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Classification of

wo-Terminal Switching Devices

Valence Change Memory

Thermo-Chemical Memory

Electro-Chemical Memory

All are non-volatile.

Change of resistance is due to redistribution of ions.
Conduction is filamentary in large devices

Mobile ions:
oxygen, exchange of oxygen

either metal or oxygen of

mobile cations from the

with electrodes the functional oxide electrodes
Type of switching:
bipolar unipolar bipolar
Driving force:
electric field temperature electric field
Temperature _
high high low
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Application for Memory: Voltage-Time Dilemma

lon mobility in electric field is proportional to diffusion rate.
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If desired retention / switching time ratio is 10*° the activation energy for diffusion must be high (>1.0 eV)
and the temperature during writing very high (>1000K).
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How Big Is the Filament?

Blown off Filament diameter

region

10 um; 108 times
bigger cross-section

Power 40 mW
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Kwon et al., Nature Nanotechnology 5, 148 (2010)

These two devices are highly unlikely to operate based on the same phenomena.
Materials Science and Engineering

Carnegie Mellon



VCM: Electro-Formation - Standard Model
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D. S. Jeong et al. J. Appl. Phys. 104, 123716 (2008)
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Vacancies drift toward cathode Eventually a filament is created
and accumulate there. and the current rapidly increases.
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Bipolar Switching

Low Resistance State
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Low Resistance State corresponds to conducting filament connecting
both electrodes. High Resistance State is due to the appearance of a
gap in the filament.

High Resistance State
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Alternative Model of Electro-Formation
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Most metal-oxide-metal structures
show such S-type Negative
Differential Resistance I-V. It is
purely due to electro-thermal
processes. No ion motion takes
place.

Most frequent origin of S-NDR and
threshold switching is a positive
feedback loop between current and
temperature.
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Characteristics of Threshold Switching
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Spontaneous Current Constriction
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Finite element simulated current density distribution.

Current constriction does not require presence of any inhomogeneities or defects in the device. The size

.. ; ) 0
of constriction decreases with increase of a—;.
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Experimental Observation of Current Constriction

400 T T

Cad

o

o=
1

Scanning Joule | time

Current [uA]
MJ
o
o

Expansion Microscopy t 100 ]
! 0

0 B
.25 . . T .
5 i i i
x 20T \ . | I
0] T
=
s 15} . .
- N\
® . + i
£ 1.0 Expansion exp. H"“'*-—-..,___‘
=2 |
% 0.5 | Expansion sim.
= ¢+
L 0.0 Current density sim.

"0 250 500 750 1000

Dissipated power (uW)

Goodwill et al. Nature Communications 10, 1628 (2019)
Materials Science and Engineering Cal‘negie Mellon



Formation of Permanent Filament

1|"'IrI:IE'I.|'II2E

o
~

o
w
T

Current (mA)
o
N
|

o
-
I

\\ Vsource

| | |
00 2 4 6 8

VDEVICE (V)

This |-V can be retraced millions of times without changes.
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Formation of Permanent Filament
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Increasing the device voltage (dissipated power and
temperature) past certain point changes the I-V permanently.
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Formation of Permanent Filament
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Response to a long rectangular voltage pulse of 8V.
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Device gets to point A in about 1 us (time it takes
to heat it up).
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Formation of Permanent Filament

Response to a long rectangular voltage pulse of 8V.
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At point A, device incubates for a long time Formation exhibits slow-fast-slow dynamics indicative
followed by a fast transition to B. of a feedback loop and a second runaway process.
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TEM Assessment of Physical Changes

Device structure and geometry of TEM sample.
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High Angle Annular Dark Field Imaging of Filament

Contrast in STEM HAADF corresponds only to total number of Ta ions in the beam path. Other
lons in the device are too light to contribute.
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How Does the Conducting Path Look Like?

e There is only one filament.

It has the diameter of ~10 nm with local Ta
density over twice the content in initial TaO,
film.

e Filament has a gap of 10-15 nm wide located
next to anode. Gap has composition of
stoichiometric Ta,O«.

e Accumulation of Ta can be created only if Ta
IS moving.

10 5 0 5 10
Total Ta content change (%)

Ma et al. Adv. Electron. Mater. 1800954 (2019)
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What is the Driving Force?

Cross-sectional view Plan view sample.
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Depletion of Ta around the filament indicates lateral motion due to temperature gradient
(thermodiffusion, thermophoresis, or Soret effect).
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What is the Driving Force?

Positive polarity Negative polarity

Ta ion also drift in the electric field as positively charged ions should.
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Oxygen Distribution
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Filament (shown as bright area in HAADF) has lower O content than TaO, matrix. There is no sign of lateral motion.
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Inter-diffusion between TaO, and TIN

=== Top interface
=== Bottom interface

- I
Ta 1 O I
0O 10 20 30 40 0 10 20 30 40 O 10 20 30 40 0 10 20 30 40
Distance (nm) Distance (nm) Distance (nm) Distance (nm)

Ma et al., to be published

Elemental maps indicate oxygen presence in the TiN electrode above the filament. Tiand N
content is lower at this location.
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Switching in to LRS
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Electro-formation creates a gap in the filament and the hot spot next to interface with anode.
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lontronics: Storing Information in Positions of lons

lons must be mobile
&
Temperature must be high
&
Devices must be small

\ 4

Current density is high
Temperature gradients are extremely high

\ 4

Effects of electric field (field and carrier
wind) are comparable to effects of
temperature gradients.

We have only rudimentary
understanding of these processes.
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What Needs to Be Improved? Standard of Performance

Device: 30 nm Pt/Ta,O /TaO,_/Pt/Ti/SIO,/Si
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LRS resistance: 2x10°> Ohm, HRS resistance 1-5x10% Ohm, switching voltage 1-2V, endurance 101! for
500 nm device, switching speed 10 ns (at 6V), retention >10 years. No information on energy per
switching cycle.
Lee et al., Nature Materials 10, 625 (2011)
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Switching Speed

Shortest switching pulse reported: <100 ps

Choi et al. Adv. Funct. Mater. 16, 5290 (2016)
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Wang et al. Adv. Electron. Mater. 3, 1700263 (2017)

Leaves an open question whether one cans switch this fast devices with higher resistance and good endurance.
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Increasing Resistance of LRS

Typical resistance values for LRS: 104, 5x103, 10°, 2x104...
Needed: 107 Ohm (Gokmen and Vlasov, Front. Neurosci. 10, 333 (2016)),
10°-105 Ohm (islam et al., J. Phys. D: Appl. Phys. 52, 113001 (2019)

Hf 10nm cap
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E 1M . Se - " ;,
3 o0 e . B
5 .lr./ \f ﬁ
& 100k 1/G,=13 ROhm| ¢ RESET2 ) GAP
g 10K so" s guuuag iy W "-_--.l._.--' oot F———2
: : : . : : : Gg<
0 200 400 600 800 1,000 1,200
1I(1 10 100 1k 10k 100k 1M 10M100M 1G 10G Time (s)
Endurance number
Chen et al. IEEE Trans. Yi et al. Nature Communications 7, Long et al. Appl. Phys. Lett. 102,
Electron Dev. 60, 1114 (2013) 11142 (2016) 183505 (2013)

If the quantum point model is correct, it could be difficult to increase LRS resistance in a controlled way.
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Endurance

Reported range od endurance: 10%-10%2
Lee et al., Nature Materials 10, 625 (2011)
Degraeve et al., 2015 IEEE VLSI

ITRS calls for 1012-104 for universal memory

Multiple mechanisms leading to failure:
() stuck-on-LRS

(i) stuck-on-HRS

(i) closing of LRS/HRS window

Resistance (Q2)

e fh-'l:'f. ,
10" 10° 10° 10" 10° 10° 10" 10° 10°
Cycle (#)

Degraeve et al., 2015 IEEE VLSI

Multiple failure mechanisms can operate in nominally identical devices.
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Stuck-on-LRS Failure

Gradually increasing conductance of LRS is interpreted as increasingly “strong” and / or
wide filament. Suggested as due to continued loss of oxygen to electrodes.
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There is no apparent increase of oxygen content in the electrodes.
Ma et al. to be published
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The filament in failed device has higher diameter but is not continuous. Could be the result of
phase separation in Ta-O system. No obvious way forward.
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Conclusions

Resistive switching processes are more complex than initially
assumed and are highly nonlinear. Understanding of many processes
IS still iInadequate.

Most research projects focus on one property at the time.

There are no clear benchmarks for materials and devices as the
concepts for applications are rapidly evolving .
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Is There One Filament or Many?

one filament
Ma et al., Adv. Electron. Mater. 1800954 (2019)

5x101 cm-2 filaments . top electrode ..
Wu et al. Appl. Phys. Lett. 104, 242906 (2014) i e

many partial filaments f
Waser et al. Adv. Mater. 21, 2632 (2009) -— filament

bottom electrode
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