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Organic non-volatile memory R&D >5 decades

Electrical switching and memory phenomena in Cu-TCNQ thinl
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FIG. 1. Typwal de current-valtage characteristic showing bistable switch-
ing in a S-um-thick Cu-TCNQ sandwich structure.
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Polymers memristors

Recent review: Gao et al., Chem. Soc. Rev., 48, 1531, (2019)

*  Many proposed mechanismes....
* Non linearity, asymmetry, noise, need for reset, high conductance...
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Solution processable azo-aromatic metal complexes
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Charge trapping polymer memory (organic Flash)

High write voltage; retention time 103 —

2 [

i y

1070 \/\
: / "
F '

. \\

~ (d)

Current (A)

108 sec

///////////7 m ﬁEE?
777777

Reading ¥, =0V [ON-state)

Erasing at \l' =-60¥

*Programming-Reading-Erasing cycle ~ 100

Reading atV, = U‘J[UFF-st te)

Ouyang et al., Nature Materials 3, (2004)

80 100 120

0 0 80
Time [s]

(b)*S %

£ ()

O oV

After programming

©f gyt ——

S

alV =60V
— e ——a——

AV, =-20V

—m— ON-state
—&— OFF-stane

(=]
T

3 4 s 6 7
Bending radius [mm]

Scientific Reports 5, 12299 (2015)

8




Organic polarization transistor
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Organic electrochemical transistors (OECTs)
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Electrochromics store optical absorption (state of charge

https://www.gentex.com/products-
technology/automotive/dimmable-glass/
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Analog optical state tuning of PEDOT:PSS
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Polymer redox transistor inspired by ECs, battery
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Projected switching energy of 35 aJ for 0.1 um? device

Conductance (uS)

T Y T v T T T T T d T
2000 2500 3000 3500 4000 4500

Time (s)
100 4 | LB B L | T rrreng LA R AL | LA B B R | Y T
2 10 35 al switching for
- | 0.3 x 0.3 um device
s
2 0.1
o ]
0.01
T TTTTT T T =TT o
1E-3 0.01 0.1 1 10 100

area (rnm""}
Y.B. van de Burgt, E. Lubberman, E.J. Fuller, S.T. Keene, G.C. Faria, S. Agarwal,
M.J. Marinella, A.A. Talin*, A. Salleo*, Nature Materials 16, 414, 2017




Selector enables fast, low-V switching + retention
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Use binary, volatile selector

selector: diffusive memristor

normally OFF, V;: = 150 — 400 mV
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First test of addressability
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E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C.
D. James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science, online
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Non-volatile redox memory — a floating gate memory
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Parallel training with a 3x3 array

Y. Li et al., in prep.
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Polymers are tunable
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Polymers are tunable
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Rapid H* transport enables fast switching
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Fast switching enable endurance testing
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Further reduction in switching time with scaling
(Salleo group)
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50 nm polymer transistor demonstrated
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Materials selection for increased resistance, range
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CMOS-Integrated lonic Transistors
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Organic electronics technology rapidly advancing

https://www.photonics.com/Articles/OLED M
icrodisplays Advancing Virtual and/a58438

General setup of a bidirectional OLED microdisplay (feft). Courtesy of Fraunhofer FEP



https://www.photonics.com/Articles/OLED_Microdisplays_Advancing_Virtual_and/a58438

lon-insertion electrodes for neuromorphic computing
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o Store energy € store information
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Highly predictable, stable operation, ~200 states
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Electronic structure <-> ion insertion relationship
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i, TiO,-Li, TIO, symmetric redox transistor
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LISTA work is inspiring new 2D systems
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Metal organic frameworks (MOFs)

* high density of redox states
e structural porosity for high ionic transport
* tailor electronic transport through metal-ligand coupling

Current (pA)
Free Energy

Bias (V) 0 1

A. A. Talin, A. Centrone, A. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, M. D.
Allendorf, Science 343, 66 (2014). 36
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PB analogs display ultrafast H*, tunable e  transport
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The mission is to make human
beings something other than
what we are, with powers beyond
the ones we’re born with.

https://www.theatlantic.com/magazine/archive/2018/11/the-pentagon-
wants-to-weaponize-the-brain-what-could-go-wrong/570841/
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Polymer NVRM for brain-machine interface
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PEDOT:PSS ionic-electronic neurotransmitter pumps

lons
Na™ Involved in the 80%
- v initiation of action
£ :g ' potentials.
25 ' K™ Maintain the 100%
L% : resting potential in
e ' : > excitable cells.
1 ) Ca?t Important second 100%
: : messenger in cell
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]
source M’ L 4M" target felease of
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Operating in conductance limit increases noise
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Quantized conductance coincides with state
instability and excess noise in tantalum oxide
memristors

Wei Yi'2, Sergey E. Savel'ev3, Gilberto Medeiros-Ribeiro'4 Feng Miao®, M.-X. Zhang1, J. Joshua Yang1'6,
Alexander M. Bratkovsky'”® & R. Stanley Williams!
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Non-linearity, high conductance limit accuracy, scaling
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Linearity BUT conductance high, needs reset

* Increase conductance = synchronized V+ to memristor, FET gate; set | compliance

S . . 20 cycles for a single device
* Decrease conductance=> reinitialize memristor, then increase conductance as above
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