

‘integrate and fire’ pulse 
amplifier for threshold logic 

and communication 
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Wei Yi et al., HRL!

“Here we report that 
neurons built with nano-
scale vanadium dioxide 
active memristors possess 
all three classes of 
excitability and most (23) 
of the known biological 
neuronal dynamics, and are
intrinsically stochastic.”
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2017

Emulating Ca ions in biosynapses with Ag in Oxides Ion dynamics produce synaptic plasticity
Quantitative models mirror experiments
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Emulate a leaky integrate and fire neuron Unsupervised learning in all-memristor network
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# Devices Top Electrode 
Size (um)

122 100
47 80
38 60
29 40
31 20
26 10
28 1

Total- 321

Switching energy ~6aJ

reproducibility – 321 devices

Switching is field driven

endurance & stability

Robust resistive memory devices using solution-processable 
metal-coordinated azo aromatics, S. Goswami et al. 
Nature Materials 16, 1216–1224 (2017)

device structure
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A self oscillating molecular-film device (Memrisys 2019)
Sreetosh Goswamy and T. Venkatesan, NUS

800 kΩ1000 kΩ
Integrate and Fire!

Potentiation!

RS=800kΩ
RS=1MΩ

Single device bistable oscillator
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Reductionist biology: simplest cell model Signal processing via 
memcapacitance 

Quantitative modeling

Need to revise the 
Hodgkin-Huxley Model?
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Chaotic oscillations in the NbO2 S-NDR

2
8

Extreme voltage sensitivity –
oscillation amplitudes, frequency
and regularity –
sinusoidal, chaotic and random
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Locally active memristors at edge of chaos for computation
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A single cell of a cellular nonlinear neural network
Power, capacitor, memristor(s), inputs and outputs

By itself, this cell 
will settle into a 
stable steady state 
– it will ‘go to sleep’

If the memristor is 
on the ‘edge of 
chaos’, connecting 
two or more cells 
with resistors will 
‘wake them up’

In press
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Constructing a Cellular Nonlinear Network
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Attractor based computing
with a 

Cellular Neural Network
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Yoshio Bengio, Deep Learning Summer School, Aug. 15, 2015 

Most neural networks rely on 
multidimensional minimization 
techniques.  That is like driving 
around on a mountainous 
terrain with no roads and no 
maps, always trying to figure 
out which way is ‘down’.   
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Strange Attractor-based 
computing is more like flying

The transient chaotic 
trajectory of a nonlinear  

dynamical system

~106 faster than 
random search

‘volcano in a basin’

trap
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Computation (Brain Inspired and Other)
Turing O-machines 
Multinary Logic (ternary and higher)
Neural Networks (of all kinds)
Hebbian Learning, STDP
Boltzmann/Ising Machines
Hopfield Networks (NP problems)
Bayesian Inference, Markov Chains

Nonlinear Dynamical Circuit Theory
Principle of Local Activity
Oscillators and Amplifiers (e.g. neuristors)
Chaos and Edge of Chaos
Complexity and Emergent Phenomena
Connection to Non-equilibrium Thermo

Electro-Iono-Thermo-Device Physics
Drift-Diffusion-Thermophoresis
Thermally activated transport
Phase Transitions (e.g. Mott)
Negative Differential Resistance
Negative Differential Capacitance
Non-equilibrium Thermodynamics
Spontaneous Symmetry Breaking

Materials Science and Discovery and Design
Materials by Design and Discovery
Correlated Electronic and Spin States
Topological  Properties of Materials
Tailored Bulk and Interface Properties
Nanoscale Structural Phenomena

Memristors, Nonlinear Dynamics, 
Neuromorphic Computing
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