

CMMRC

Frontiers of Memristive Materials
for Neuromorphic Processing

TEXAS A&M UNIVERSITY

Engineering

Overview of Memristors & Neuromorphic Processing

R. Stanley Williams

Professor of Electrical and Computer Engineering
Hewlett Packard Enterprise Chair

February 28, 2020

How to get from memristors to neuromorphic computing?

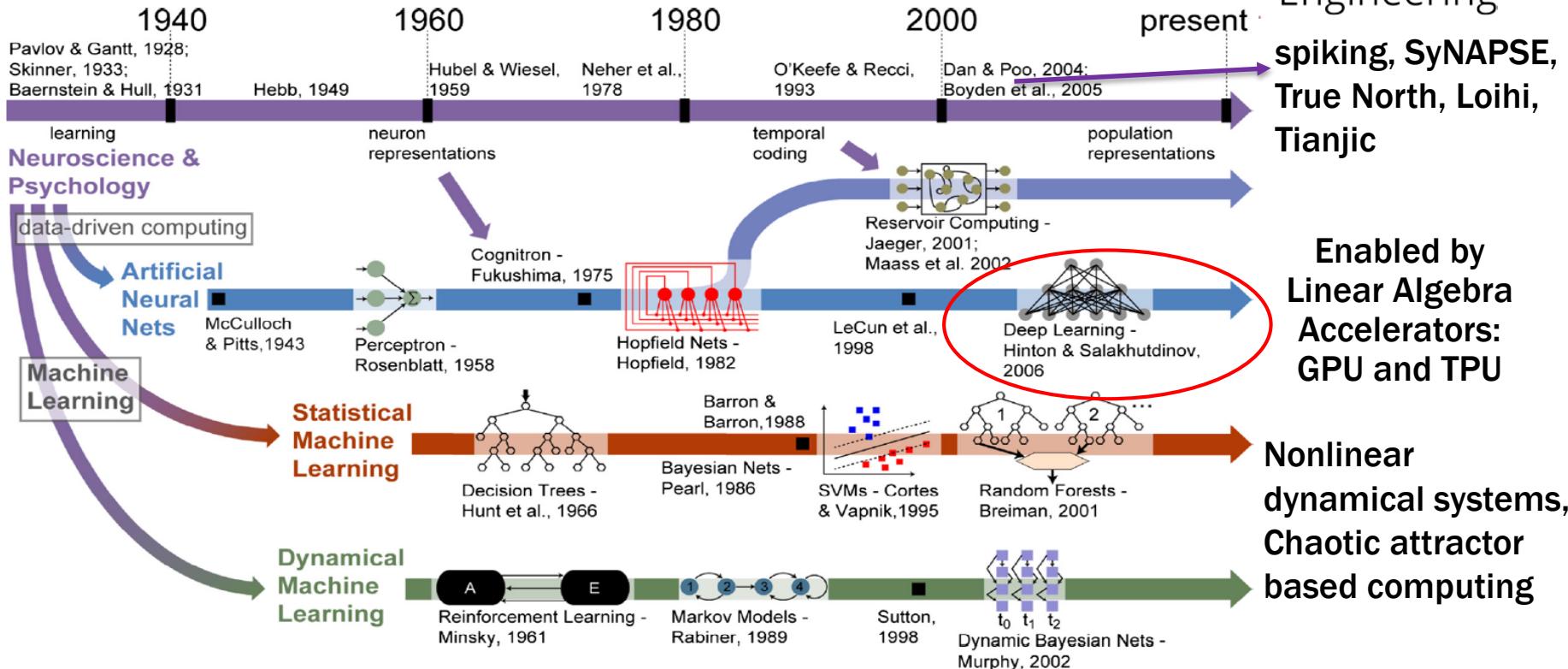
What qualifies as a neuromorphic process?

A memristor is a nonlinear dynamical system

Two types of memristors: nonvolatile and ‘locally active’

Examples of mem-elements and computation using them

neuroscience ↔ ‘neuromorphic computing’



From “A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications.” C. D. James, et al. *Biologically Inspired Cognitive Architectures* (2017)

The Chua Lectures: A 12-Part Series with HP Labs

TEXAS A&M UNIVERSITY
Engineering

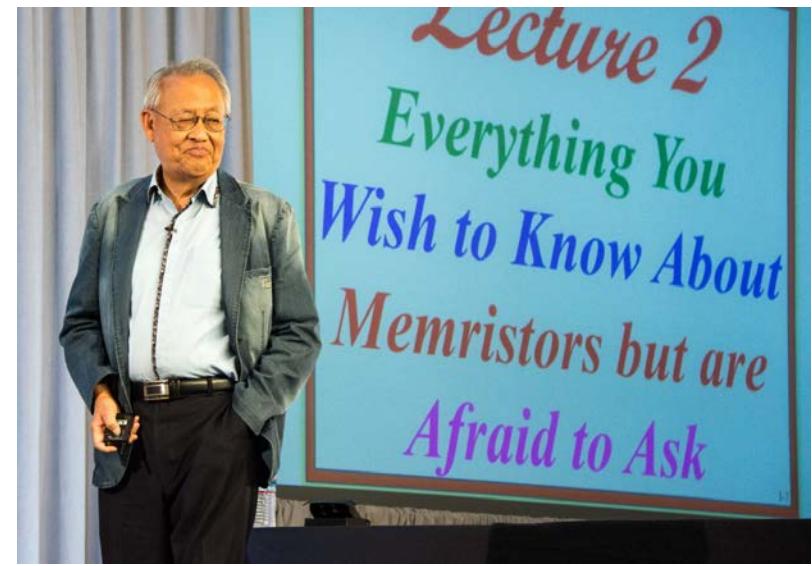
From Memristors and Cellular Nonlinear Networks to the Edge of Chaos

<https://www.youtube.com/playlist?list=PLtS6YX0Y0X4eAQ6lr0ZSta3xjRXzpcXyi>

or enter “The Chua Lectures” into your favorite browser

‘Linearize then analyze’ is not valid for understanding nanodevices or neurons – a nonlinear dynamical theory of electronic circuits is needed, and was developed 50 years ago by Leon Chua.

The memristor is one of many nonlinear dynamical circuit elements with memory!



Mathematical (Axiomatic) Definition of a Memristor:

$$v = R(w, i)i \quad \text{Quasi-static conduction eq. – Ohm's Law}$$

$$\frac{dw}{dt} = f(w, i) \quad \text{Dynamical eq. – evolution of state under stimulus}$$

L. O. Chua, "Memristor - the missing circuit element," *IEEE Trans. Circuit Theory* 18, 507–519 (1971).
L. O. Chua and S. M. Kang, "Memristive devices and systems," *Proc. IEEE*, 64 (2), 209-23 (1976). –

w is the state variable (or variables)

Instead of a disembodied mathematical entity, w should describe real physical properties of the circuit element

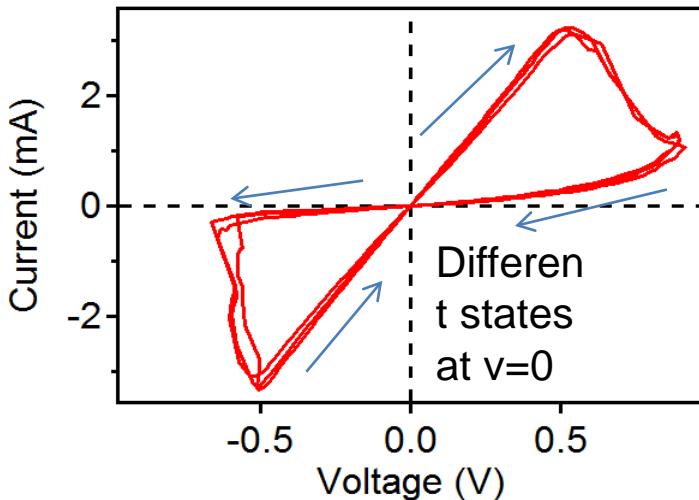
Need to use correct physics so that it applies in this universe!

Memristors have ‘pinched’ hysteresis loops

When driven by a cyclic voltage or current

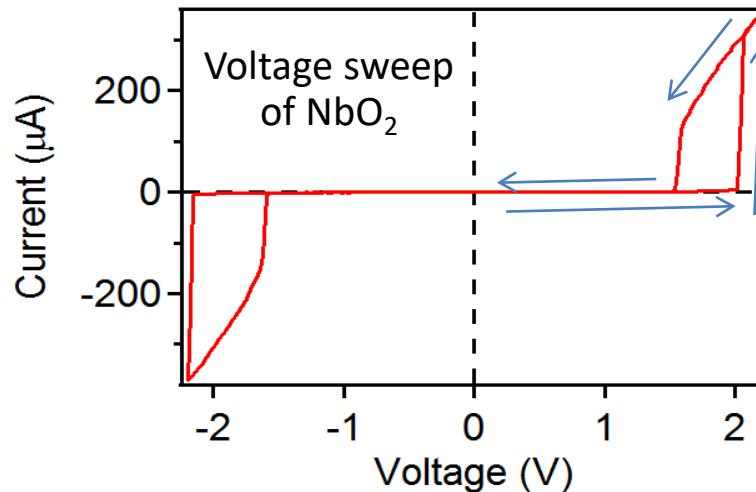
Nonvolatile Memristor

- Digital memory/storage device
- Synapse in neuromorphic circuit



Locally Active Memristor

- “Selector” in crossbar memories
- Emerging neuronal computing devices



Find or Invent Materials that Posses Memristance:

TEXAS A&M UNIVERSITY
Engineering

Nonvolatile:

‘Synaptic’

State stored as resistance

Continuously variable

Real numbers

Memory and storage

ReRAM, PC RAM, STT RAM

TaO_x , $Ge_2Sb_2Te_5$, magnetics

Locally Active:

‘Neuronic’

State transmitted as spike

Threshold switching, NDR

Looks digital

Gain, logic, chaos

Mott transitions, mobile ions

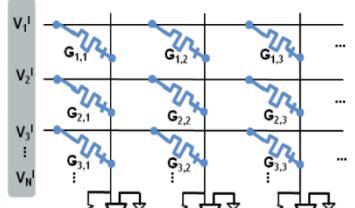
VO_2 & NbO_2 , molecular redox, CDW, ionic diffusion

TEXAS A&M UNIVERSITY
Engineering

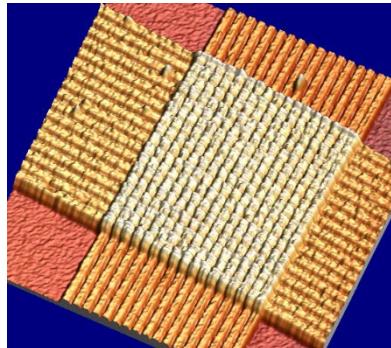
Memristor Crossbars for Computational Acceleration

Dot Product Engine: memristor arrays accelerate vector-matrix multiplication

Input
Voltage
vector



Output current $I_j^0 = \sum_i G_{ij} \cdot V_i^i$



- Parallel multiply & add through Kirchoff's and Ohm's laws
1961, K. Steinbuch "Die Lernmatrix" – suggests using "ferromagnetic toroids"
- Memristors as highly scalable, tunable analog resistors
High ON/OFF ratio (~10⁵), supporting multiple levels
- Well suited for streaming workloads like neural nets
- Many ways to scale up
Memristor levels, array size, wire pitch, 3D layer, DAC/ADC speed & width etc.
- Performance (execution time) improvements >1000x and energy efficiency >100x over GPUs for particular applications
- Commercial products in development

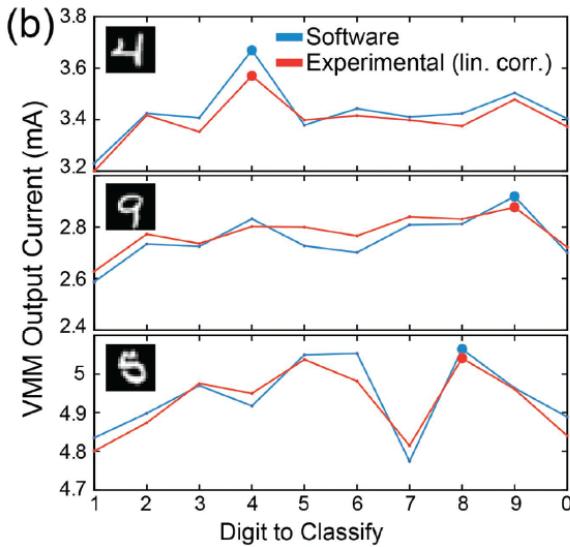
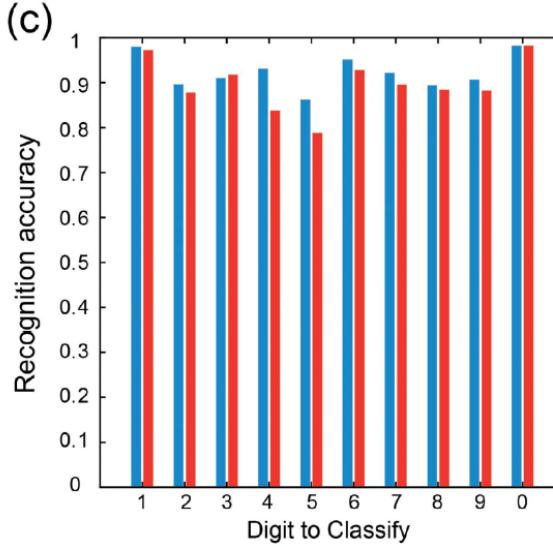
Memristor-Based Analog Computation and Neural Network Classification with a Dot Product Engine

TEXAS A&M UNIVERSITY
Engineering

Miao Hu, Catherine E. Graves, Can Li, Yunning Li, Ning Ge, Eric Montgomery,
Noraica Davila, Hao Jiang, R. Stanley Williams, J. Joshua Yang,* Qiangfei Xia,*
and John Paul Strachan*

Adv. Mater. 2018, 1705914

MNIST digit classification, single layer network



Crude system with ~2% bad devices

Vector-matrix multiplication:
~8x 4 bit digital ASIC

Full inference output (estimated):
15x inference rate
5.5x power efficiency
7.5x area efficiency

Significant improvements over time

Photonic Multiply-Accumulate Operations for Neural Networks

Mitchell A. Nahmias[✉], Thomas Ferreira de Lima[✉], Alexander N. Tait[✉], Hsuan-Tung Peng[✉], Bhavin J. Shastri, *Member, IEEE*, and Paul R. Prucnal, *Fellow, IEEE*

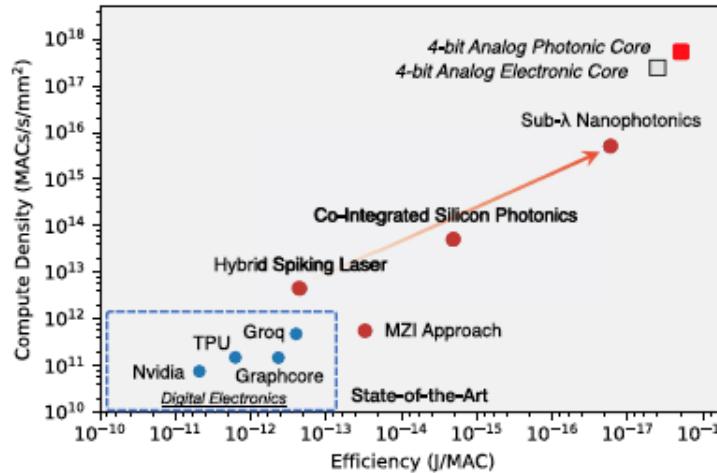


Fig. 7. Comparison of deep learning hardware accelerators with photonic platforms discussed in Section VI, modified from Ref. [7]. Photonic systems can support high bandwidth densities on-chip while consuming minimal energy both transporting data and performing computations. Metrics for digital electronic architectures taken from various sources [12], [124]–[127]. Also included are the analog limits for photonic and electronic matrix cores with $N = 1024$ and 4 bits of precision, from Table I.

TABLE I
COMPUTE DENSITY PERFORMANCE FOR IDEALIZED ELECTRONIC AND PHOTONIC MATRIX CORES WITH $N = 1024$, SUBJECT TO POWER DENSITY $< 1 \text{ W/mm}^2$

Technology	Noise Precision	Energy (aJ/MAC)	Compute Density (PMACs/s/mm ²)
Electronic	4 bit	4.0	250
Crossbar	8 bit	5.0	198
Photonic Core	4 bit	2.0	513
Photonic Core	8 bit	81.9	12.2

At 8 bit precision a memristor crossbar has 16x better energy efficiency and compute density than an optimized photonic system.

Solving matrix equations in one step with cross-point resistive arrays

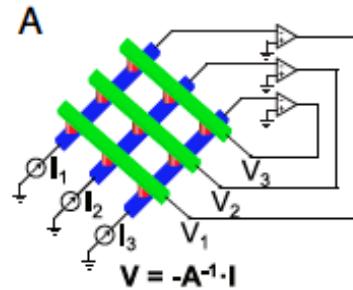
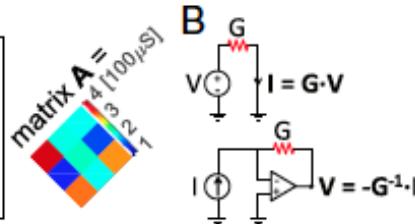
TEXAS A&M UNIVERSITY
Engineering

Zhong Sun^a, Giacomo Pedretti^a, Elia Ambrosi^a, Alessandro Bricalli^a, Wei Wang^a, and Daniele Ielmini^{a,1}

^aDipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy

Edited by Eli Yablonovitch, University of California, Berkeley, CA, and approved January 17, 2019 (received for review September 11, 2018)

Proceedings of the National Academy of Sciences **116**, 4123-4128 (2019)

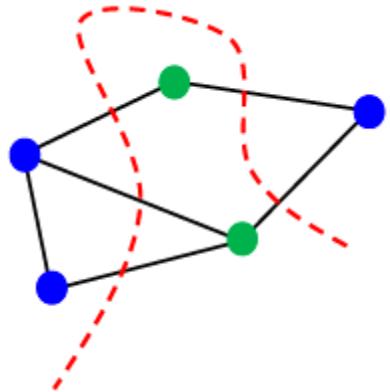
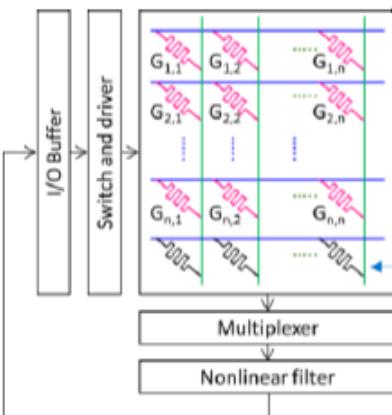
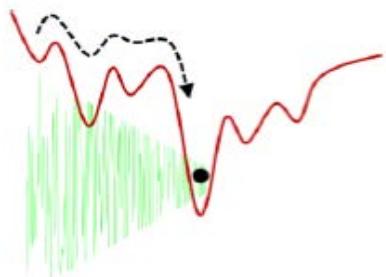
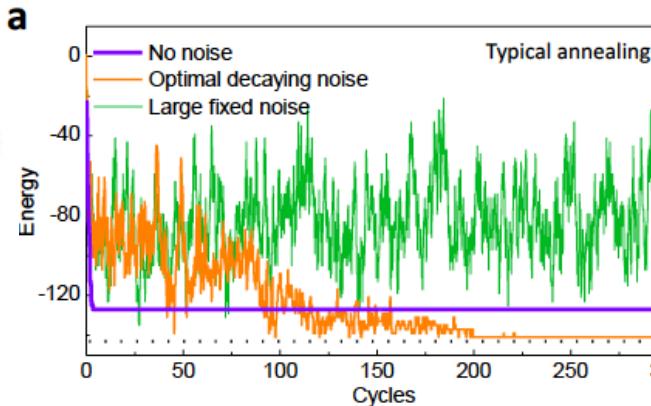
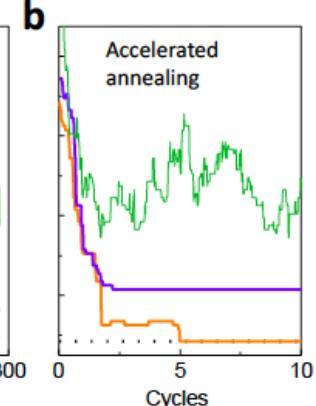
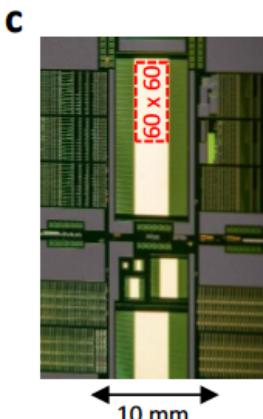
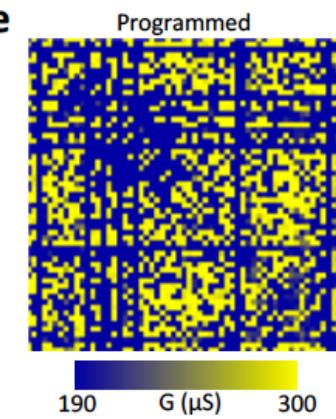


- Can solve $Ax=b$ for known A and b in $O(1)$
- Can find maximal eigenvalue in $O(1)$
- Can solve 1st order ODEs in $O(1)$
- Can compute AB and A^{-1} in $O(n)$

General idea: run a dot product engine in reverse!

Store matrix as conductance values in crossbar
Inject currents corresponding to b values into columns
After transients dissipate, measure voltages on rows (x)
Can speed up any linear algebra operation by n^2
Highly parallel and reversible - almost no energy
Can sweep inputs and look for nulls dynamically
Precision can be improved by iteration with small cost

Hopfield Network solving 60-node max-cut problems (NP) using noise



Harnessing Intrinsic Noise in Memristor Hopfield Neural Networks for Combinatorial Optimization

Fuxi Cai^{1,2,*}, Suhas Kumar^{1,*}, Thomas Van Vaerenbergh^{1,*}, Rui Liu^{1,3}, Can Li¹, Shimeng Yu⁴, Qiangfei Xia⁵, J. Joshua Yang⁵, Raymond Beausoleil¹, Wei Lu², and John Paul Strachan¹

<https://arxiv.org/abs/1903.11194>

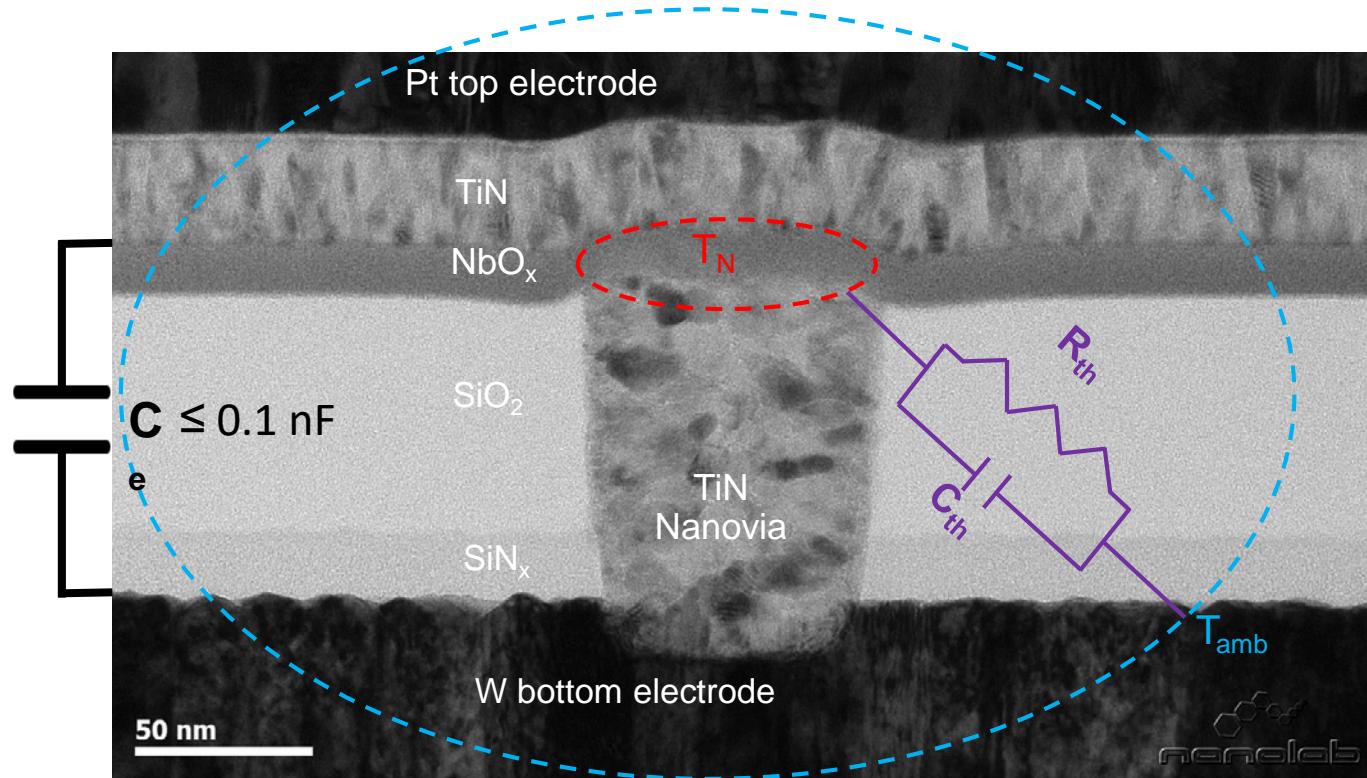
Table 1. Comparison of the mem-HNN and current state-of-the-art annealing accelerators, such as a GPU implementation of the noisy mean-field algorithm¹⁰, our own simulations using the previously suggested⁶ parallel tempering implementation on a CPU (cfr. SM 1.8.3) and experimental results for the D-wave annealer and the measurement-feedback CIM discussed in Ref⁶. A hybrid update mechanism updates some, but not all the nodes at a given iteration.

	mem-HNN (seq.) memristor	mem-HNN (par.) memristor	NMFA GPU	PT@UFO single-core CPU	D-wave 2000Q supercond. qubits	CIM fiber-optics
Clock frequency	1 GHz	1 GHz	1.582 GHz	2.6 GHz		1 GHz
Annealing time T_{ann}	300 ns	300 ns	12.3 μ s ($N = 100$)	223.6 μ s	1 ms ($N=55$)	150 μ s
Time-to-solution	3.3 μ s	0.3 μ s	10 μ s	223.6 μ s	10^4 s ($N=55$)	600 μ s
Power	66 mW	792 mW	< 250 W	20 W		25 kW
Energy-to-solution	0.22 μ J	0.22 μ J	< 2.5 mJ	4 mJ		250 MJ
Solutions/s/Watts	4.6×10^6	4.6×10^6	> 400	250		4×10^{-9}
Update mechanism	hybrid	hybrid	asynchronous	asynchronous	synchronous	asynchronous
Connectivity	all-to-all	all-to-all	all-to-all	all-to-all	Chimera	all-to-all
Scaling prs	$a e^{-bN}$	$a e^{-bN}$	$a e^{-bN}$	$a e^{-bN}$	$a e^{-bN^2}$	$a e^{-bN}$
Cryogenic cooling	no	no	no	no	yes	no

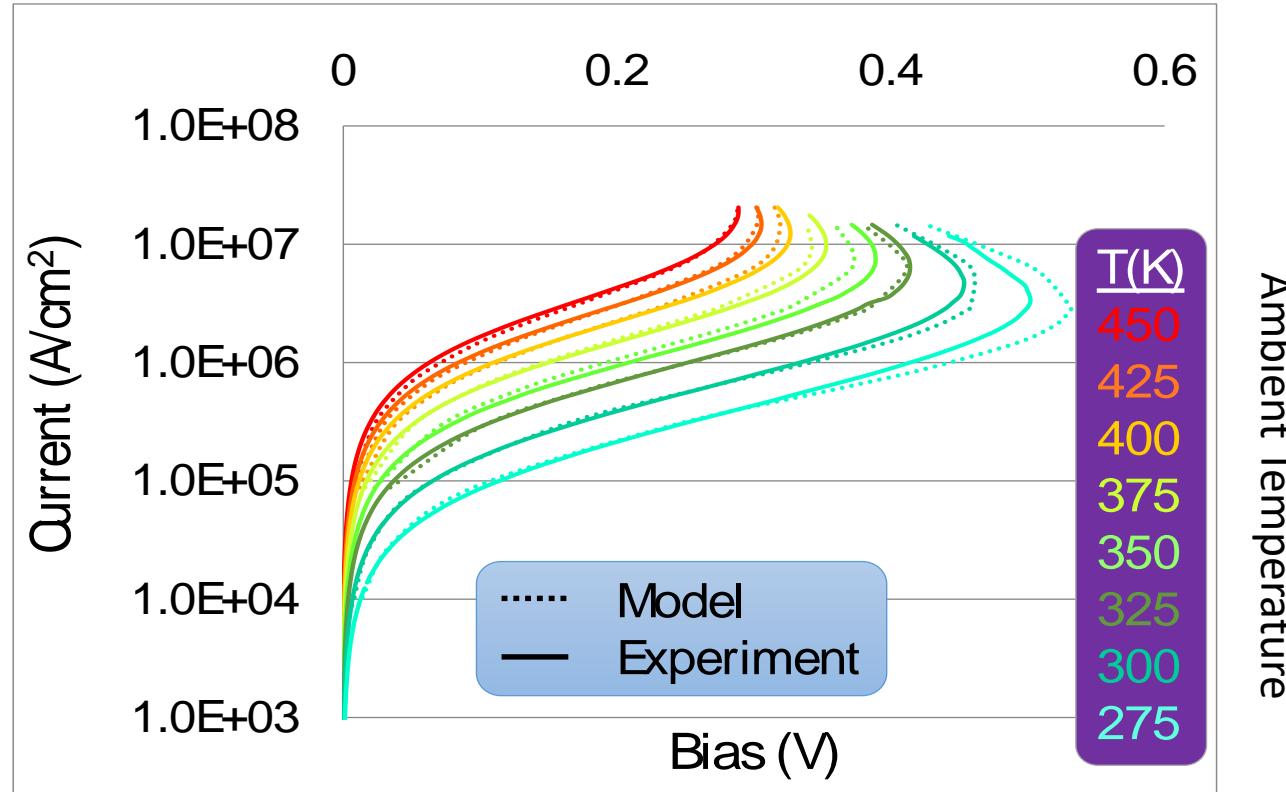
Dynamical measurements: oscillations, neuristors, chaotic attractors

Integrated NbO_2 (Mott) Memristor and Capacitor

TEXAS A&M UNIVERSITY
Engineering



Thermal Design
 $R_{th}C_{th} \leq 0.1 \text{ ns}$
 $R_{th} \geq 10^6 \text{ K/W}$
 $C_{th} \leq 10^{-16} \text{ J/K}$



Locally-active memristor model for S-type NDR

Temperature (State) Dependent Ohm's Law: 3D Frenkel-Poole Conduction Model

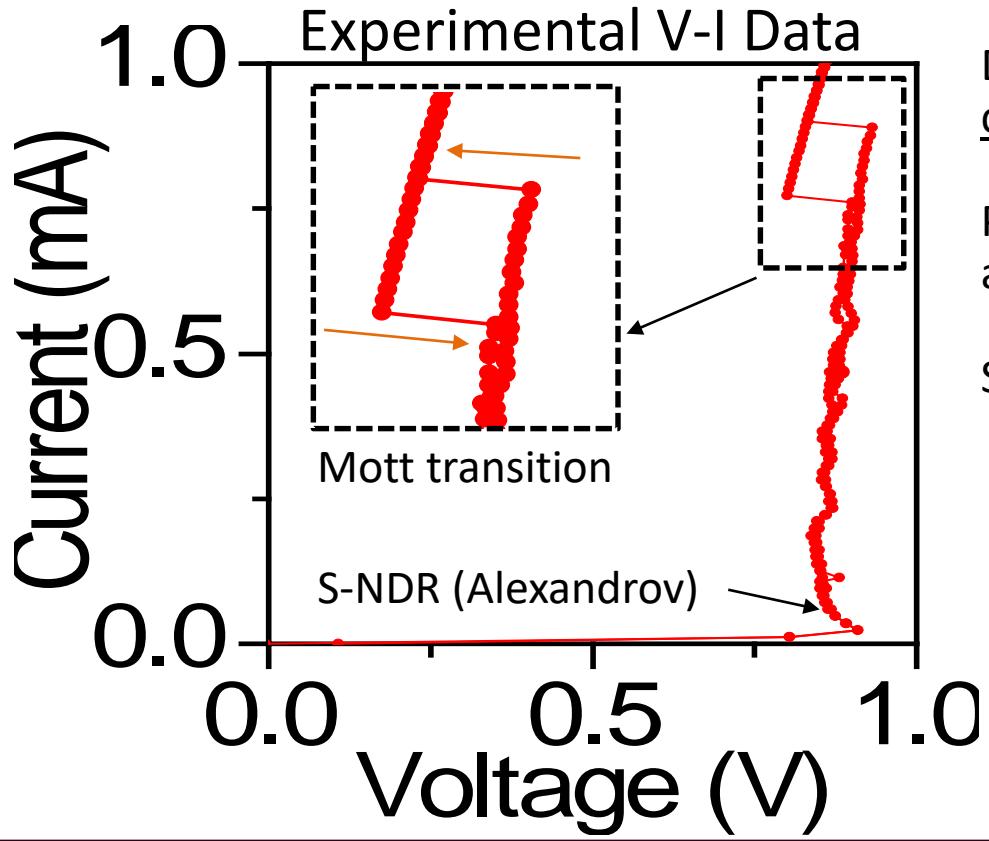
$$j(F, T) = \sigma F = \sigma_0(T) \left(\frac{k_B T}{\beta} \right)^2 \left\{ 1 + \left(\frac{\beta \sqrt{F}}{a k_B T} - 1 \right) e^{\frac{\beta \sqrt{F}}{a k_B T}} \right\} + \frac{\sigma_0(T) F}{2}$$

$$\sigma_0(T) = e \mu N_c \left(\frac{N_d}{N_t} \right)^2 e^{-\frac{E_d + E_t}{2 k_B T}}$$

Dynamical Equation: Newton's Law of Cooling (Sasha Alexandrov Model)

$$C_{th} \frac{dT_N}{dt} = \frac{T_{amb} - T_N}{R_{th}} + IV$$

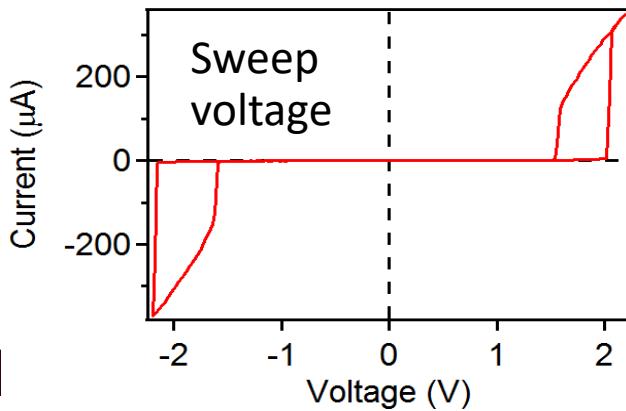
Negative Differential Resistance (Local Activity) is a result of feedback among thermally activated transport, Joule heating and heat transport!



Data collected by slowly sweeping current and measuring voltage.

Pushed to much higher currents and thus internal temperatures.

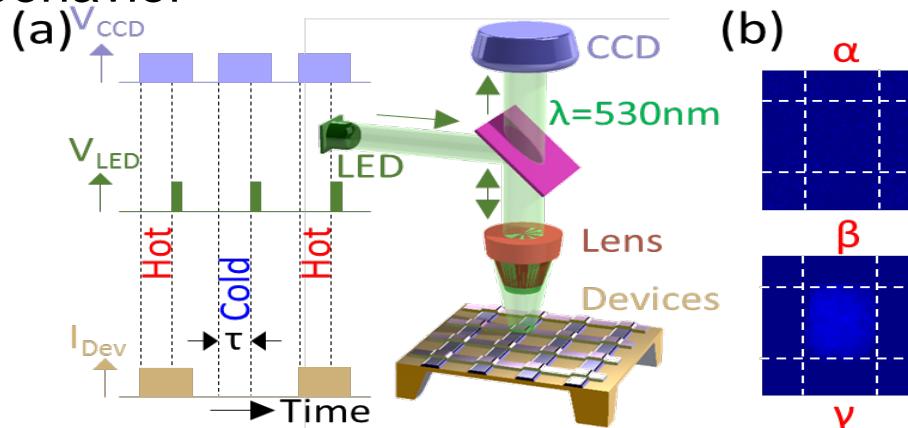
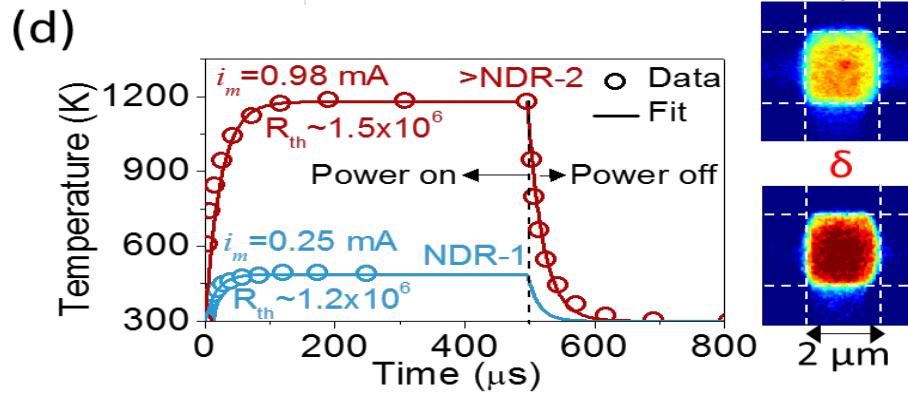
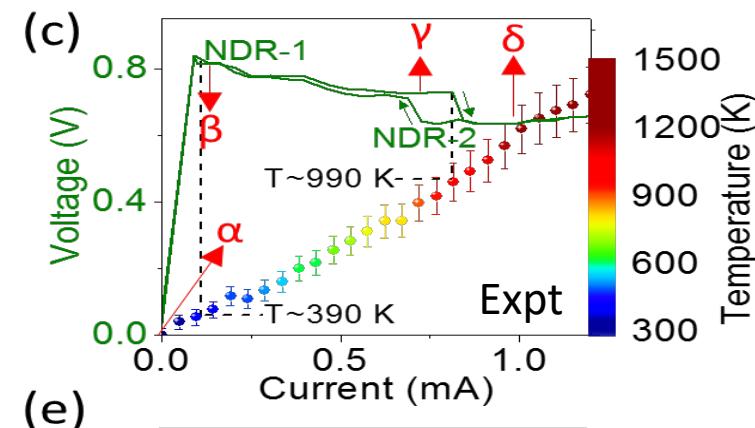
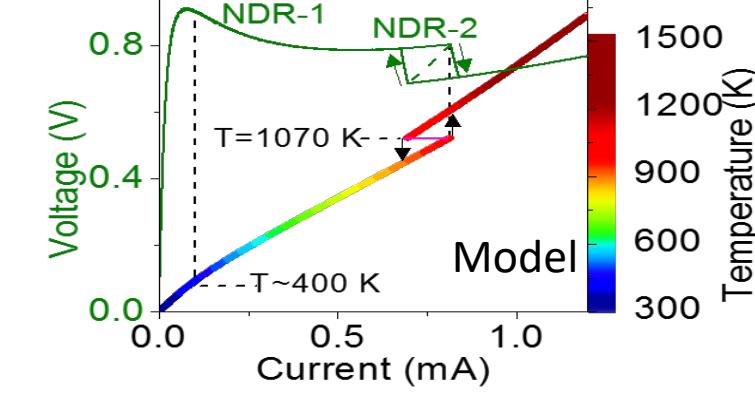
See two 'NDR' regions!



New tools for experiments:

Thermoreflectance Imaging of NbO_2 current source behavior

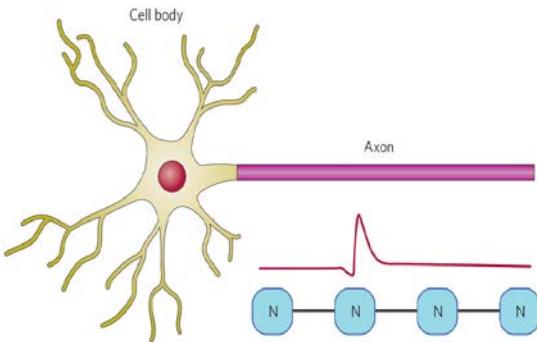
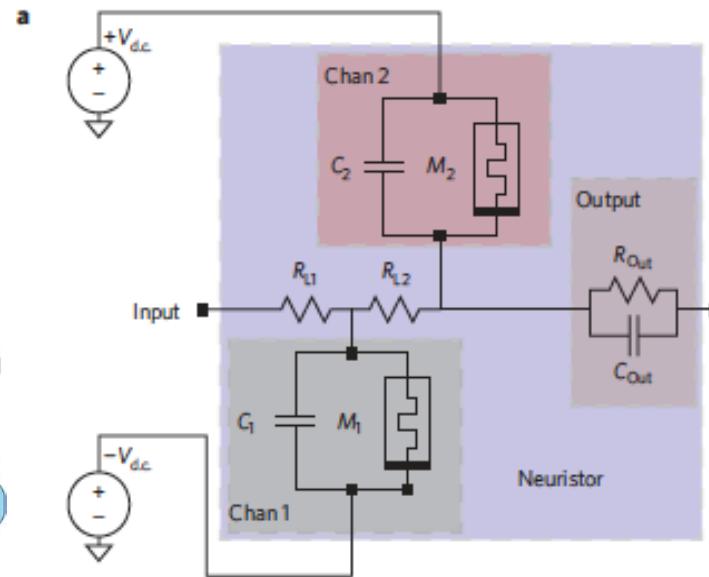
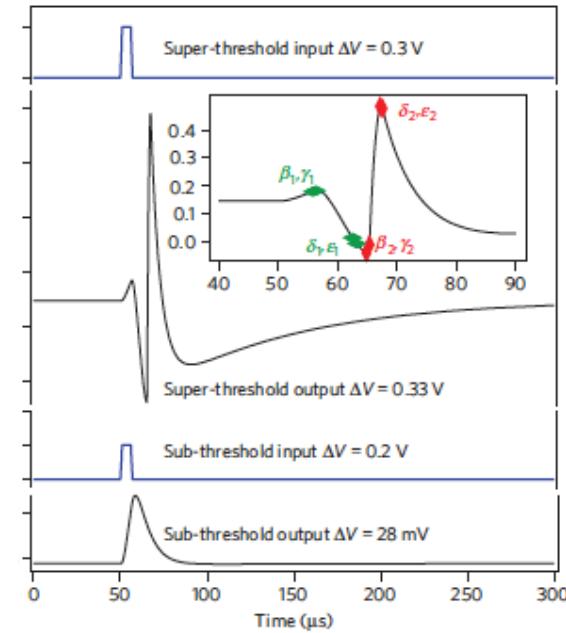
TEXAS A&M UNIVERSITY
Engineering



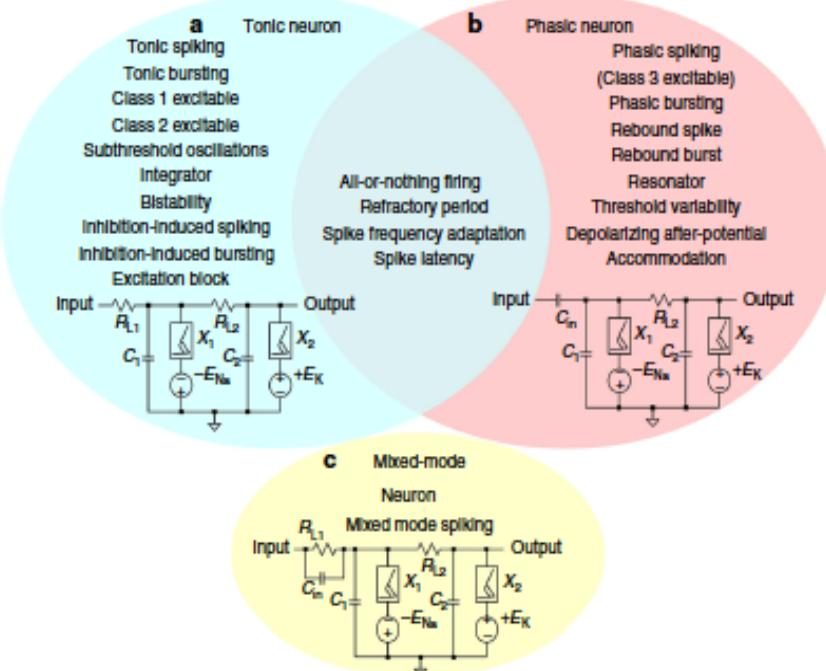
A scalable neuristor built with Mott memristors (NbO_2)

Matthew D. Pickett*, Gilberto Medeiros-Ribeiro and R. Stanley Williams

'integrate and fire' pulse amplifier for threshold logic and communication



Biological plausibility and stochasticity in scalable VO_2 active memristor neurons

 Wei Yi¹, Kenneth K. Tsang¹, Stephen K. Lam¹, Xiwei Bai¹, Jack A. Crowell¹ & Elias A. Flores¹


“Here we report that neurons built with nano-scale vanadium dioxide active memristors possess all three classes of excitability and most (23) of the known biological neuronal dynamics, and are intrinsically stochastic.”

Wei Yi et al., HRL!

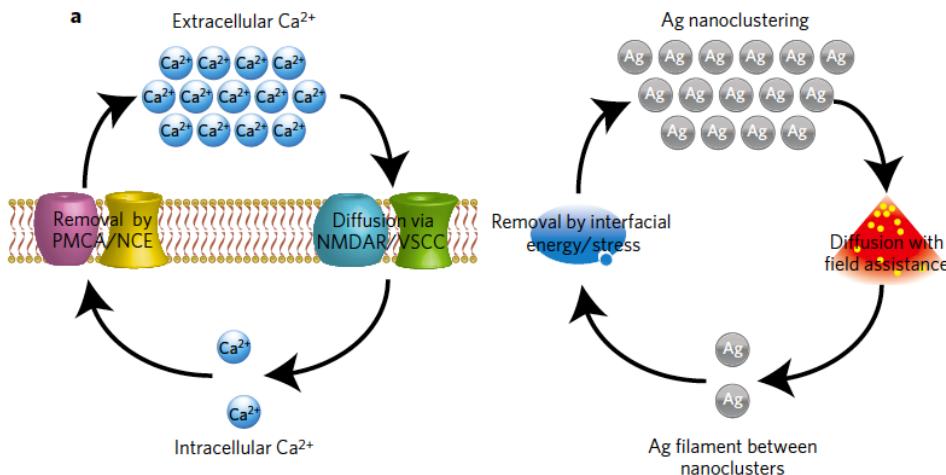
Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing

TEXAS A&M UNIVERSITY
Engineering

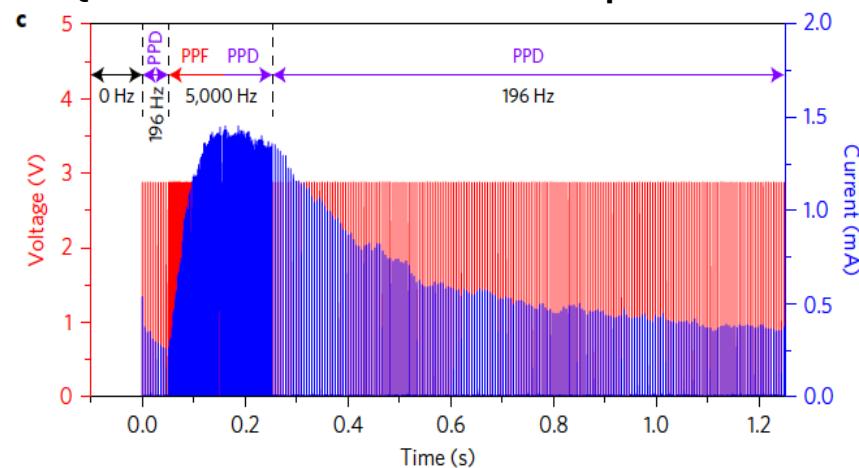
Zhongrui Wang^{1†}, Saumil Joshi^{1†}, Sergey E. Savel'ev², Hao Jiang¹, Rivu Midya¹, Peng Lin¹, Miao Hu³, Ning Ge³, John Paul Strachan³, Zhiyong Li³, Qing Wu⁴, Mark Barnell⁴, Geng-Lin Li⁵, Huolin L. Xin⁶, R. Stanley Williams³, Qiangfei Xia¹ and J. Joshua Yang^{1*}

NATURE MATERIALS 2017

Emulating Ca ions in biosynapses with Ag in Oxides



Ion dynamics produce synaptic plasticity Quantitative models mirror experiments



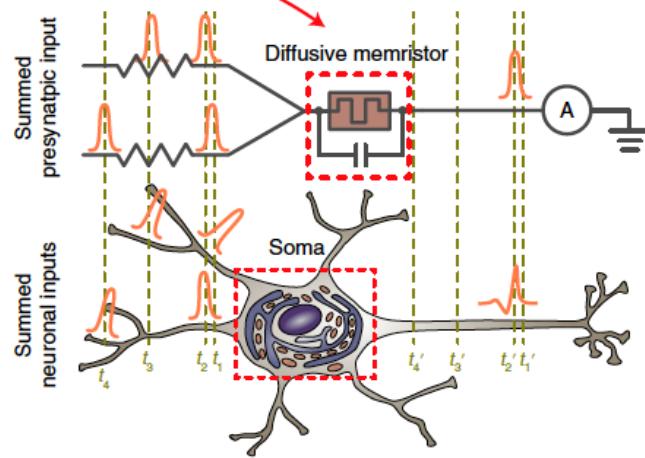
Fully memristive neural networks for pattern classification with unsupervised learning

TEXAS A&M UNIVERSITY
Engineering

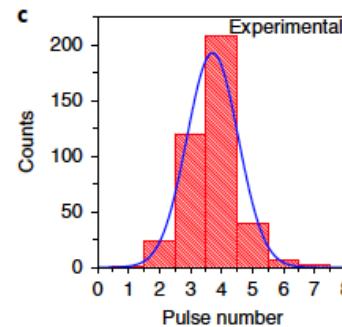
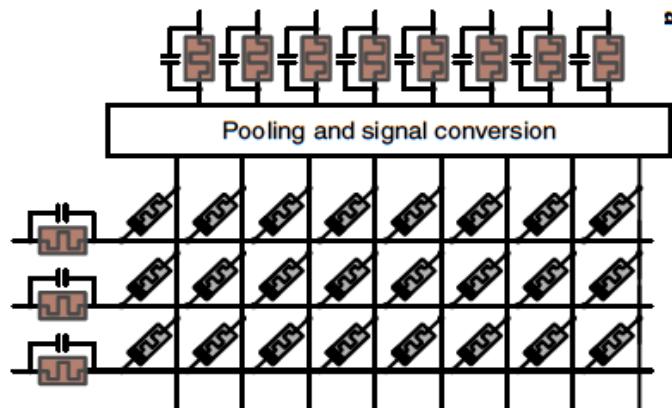
Zhongrui Wang^{1,6}, Saumil Joshi^{1,6}, Sergey Savel'ev², Wenhao Song¹, Rivu Midya¹, Yuning Li¹,
Mingyi Rao¹, Peng Yan¹, Shiva Asapu¹, Ye Zhuo¹, Hao Jiang¹, Peng Lin¹, Can Li¹, Jung Ho Yoon¹,
Navnidhi K. Upadhyay¹, Jiaming Zhang³, Miao Hu^{1,3}, John Paul Strachan³, Mark Barnell⁴, Qing Wu⁴,
Huaqiang Wu^{1,5}, R. Stanley Williams^{3*}, Qiangfei Xia^{1*} and J. Joshua Yang^{1*}

NATURE ELECTRONICS | VOL 1 | FEBRUARY 2018 | 137-145 |

Emulate a leaky integrate and fire neuron



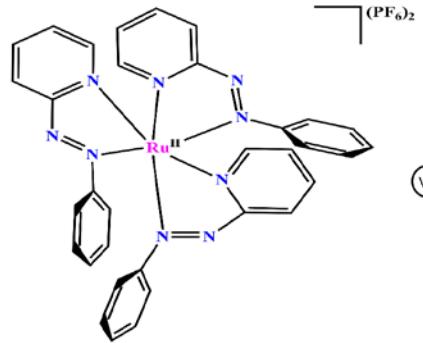
Unsupervised learning in all-memristor network



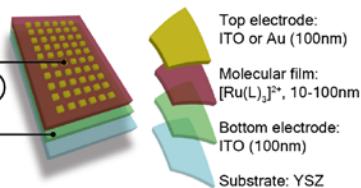
Robust resistive memory devices using solution-processable metal-coordinated azo aromatics, S. Goswami et al.

TEXAS A&M UNIVERSITY
Engineering

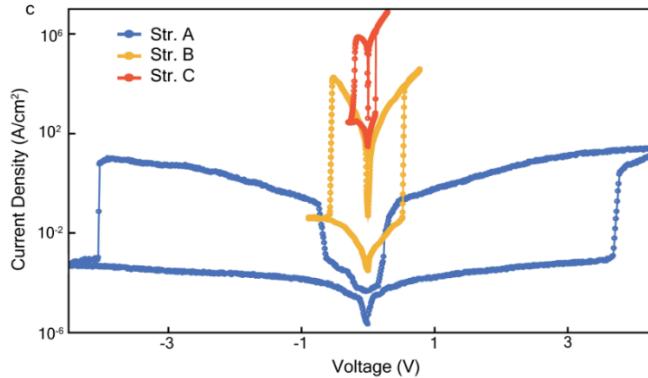
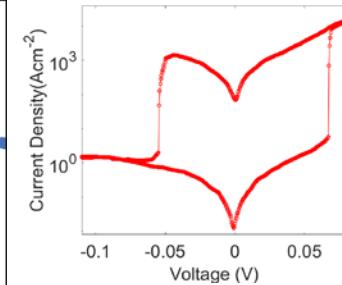
Nature Materials **16**, 1216–1224 (2017)



device structure

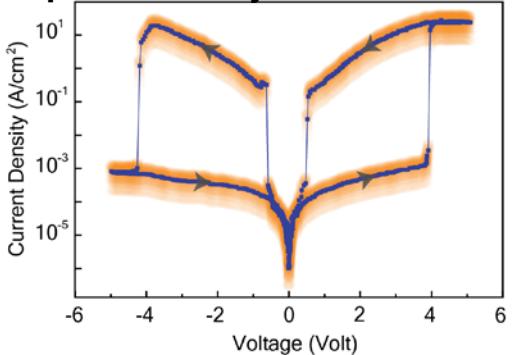


Switching is field driven

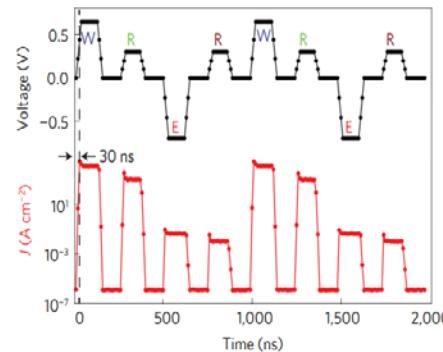


Switching energy ~6aJ

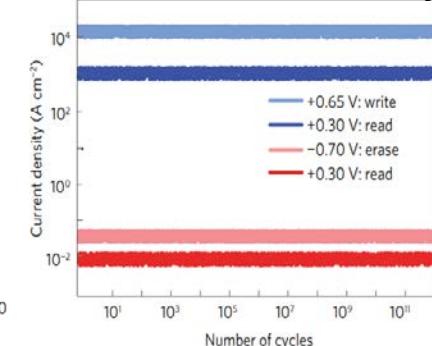
reproducibility – 321 devices



# Devices	Top Electrode Size (μm)
122	100
47	80
38	60
29	40
31	20
26	10
28	1
Total- 321	



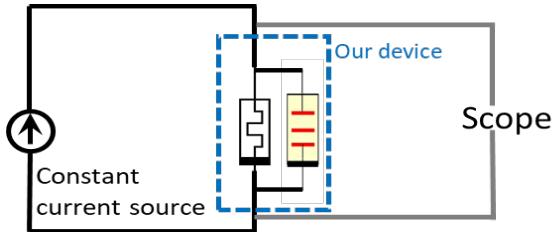
endurance & stability



A self oscillating molecular-film device (Memrisys 2019)

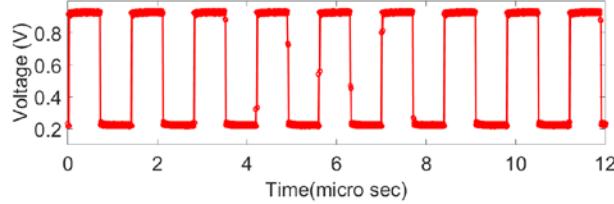
Streetosh Goswamy and T. Venkatesan, NUS

TEXAS A&M UNIVERSITY
Engineering

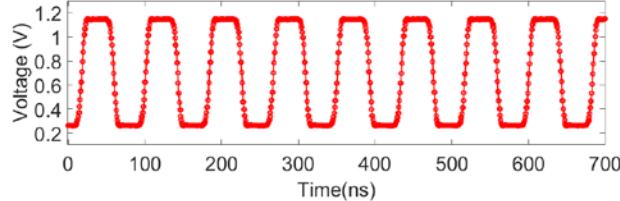
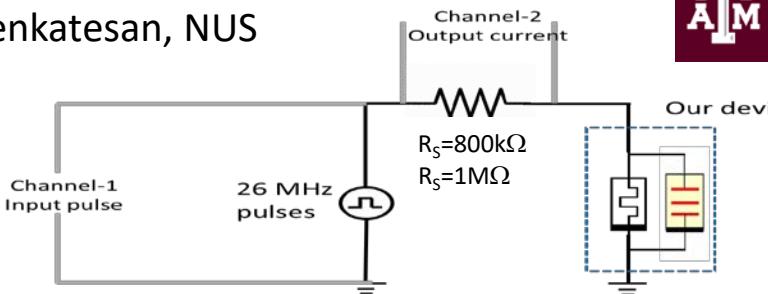


Single device bistable oscillator

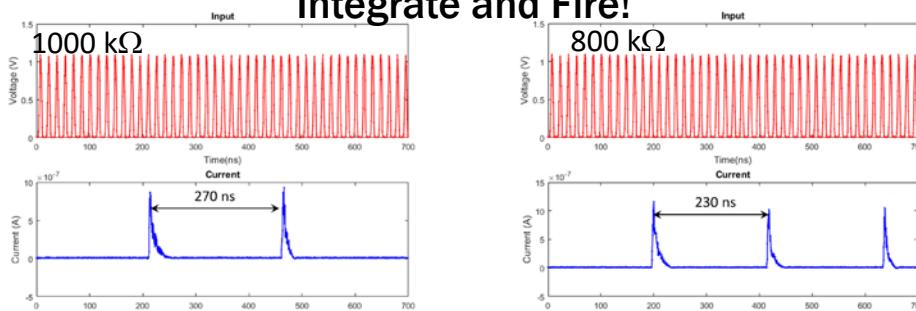
Zone-1: 10^{-1} microA to 5 microA(~ 600 kHz)



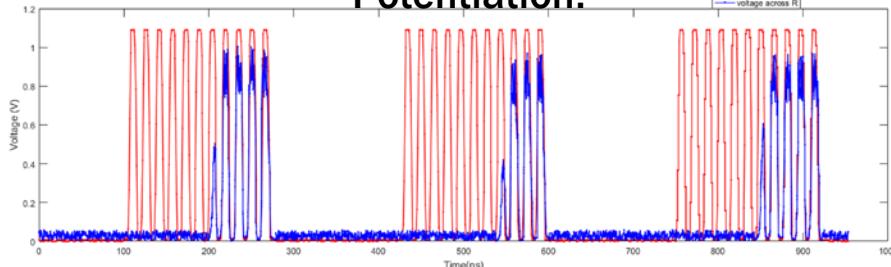
Zone-2: 18 microA to 300 microA (~ 11 MHz)



Integrate and Fire!



Potentiation!

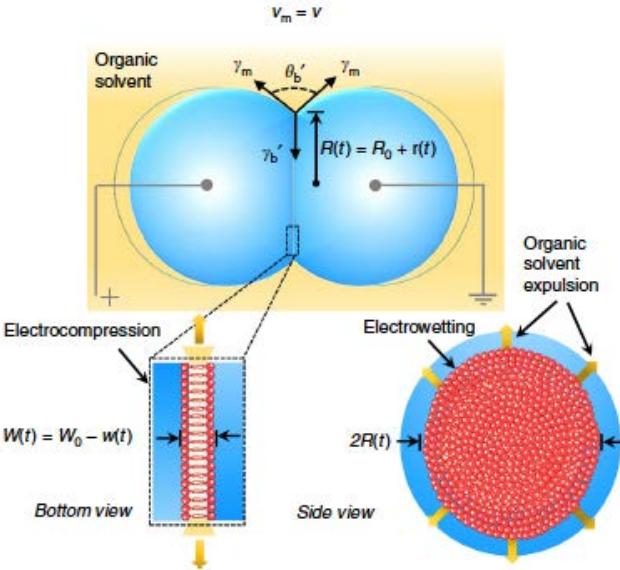


Dynamical nonlinear memory capacitance in biomimetic membranes

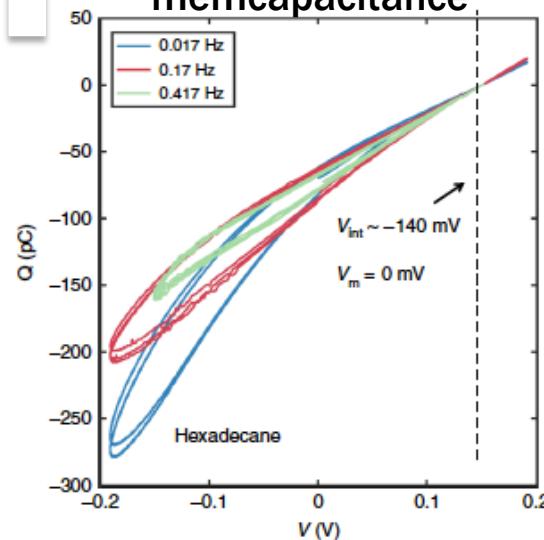
Joseph S. Najem^{1,2}, Md Sakib Hasan³, R. Stanley Williams^{1,4}, Ryan J. Weiss³, Garrett S. Rose³, Graham J. Taylor^{1,5}, Stephen A. Sarles¹ & C. Patrick Collier⁶

NATURE COMMUNICATIONS | (2019)10:3239 | <https://doi.org/10.1038/s41467-019-11223-8>

Reductionist biology: simplest cell model



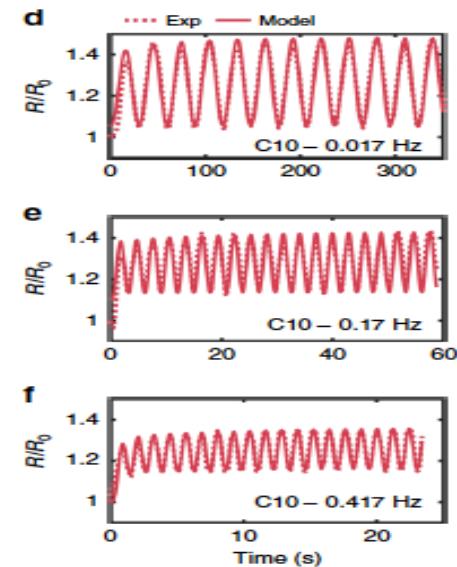
Signal processing via memcapacitance



TEXAS A&M UNIVERSITY
Engineering

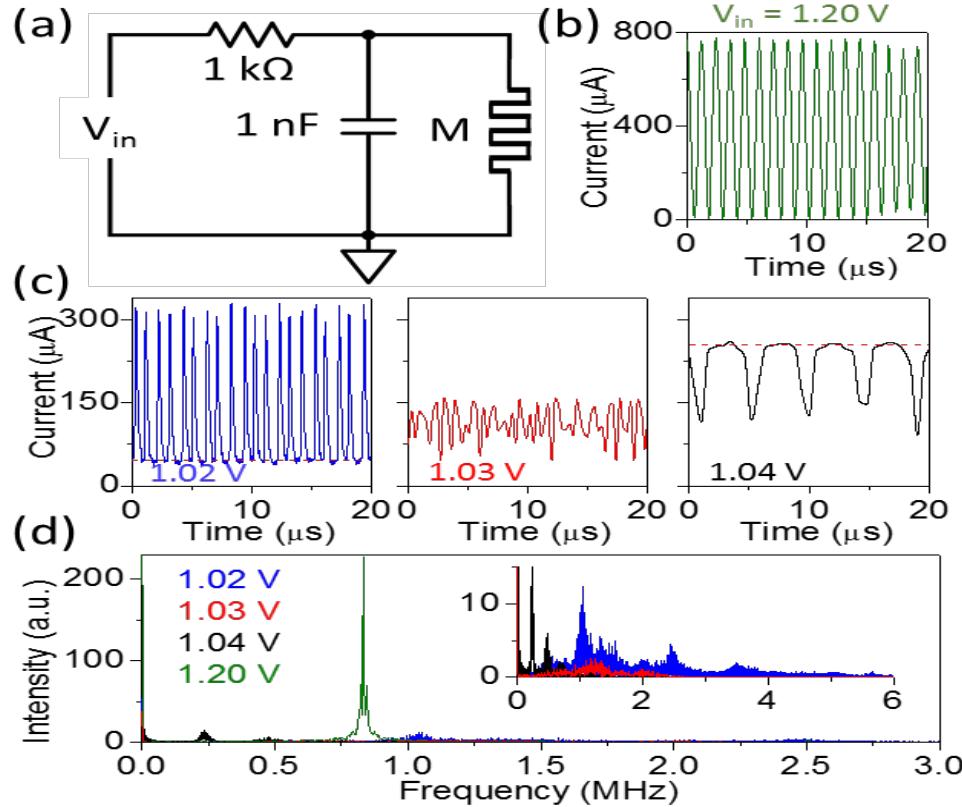
Need to revise the
Hodgkin-Huxley Model?

Quantitative modeling

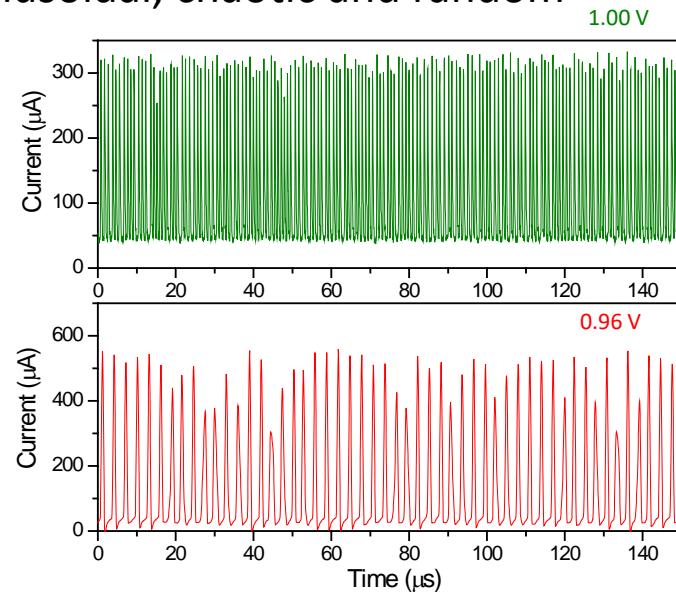


Chaotic oscillations in the NbO_2 S-NDR

TEXAS A&M UNIVERSITY
Engineering



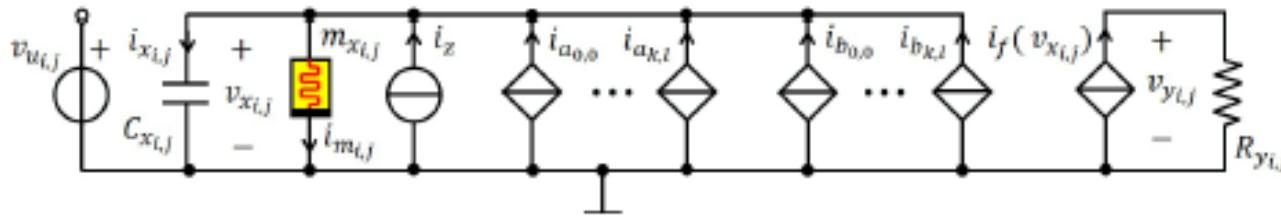
Extreme voltage sensitivity –
oscillation amplitudes, frequency
and regularity –
sinusoidal, chaotic and random



Locally active memristors at edge of chaos for computation

Theoretical Foundations of Memristor Cellular Nonlinear Networks: Memcomputing With Bistable-Like Memristors

Ronald Tetzlaff, *Senior Member, IEEE*, Alon Ascoli[✉], Ioannis Messaris, and Leon O. Chua, *Fellow, IEEE*



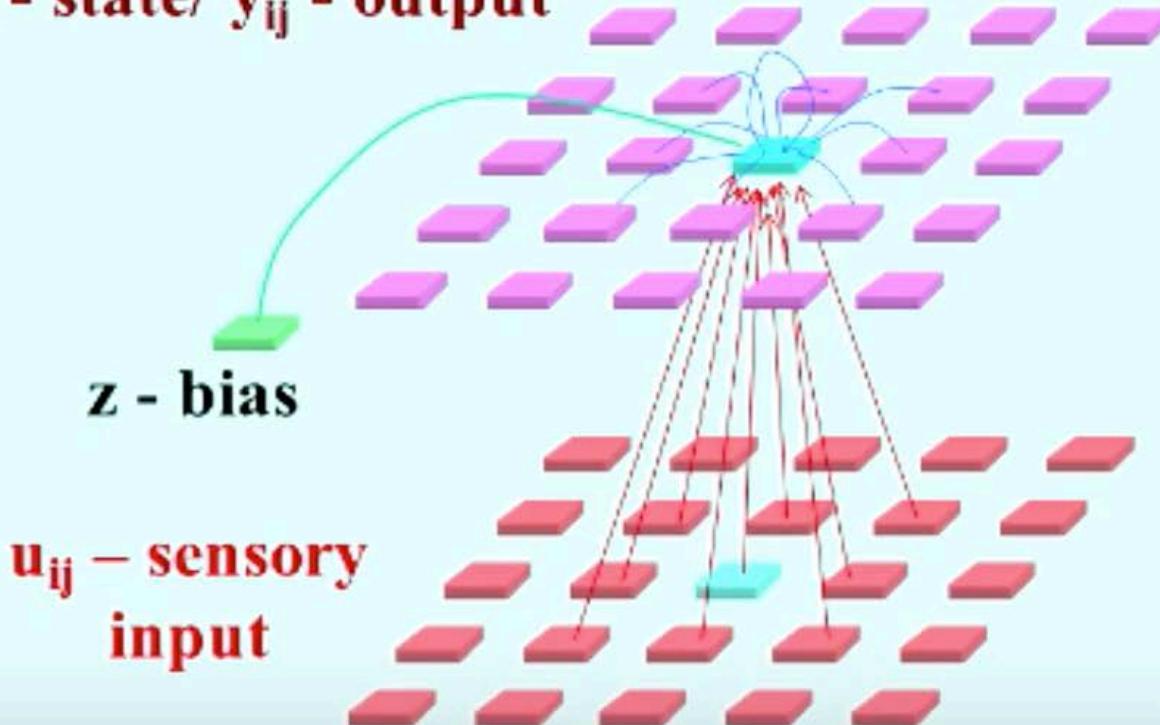
A single cell of a cellular nonlinear neural network
Power, capacitor, memristor(s), inputs and outputs

By itself, this cell
will settle into a
stable steady state
– it will ‘go to sleep’

If the memristor is
on the ‘edge of
chaos’, connecting
two or more cells
with resistors will
‘wake them up’

Constructing a Cellular Nonlinear Network

x_{ij} - state/ y_{ij} - output

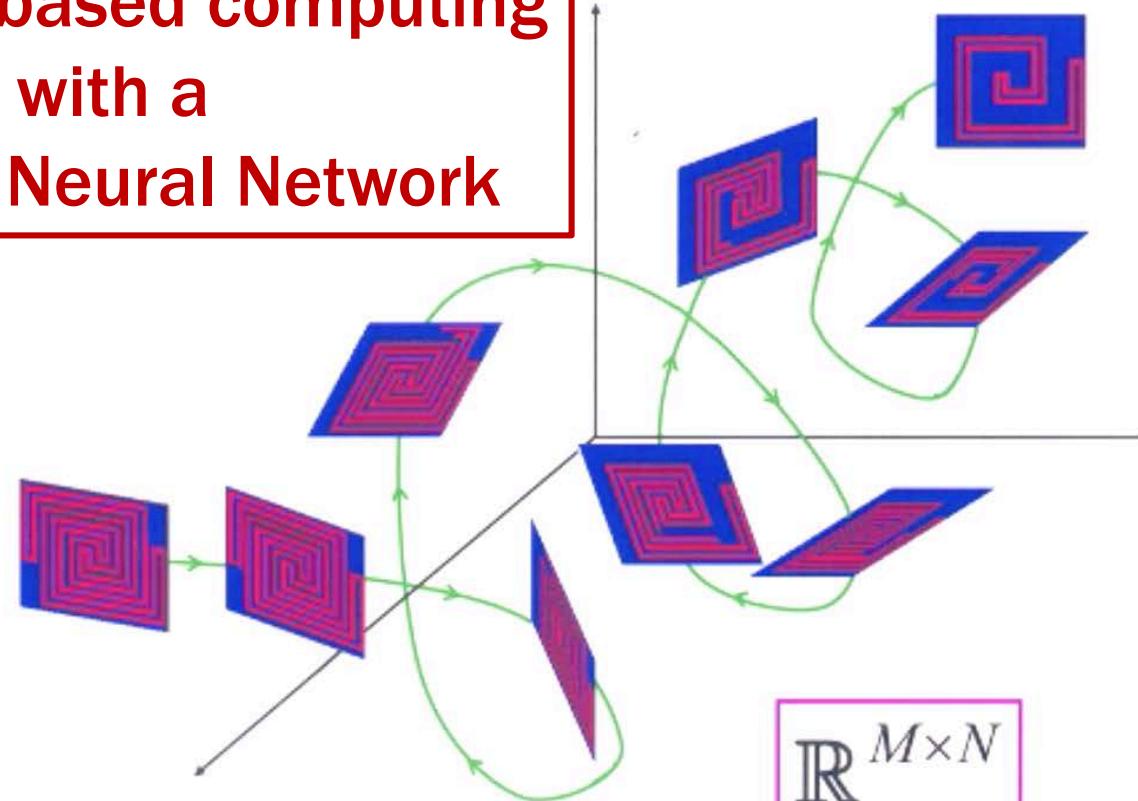


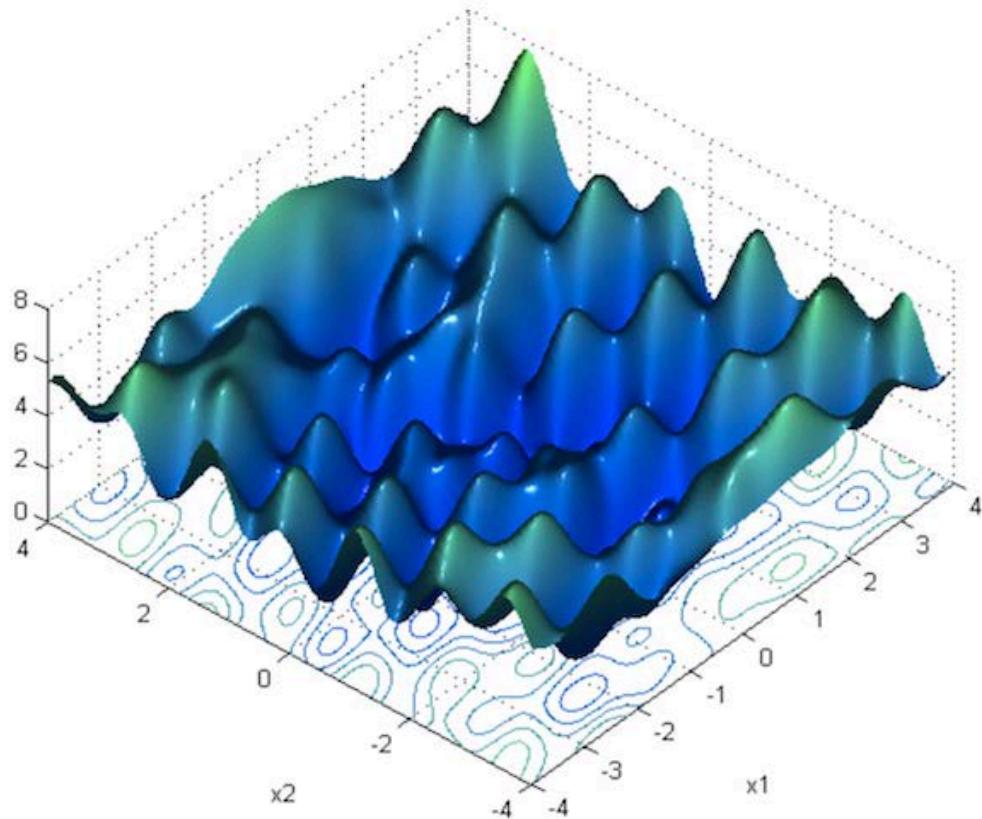
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

$$z = -0.5$$

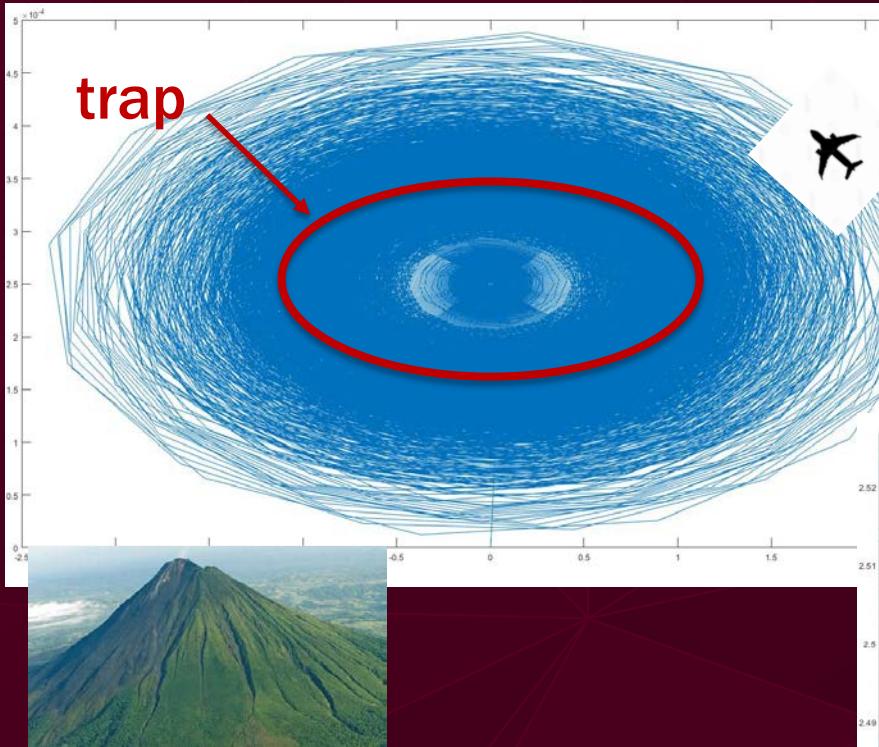
Attractor based computing with a Cellular Neural Network





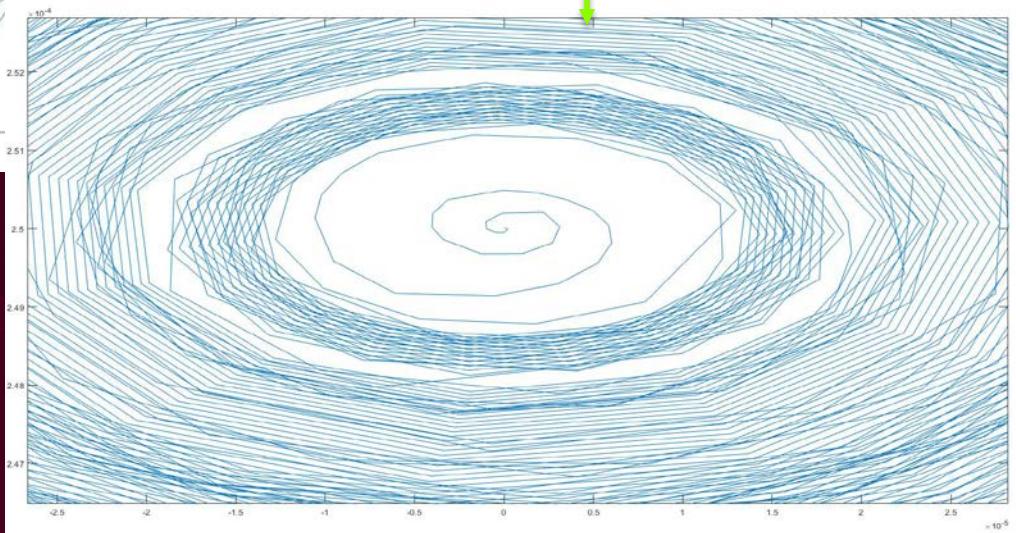
Most neural networks rely on multidimensional minimization techniques. That is like driving around on a mountainous terrain with no roads and no maps, always trying to figure out which way is 'down'.

‘volcano in a basin’



~ 10^6 faster than
random search

Strange Attractor-based
computing is more like flying
← The transient chaotic
trajectory of a nonlinear
dynamical system



Memristors, Nonlinear Dynamics, Neuromorphic Computing

Computation (Brain Inspired and Other)

- Turing O-machines
- Multinary Logic (ternary and higher)
- Neural Networks (of all kinds)
- Hebbian Learning, STDP
- Boltzmann/Ising Machines
- Hopfield Networks (NP problems)
- Bayesian Inference, Markov Chains

Nonlinear Dynamical Circuit Theory

- Principle of Local Activity
- Oscillators and Amplifiers (e.g. neuristors)
- Chaos and Edge of Chaos
- Complexity and Emergent Phenomena
- Connection to Non-equilibrium Thermo

Electro-Iono-Thermo-Device Physics

- Drift-Diffusion-Thermophoresis
- Thermally activated transport
- Phase Transitions (e.g. Mott)
- Negative Differential Resistance
- Negative Differential Capacitance
- Non-equilibrium Thermodynamics
- Spontaneous Symmetry Breaking

Materials Science and Discovery and Design

- Materials by Design and Discovery
- Correlated Electronic and Spin States
- Topological Properties of Materials
- Tailored Bulk and Interface Properties
- Nanoscale Structural Phenomena

TEXAS A&M UNIVERSITY
Engineering

TEXAS A&M UNIVERSITY
Engineering