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My Backgrounad
 Ph.D. in Computer Science from the University of Tennessee

— National Science Foundation Graduate Research Fellowship
to study evolutionary algorithms and spiking neural networks

« Joined ORNL in 2015 as a Liane Russell Early Career fellow
— Project: Programming and Usability of Neuromorphic

Computing
e 45+ publications in spiking neural networks and neuromorphic
computing, 6 patents R
— A Survey of Neuromorphic Computing and Neural Networks \ 1) LAB
inHardware NEUROMORPHIC

ARCHITECTURES. LEARNING. APPLICATIONS

 Joint faculty with the Department of Electrical Engineering &
Computer Science at the University of Tennessee

« Co-founder of the TENNLab
* Department of Energy Early Career Award in 2019
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Neuromorphic Computing “STCICl(”

- My Research

Microarchitecture

Influences

Devices
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Neuromorphic Computing “Stack”

Applications

Algorithms

System Software and Communications
System Architecture/Organization
Microarchitecture

Devices
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Memristive Devices and Materials

Heterojunction
Metal Oxides flj ©roPhene

 Memristive materials are being used to
Implement both neurons and synapses

» Basic functionality of the component Af\”e?g?g%gs
depends on the materials and devices
utilized
: Halide
 All aspects of the compute stack are Nanoparticles Perovskite

influenced by the materials/devices
used at the lowest level

Bio-inspired

Kim, Sun Gil, et al. "Recent advances in memristive materials for artificial
synapses." Advanced Materials Technologies 3.12 (2018): 1800457.
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Metal Oxide Memristors Materials

 Circuit components fabricated with different materials can have
different behaviors:

— Number and type of resistance states
— Switching speeds

— Endurance W TE/BE Switching | Retention Time
- Stability Zee —

e Ag/Cu 1.2V/-1.25V - >500
— Cost TiO, TiN/P1 +1V/-1.5V  1uS 1045
— Tunability LaO ITO/SITIOS SV/-1.6V - >4x104 s 2000
cycles
Table: Moh d, Baker,
aﬁ "gtateoo? ’mcren 2rt ofa:ngtralet TaOy W/Pt - - >10 years 104
oxid_e memristor cycles
devices." Nanotechnology
Reviews 5.3 (2016): 311- NiO Pt/Pt >10V/<-10V - >104s -

329.
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Challenges (and Opportunities) with Memristive Materials

 Variability from device to device and from cycle to cycle

— Advantages:

* Could help compensate for limited weight resolution

» Source of stochasticity (which can be useful in some neural network implementations)
— Disadvantages:

* May require re-training

* May require on-chip training

e Weight resolution
— Disadvantage:
» Limited resistance levels require limited programmable weight values

— Advantage:

» May benefit generalization ability of a neural network

Li, Yibo, et al. "Review of memristor devices in neuromorphic computing: materials sciences and device

%gﬁ)ﬁ%{gﬁg challenges." Journal of Physics D: Applied Physics 51.50 (2018): 503002.




Marterials Research from an Algorithms/Applications Perspective

Development and
Implementation of New
Menristive Materials

Opportunity to leverage new Figuring out how to deal with

capabilities for algorithms new behaviors the materials
and applications! infroduce
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Example Device: Blomimetic Synapses

* Droplet-interface
bilayers (DIBs)
form the
synapses —

* DIBs exhibit ..... -
natural short-
term plasticity

(PPF and PPD) =~ s

Alamethicin .

peptides Synfipt'C
» vesicle / Presynaptic

Phospholipid

membrane

Neurotransmitters

Postsynaptic

 Easily fabricated  zuf
on a small scale 8
3 st — ]
W=20ms
0 Vmax=130mY ,
0 "\ 5 10

% 0AK RIDGE
. National Laboratory
no pulses applied Time (s)

Najem, Joseph S., et al. "Memristive ion channel-doped biomembranes as synaptic mimics." ACS
¥ OAK RIDGE nano 12.5 (2018): 4702-4711.
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Example Device: Blomimetic Synapses

* Implemented an

Output — . DIB-based -——— External
Neuron Synapse Communication

analytical model of the > Input
DIB behavior

)

Neuron

e Implemented a software
simulation of the DIB s L outpat
n etWO rk Excitatory, D=0.08 sec

 Used simulation to train put 1 —- - > R 0

an EEG classifier that
achieves 98.25%

Excitatory, D=0.08 sec

.. Input3 ----- >

accuracy on the training

and testing set,

comparable with other nput 4 ---=- i bo- b """ | o
neuromorphic

architectures
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Neuromorphic Computing “Stack”

Applications

Algorithms

System Software and Communications
System Architecture/Organization

Microarchitecture

Devices

Materials
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Architectures for Memristive Neuromorphic Systems

» Architecture includes additional components (often implemented in
CMOQOS), including:

— Neurons (though they may be implemented with memristors as well)
— Learning circuitry

» Architectural organization influences for algorithms and applications:
— Possible network structure to implement
— On-chip learning mechanisms
— Performance characteristics
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Architectures: Crossbars

* Advantages:
— High density
— Low power

* Disadvantages:

— Potential limitation on achievable
structures (number of layers,
recurrent connectivity, etc.)

— Sneak paths updating memristor
values

— May not be well-suited to sparse
structures
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Architectures: Neural Cores

« Advantages: (e P
— More flexibility in the types of e ] | |1 [P
network structures that can be = L= e | =y
realized B IR =t
— Less idle components or unused I J—
computation for small, sparse T
networks

f e ‘ i
. . System Core==>\; ... Yoo
» Disadvantages:
Al Chakma, Gangotree, et al. "Memristive mixed-signal neuromorphic systems:
- N Ot aS S pace eﬁ:l Cl e nt Energy-efficiegt learning at the circuit-level." IEEgE Journal on Emerg/%g and

Selected Topics in Circuits and Systems 8.1 (2017): 125-136.
— Not as power efficient
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Architectures: Hybrid Crossbar/Neural Core

* Reduces the size of the
crossbars used, limiting sneak
paths

e Allows for more flexible network
structures

« Some density and power
efficiency benefits from the
crossbar approach

Yakopcic, Chris, and Tarek M. Taha. "Energy efficient perceptron pattern recognition using
segmented memristor crossbar arrays." The 2013 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2013.
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Architectures from an Algorithms/Application Perspective

Optimized Dynamic

Fast Usability

Space New

Efficient algorithms

Energy New
Efficient applications
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Architectures from an Algorithms/Application Perspective

Optimized Dynamic

Restricted to

a particular Fast

Usability

algorithm
and/or
application

New
algorithms

Space
Efficient

New
applications

Energy
Efficient
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Architectures from an Algorithms/Application Perspective

Optimized Dynamic

Restricted to

a particular Fast Usability

Not as

algorithm
and/or
application

efficient

Space New

Efficient algorithms

Energy New
Efficient applications
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Low SWaP Opportunities for ASIC Memristive Chips

MAGIC

« Combining application specific memristive chips %j Rl o
with algorithms that optimize for smaller size and
lower energy usage can result in dramatically el
lower energy usage with very little impact on E’%
application performance

 May be very well-suited to deployment at the edge

Im et d
Accuracy 82.8% 1766.7 ud °
Accuracy+Size 83.4% 82 128 846.2 uJ S %
Accuracy+Energy  82.6% 82 120 847.2 uJ
Accuracy+Size+ 82.9% 82 108 845.5 uJ S
Energy ALas e e

Submitted: Catherine D. Schuman, et al. “Automated Design of

%OAK RIDGE Neuromorphic Networks for Scientific Applications at the Edge.”
National Laboratory
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Algorithms for Memristive Neuromorphic Systems

Supervised Unsupervised
« Key considerations for algorithm
development on neuromorphic
hardware:

— Realizable network structures

— Reduced precision in the synaptic -
weights
— On-chip training, chip-in-the-loop, or
off-chip training performance
— Dealing with noise, process
variations, cycle-to-cycle variation
— Hardware optimized for training or
inference

Schuman, Catherine D., et al. "A survey of neuromorphic computing and neural networks in

%OAK RIDGE hardware." arXiv preprlnt arXiv:1705.06963 (2017).
National Labor:




Algorithms: Back-Propagation-Like Approaches

Dense connectivity

Algorithm adaptations for low-
precision

Multiple memristors per
synapse may be required to
Increase precision

e On-chip training or chip-in-the-
loop may be required to
overcome device variability
and alternate current paths

Hasan, Raqibul, Tarek M. Taha, and Chris Yakopcic. "On-chip training of
memristor based deep neural networks." 2017 International Joint Conference on
Neural Networks (IJCNN). |IEEE, 2017.

%OAK RIDGE

National Laboratory




Algorithms: Reservoir Computing

* Dense (readout layer) and
sparser (liquid)
connectivity

* Has been shown to be ‘
resilient to noise due to
process variation

e Well-suited to memristors
because it benefits from .
their nonlinear and Untrained

memory characteristics Reservoir

Trained Readout
Layer

Soures, Nicholas, Lydia Hays, and Dhireesha Kudithipudi. "Robustness of a memristor based liquid state
machine." 2017 international joint conference on neural networks (ijcnn). IEEE, 2017.

Kulkarni, Manjari S., and Christof Teuscher. "Memristor-based reservoir computing." 2012 IEEE/ACM
International Symposium on Nanoscale Architectures (NANOARCH). IEEE, 2012.
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Algorithms: Synapftic Plasficity

5 1.0
e Requires on-chip F:
Implementation of plasticity 5 0.5
~ Precise plasticity b
mechanisms are not well g 0.0
understood y
— Implementations such as %‘0'5
Intel’s Loihi are now ©
including programmable 710530 =50 =10 0 10 20 30 40
plasticity t pre-t_post (ms)
« Network structures are not e | —

well understood

arrival at neuron

\ : i
~ May require dynamic : @ —® —0 — 9

adaptation of structure

S weight increases most
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Algorithms: Evolutionary Optimization

« Often produces networks  Random o Chia
with very sparse

Parents

connectivity ( =
» Can utilize chip-in-the-loop o
without algorithm and Rank C@) Reproduce
adaptation
Oﬂ}

o Will attempt to optimize
within the characteristics
of the device

¥ Worst

- S e _

Schuman, Catherine D., et al. "An evolutionary optimization framework for neural networks and neuromorphic architectures." 2016

o Ca n tral n for IOW preCISlon Internatio;val Joint Com:erencé on Neural Networks (IJCNN). IEEE, 2016.

e Can be slow to train
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Optimizing within Hardware Constraints

« EONS (an evolutionary
optimization approach)
can discover
comparable performing
networks within
hardware constraints,
such as weight
precision constraints

Iris Wine Breast Cancer
127 —

W N
—_
||

SSEEN
|

—

3 7 15 3 7 15 3 7 15
Maximum Delay Value

Maximum Weight Value
¥
|

It will also optimize
within the capabilities of

the device (such as the Mean Testing Value Heatmap
biomimetic memristor # | | |
shown previously) 0900 0905 0910 0915 0920 0925

Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potokand James S. Plank. 2020.
Evolutionary Optimization for Neuromorphic Systems. In Neuro-inspired Computational Elements

Workshop (NICE "20),March 17-20, 2020, Heidelberg, Germany.ACM, New York, NY, USA, 9 pages.
¥ OAK RIDGE orkshop ( )Marc eidelberg y pag
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Applications of Memristive Neuromorphic Hardware

« Key Considerations

%

Low power
Small/embeddable
Processing speed required
Robustness and resilience

Integration with sensors and other
compute

On-chip training or learning

OAK RIDGE

National Laboratory

Non-Neural
Network
Smart Detection

Sensor

iy — ———

Schuman, Catherine D., et al. "A survey of neuromorphic computing and neural
networks in hardware." arXiv preprint arXiv:1705.06963 (2017).



Applications of Neuromorphic Computing

Spatio-
Temporal

Continuous
Learning

Neuromorphic
Application
Characteristics

Real-Time
Processing

Requires

robustness

Not high
precision
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Applications of Neuromorphic Computing

Spatio-
Temporal

« Scientific discovery

Continuous
Learning

e Co-processor
e Large-scale data analytics

Neuromorphic Real-Time

Application Processing . Cyber SeCu I'Ity

Characteristics

Requires

robustness

o Autonomous vehicles
 Robotics

Not high
precision

* Internet of things

e Smart sensors
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Applications of Neuromorphic Computing

« Large-scale models

» Faster than real-time
processing

* Fast re-training

Cloud, Data
Center, HPC

 Multi-modal
« Continuous ’local”
learning

Edge

* Extremely low power
* Resilient/robust
« Embedded

Internet of Things

%OAK RIDGE
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Applications of Neuromorphic Computing

Cloud, Data
Center, HPC

Edge

Internet of Things

¥ OAK RIDGE
National Laboratory

Optimized
Training
Performance

Optimized
Inference
Performance




Application-Driven Hardware

Application: Algorithm:

Image Deep Architecture:

Processing Learning

Crossbar

¥ OAK RIDGE
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Potential Pitfall

Application: Algorithm:

Architecture:

Image Deep Crossbar

Processing Learning

Are we boxing ourselves into a particular use case
and limiting innovation?

¥ OAK RIDGE
National Laboratory




Opportunity for Co-Design

Devices and

Materials

Drives new Drives new
learning requirements/capabilities

mechanisms ]
Co-Design

Algorithms Applications

Drives new use cases
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Key Challenge in Neuromorphic Computing

Neuromorphic Computing
Devices and Materials
Researchers

Know how to build novel
neuromorphic
implementations.

Don’t always know how to
best use the
implementations to do
something interesting.

%OAK RIDGE
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Key Challenge in Neuromorphic Computing

Neuromorphic Hardware

Neuromorphic Computing Papers Through January 2017
Devices and Materials
Researchers

Know how to build novel
neuromorphic

implementations. Appzli;:;ﬁon

Don’t always know how to
best use the
implementations to do

something interesting. No

Applications
73%

Source: Schuman, Catherine D, et al. "A
survey of neuromorphic computing and

neural networks in hardware.” arXiv preprint
arXiv:1705.06963 (2017).
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Key Challenge in Neuromorphic Computing

Neuromorphic Computing
Devices and Materials
Researchers

Know how to build novel
neuromorphic
implementations.

Don’t always know how to
best use the
implementations to do
something interesting.

%

Applications Researchers

Have interesting problems
to solve and know that their
application can benefit from

neuromorphic computing.

Don’t always know how to
build the appropriate
“program” for a given

neuromorphic computer or

the appropriate platform to
use.

Goal: Bridge the gap between materials/device/architectures researchers
and applications researchers to enable cutting edge research for both

OAK RIDGE

National Laboratory




TENNLab Software Framework

Static Data Temporal Data Event Control
Classification Classification Detection
NIDA  DANNA mrDANNA DANNA2 Biom SOENS Loihi
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TENNLab Software Framework

Statfic Data Temporal Data Event o
Classification Classification Detection
Software Core with Common
Interfaces and Learning
Engines
NIDA  DANNA mrDANNA DANNA2 Biom SOENS Loihi
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Current Approaches: Machine Learning to Build the Program

Use machine learning to define the neuromorphic network:
the program that is loaded onto a neuromorphic computer

Back-Propagation-
Like Approaches

Liquid State Machines

Error-based Weight Updates /)

Untrained Trained
Reservoir Readout Layer

J. J. M. Reynolds, J. S. Plank, C. D. Schuman.

“Intelligent Reservoir Generation for Liquid
State Machines using Evolutionary
Optimization.” 2019 International Joint
Conference on Neural Networks (IJCNN).

¥ OAK RIDGE IEEE, 2019.

National Laboratory

Evolutionary
Optimization

Child
Population

=

[
B (3
| s

C.D. Schuman, et al. "An evolutionary optimization
framework for neural networks and neuromorphic
architectures." 2076 International Joint Conference on

Neural Networks (IJCNN). IEEE, 2016.



Current Approaches: Neuroscience-Inspired Plasticity

5 PPF » PPD "
I* L 7l
s 1.0 15 DPhPC at RT '
et
O
©
P <10
Y 05 =
c -
© o
@) 5 5k
e 0.0 O
-g W =20 ms
= 0 Vmax = 130 mY .
o —0.5 0"~ 5 10 15
45_ no pulses applied Time (s)
© Cc
S,

40 —30 —20 —10 0 10 20 30 40
t pre-t _post (ms)

We don't really understand how
these work or how to use them
effectively in neuromorphic

Schuman, Catherine D. "The effect of biologically-inspired mechanisms in
spiking neural networks for neuromorphic implementation.” 2077
%OAK RIDGE International Joint Conference on Neural Networks (IJCNN). IEEE, 2017.

National Laboratory




Learning to Learn: Designing Novel Neuromorphic Algorithms
with Machine Learning

Machme Learnmg Approaches

hlld

High Performance C mputlng

¥ on p
Y\ V_\
iy, Zx; ‘\N

Image Source: https://www.olcf.ornl.gov/

New, On-Chip
Unsupervised Learning

N e Approaches for
Iage Srce: f;tps:/neutr'onﬂs.ornl.:ov;sns N e u ro m O r p h i c SYSte m s
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Summary and Take Homes

* There is an opportunity to allow for materials research to inform the
development of new algorithms

— Using whatever “plasticity” is native to the device could influence algorithmic
development
 We don't yet know what the right algorithms are

— There is a need to develop hardware that enables the development and
evaluation of new algorithms

— GPUs enabled much of the deep learning revolution. Neuromorphic hardware
has the potential to enable a spiking neural network revolution

 Hardware design should take into account the final application needs
— Different application and use cases have radically different needs

%OAK RIDGE
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Infernational Conference on Neuromorphic Systems

Join us at ICONS!
July 28-30, 2020 in Chicago, lllinois

Submission Deadline:
March 31, 2020

Highlights from ICONS 20109:

— Attendees from academia,
industry, and government

— International participation, from
Europe, Asia, and Australia/New Website: icons.ornl.gov
Zealand

— Intel tutorial on Loihi

International Conference on Neuromorphic Computing Systems
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Thank youl!

Questions?

Contact:
Email: schumancd@ornl.gov

Website: catherineschuman.com

Twitter: @cdschuman



