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My Background
• Ph.D. in Computer Science from the University of Tennessee 

– National Science Foundation Graduate Research Fellowship 
to study evolutionary algorithms and spiking neural networks 

• Joined ORNL in 2015 as a Liane Russell Early Career fellow
– Project: Programming and Usability of Neuromorphic 

Computing
• 45+ publications in spiking neural networks and neuromorphic 

computing, 6 patents 
– A Survey of Neuromorphic Computing and Neural Networks 

in Hardware
• Joint faculty with the Department of Electrical Engineering & 

Computer Science at the University of Tennessee

• Co-founder of the TENNLab

• Department of Energy Early Career Award in 2019
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Memristive Devices and Materials

Kim, Sun Gil, et al. "Recent advances in memristive materials for artificial 
synapses." Advanced Materials Technologies 3.12 (2018): 1800457.

• Memristive materials are being used to 
implement both  neurons and synapses

• Basic functionality of the component 
depends on the materials and devices 
utilized

• All aspects of the compute stack are 
influenced by the materials/devices 
used at the lowest level

Heterojunction 
Metal Oxides Graphene

Filamentary 
Metal Oxides MoS2

Nanoparticles Halide 
Perovskite

Bio-inspired Polymer
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Metal Oxide Memristors Materials

• Circuit components fabricated with different materials can have 
different behaviors:
– Number and type of resistance states
– Switching speeds
– Endurance
– Stability
– Reliability
– Cost
– Tunability

Table: Mohammad, Baker, et 
al. "State of the art of metal 
oxide memristor
devices." Nanotechnology 
Reviews 5.3 (2016): 311-
329.

Material TE/BE VSET/VRESET Switching 
Speed

Retention Time Endura
nce

ZnO Ag/Cu 1.2V/-1.25V - - >500 
cycles

TiO2 TiN/Pt +1V/-1.5V 1uS 104 s
LaO ITO/SrTiO3 5V/-1.6V - >4x104 s 2000 

cycles
TaOx W/Pt - - >10 years 104

cycles
NiO Pt/Pt >10V/<-10V - >104 s -
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Challenges (and Opportunities) with Memristive Materials
• Variability from device to device and from cycle to cycle

– Advantages:
• Could help compensate for limited weight resolution
• Source of stochasticity (which can be useful in some neural network implementations)

– Disadvantages:
• May require re-training
• May require on-chip training

• Weight resolution
– Disadvantage:

• Limited resistance levels require limited programmable weight values
– Advantage:

• May benefit generalization ability of a neural network

Li, Yibo, et al. "Review of memristor devices in neuromorphic computing: materials sciences and device 
challenges." Journal of Physics D: Applied Physics 51.50 (2018): 503002.
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Materials Research from an Algorithms/Applications Perspective

Development and 
Implementation of New 

Memristive Materials

Opportunity to leverage new 
capabilities for algorithms 

and applications!

Figuring out how to deal with 
new behaviors the materials 

introduce
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Example Device: Biomimetic Synapses
• Droplet-interface 

bilayers (DIBs) 
form the 
synapses 

• DIBs exhibit 
natural short-
term plasticity 
(PPF and PPD)

• Easily fabricated 
on a small scale

Najem, Joseph S., et al. "Memristive ion channel-doped biomembranes as synaptic mimics." ACS 
nano 12.5 (2018): 4702-4711.
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Example Device: Biomimetic Synapses
• Implemented an 

analytical model of the 
DIB behavior

• Implemented a software 
simulation of the DIB 
network 

• Used simulation to train 
an EEG classifier that 
achieves 98.25% 
accuracy on the training 
and testing set, 
comparable with other 
neuromorphic 
architectures
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Architectures for Memristive Neuromorphic Systems

• Architecture includes additional components (often implemented in 
CMOS), including:
– Neurons (though they may be implemented with memristors as well)
– Learning circuitry

• Architectural organization influences for algorithms and applications:
– Possible network structure to implement
– On-chip learning mechanisms
– Performance characteristics
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Architectures: Crossbars

• Advantages:
– High density
– Low power

• Disadvantages:
– Potential limitation on achievable 

structures (number of layers, 
recurrent connectivity, etc.)

– Sneak paths updating memristor 
values

– May not be well-suited to sparse 
structures

M M M M M

M M M M M

M M M M M

M M M M M

M M M M M
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Architectures: Neural Cores

Chakma, Gangotree, et al. "Memristive mixed-signal neuromorphic systems: 
Energy-efficient learning at the circuit-level." IEEE Journal on Emerging and 
Selected Topics in Circuits and Systems 8.1 (2017): 125-136.

• Advantages:
– More flexibility in the types of 

network structures that can be 
realized

– Less idle components or unused 
computation for small, sparse 
networks

• Disadvantages:
– Not as space efficient
– Not as power efficient



15

Architectures: Hybrid Crossbar/Neural Core

• Reduces the size of the 
crossbars used, limiting sneak 
paths

• Allows for more flexible network 
structures

• Some density and power 
efficiency benefits from the 
crossbar approach

Yakopcic, Chris, and Tarek M. Taha. "Energy efficient perceptron pattern recognition using 
segmented memristor crossbar arrays." The 2013 International Joint Conference on Neural 
Networks (IJCNN). IEEE, 2013.
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Architectures from an Algorithms/Application Perspective
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Architectures from an Algorithms/Application Perspective
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Low SWaP Opportunities for ASIC Memristive Chips 

Optimizing Testing Neurons Synapses Energy
Accuracy 82.8% 168 257 1766.7 uJ
Accuracy+Size 83.4% 82 128 846.2 uJ
Accuracy+Energy 82.6% 82 120 847.2 uJ
Accuracy+Size+
Energy

82.9% 82 108 845.5 uJ

• Combining application specific memristive chips 
with algorithms that optimize for smaller size and 
lower energy usage can result in dramatically 
lower energy usage with very little impact on 
application performance

• May be very well-suited to deployment at the edge

Submitted: Catherine D. Schuman, et al. “Automated Design of 
Neuromorphic Networks for Scientific Applications at the Edge.”



2020

Neuromorphic Computing “Stack”

Materials

Devices

Microarchitecture

System Architecture/Organization

System Software and Communications

Algorithms

Applications



2121

Algorithms for Memristive Neuromorphic Systems

• Key considerations for algorithm 
development on neuromorphic 
hardware:
– Realizable network structures
– Reduced precision in the synaptic 

weights
– On-chip training, chip-in-the-loop, or 

off-chip training performance
– Dealing with noise, process 

variations, cycle-to-cycle variation 
– Hardware optimized for training or 

inference

Schuman, Catherine D., et al. "A survey of neuromorphic computing and neural networks in 
hardware." arXiv preprint arXiv:1705.06963 (2017).
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Algorithms: Back-Propagation-Like Approaches

• Dense connectivity

• Algorithm adaptations for low-
precision 

• Multiple memristors per 
synapse may be required to 
increase precision

• On-chip training or chip-in-the-
loop may be required to 
overcome device variability 
and alternate current paths

Hasan, Raqibul, Tarek M. Taha, and Chris Yakopcic. "On-chip training of 
memristor based deep neural networks." 2017 International Joint Conference on 
Neural Networks (IJCNN). IEEE, 2017.
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Algorithms: Reservoir Computing

• Dense (readout layer) and 
sparser (liquid) 
connectivity

• Has been shown to be 
resilient to noise due to 
process variation

• Well-suited to memristors 
because it benefits from 
their nonlinear and 
memory characteristics

Soures, Nicholas, Lydia Hays, and Dhireesha Kudithipudi. "Robustness of a memristor based liquid state 
machine." 2017 international joint conference on neural networks (ijcnn). IEEE, 2017.
Kulkarni, Manjari S., and Christof Teuscher. "Memristor-based reservoir computing." 2012 IEEE/ACM 
International Symposium on Nanoscale Architectures (NANOARCH). IEEE, 2012.

Trained Readout 
Layer

Untrained 
Reservoir
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Algorithms: Synaptic Plasticity
• Requires on-chip 

implementation of plasticity
– Precise plasticity 

mechanisms are not well 
understood

– Implementations such as 
Intel’s Loihi are now 
including programmable 
plasticity

• Network structures are not 
well understood
– May require dynamic 

adaptation of structure
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Algorithms: Evolutionary Optimization

• Often produces networks 
with very sparse 
connectivity

• Can utilize chip-in-the-loop 
without algorithm 
adaptation

• Will attempt to optimize 
within the characteristics 
of the device

• Can train for low precision

• Can be slow to train

Schuman, Catherine D., et al. "An evolutionary optimization framework for neural networks and neuromorphic architectures." 2016 
International Joint Conference on Neural Networks (IJCNN). IEEE, 2016.
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Optimizing within Hardware Constraints
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• EONS (an evolutionary 
optimization approach) 
can discover 
comparable performing 
networks within 
hardware constraints, 
such as weight 
precision constraints

• It will also optimize 
within the capabilities of 
the device (such as the 
biomimetic memristor 
shown previously)

Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potokand James S. Plank. 2020. 
Evolutionary Optimization for Neuromorphic Systems. In Neuro-inspired Computational Elements 
Workshop (NICE ’20),March 17–20, 2020, Heidelberg, Germany.ACM, New York, NY, USA, 9 pages.
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Applications of Memristive Neuromorphic Hardware

• Key Considerations
– Low power
– Small/embeddable
– Processing speed required
– Robustness and resilience
– Integration with sensors and other 

compute
– On-chip training or learning

Schuman, Catherine D., et al. "A survey of neuromorphic computing and neural 
networks in hardware." arXiv preprint arXiv:1705.06963 (2017).
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Applications of Neuromorphic Computing
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Applications of Neuromorphic Computing

• Scientific discovery
• Co-processor
• Large-scale data analytics
• Cyber security
• Autonomous vehicles
• Robotics
• Internet of things
• Smart sensors

Neuromorphic 
Application 

Characteristics

Spatio-
Temporal

Noisy
Input

Real-Time 
Processing

Multi-
modal

Low 
power

Not high 
precision

Requires 
robustness

Continuous 
Learning
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Applications of Neuromorphic Computing

• Large-scale models
• Faster than real-time 

processing
• Fast re-training

• Multi-modal
• Continuous ”local” 

learning 

• Extremely low power
• Resilient/robust
• EmbeddedInternet of Things

Edge

Cloud, Data 
Center, HPC
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Applications of Neuromorphic Computing

Optimized 
Training 

Performance

Optimized 
Inference 

Performance

Internet of Things

Edge

Cloud, Data 
Center, HPC
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Application-Driven Hardware

Application: 
Image 

Processing

Algorithm: 
Deep 

Learning
Architecture: 

Crossbar
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Potential Pitfall

Application: 
Image 

Processing

Algorithm: 
Deep 

Learning
Architecture: 

Crossbar

Are we boxing ourselves into a particular use case 
and limiting innovation?
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Opportunity for Co-Design

Devices and 
Materials

Algorithms Applications

Drives new 
learning 

mechanisms

Drives new 
requirements/capabilities 

Drives new use cases

Co-Design
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Key Challenge in Neuromorphic Computing

Neuromorphic Computing 
Devices and Materials 

Researchers

Know how to build novel 
neuromorphic 

implementations. 

Don’t always know how to 
best use the 

implementations to do 
something interesting. 
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Key Challenge in Neuromorphic Computing

Neuromorphic Computing 
Devices and Materials 

Researchers

Know how to build novel 
neuromorphic 

implementations. 

Don’t always know how to 
best use the 

implementations to do 
something interesting. 

Application
27%

No 
Applications

73%

Neuromorphic Hardware 
Papers Through January 2017

Source: Schuman, Catherine D., et al. "A 
survey of neuromorphic computing and 
neural networks in hardware." arXiv preprint 
arXiv:1705.06963 (2017).
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Key Challenge in Neuromorphic Computing

Neuromorphic Computing 
Devices and Materials 

Researchers

Know how to build novel 
neuromorphic 

implementations. 

Don’t always know how to 
best use the 

implementations to do 
something interesting. 

Applications Researchers
Have interesting problems 
to solve and know that their 
application can benefit from 
neuromorphic computing. 

Don’t always know how to 
build the appropriate 
“program” for a given 

neuromorphic computer or 
the appropriate platform to 

use.

ORNL and 
TENNLab

Neuromorphic 
Software 

Framework

Goal: Bridge the gap between materials/device/architectures researchers 
and applications researchers to enable cutting edge research for both
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TENNLab Software Framework

Applications

Software Core with Common 
Interfaces and Learning 

Engines
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Classification
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Detection Control
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TENNLab Software Framework
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NIDA DANNA mrDANNA DANNA2 Biom SOENS Loihi
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Temporal Data 
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My 
research
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Current Approaches: Machine Learning to Build the Program

Use machine learning to define the neuromorphic network: 
the program that is loaded onto a neuromorphic computer

Back-Propagation-
Like Approaches

Liquid State Machines

Error-based Weight Updates

Trained 
Readout Layer

Untrained 
Reservoir

Evolutionary 
Optimization

C.D. Schuman, et al. "An evolutionary optimization 
framework for neural networks and neuromorphic 
architectures." 2016 International Joint Conference on 
Neural Networks (IJCNN). IEEE, 2016.

J. J. M. Reynolds, J. S. Plank, C. D. Schuman. 
“Intelligent Reservoir Generation for Liquid 
State Machines using Evolutionary 
Optimization.” 2019 International Joint 
Conference on Neural Networks (IJCNN). 
IEEE, 2019.
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Current Approaches: Neuroscience-Inspired Plasticity

We don’t really understand how 
these work or how to use them 

effectively in neuromorphic
Schuman, Catherine D. "The effect of biologically-inspired mechanisms in 
spiking neural networks for neuromorphic implementation." 2017 
International Joint Conference on Neural Networks (IJCNN). IEEE, 2017.
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Learning to Learn: Designing Novel Neuromorphic Algorithms 
with Machine Learning

Machine Learning Approaches High Performance Computing

Scientific Data Applications
New, On-Chip 

Unsupervised Learning 
Approaches for 

Neuromorphic Systems
Image Source: https://neutrons.ornl.gov/sns

Image Source: https://www.olcf.ornl.gov/
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Summary and Take Homes
• There is an opportunity to allow for materials research to inform the 

development of new algorithms
– Using whatever “plasticity” is native to the device could influence algorithmic 

development

• We don’t yet know what the right algorithms are
– There is a need to develop hardware that enables the development and 

evaluation of new algorithms
– GPUs enabled much of the deep learning revolution. Neuromorphic hardware 

has the potential to enable a spiking neural network revolution

• Hardware design should take into account the final application needs
– Different application and use cases have radically different needs
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International Conference on Neuromorphic Systems

• Join us at ICONS!

• July 28-30, 2020 in Chicago, Illinois

• Submission Deadline:               
March 31, 2020

• Highlights from ICONS 2019:
– Attendees from academia, 

industry, and government
– International participation, from 

Europe, Asia, and Australia/New 
Zealand

– Intel tutorial on Loihi

Website: icons.ornl.gov
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Thank you!

Questions?
Contact:

Email: schumancd@ornl.gov

Website: catherineschuman.com

Twitter: @cdschuman


