
Neutrino Frontier: Progress and Promise

John Beacom, The Ohio State University

How Have We Known Neutrinos?

Concepts

Realities

Messengers

before

Neutrinos take patience, but they reward it richly

What are the Goals of Particle Physics?

Probe fundamental particles and forces

Explain emergent phenomena

Search for **BSM** physics

Three Ways of Making Progress With Neutrinos

Laboratory

Astronomy

(Highest precision)

(Growing precision)

(Emerging precision)

Details of Directions for Progress

Laboratory Nu:

Superpowers:

Window to BSM physics at low mass scales; to feeble interactions

Kryptonite:

Can't reach extremes needed

Cosmology Nu:

Superpowers:

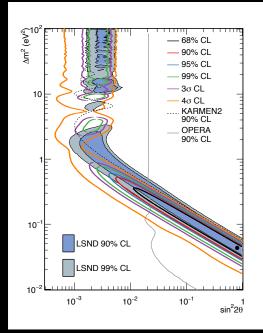
Windows to dark radiation and dark matter; possibly to the matter asymmetry

Kryptonite:

Can't isolate particles

Astrophysics Nu:

Superpowers:


Windows to the interiors of sources; to the largest energies and distances

Kryptonite:

Can't control conditions

Overlapping unknowns are liability ... but also an opportunity

Example: Are Sterile Neutrinos Real?

MiniBooNE (2021)

Laboratory

Could have large dm², large sin² sterile neutrino mixing This would reveal new particle physics

Cosmology

BUT

This would violate neutrino number, mass bounds Evading requires new early universe physics

Astronomy

BUT

But this could change supernova neutrino signals Evading could require new astrophysics

Inputs For This Presentation

 Snowmass Neutrino Frontier Report (Conveners: Huber, Scholberg, Worcester), arXiv:2211.08641

NF01: Neutrino Oscillations

NF02: Understanding Experimental Neutrino Anomalies

NF03: BSM

NF04: Neutrinos from natural sources

NF05: Neutrino properties

NF06: Neutrino Interaction Cross Sections

NF07: Applications

NF08 (and TF11): Theory of Neutrino Physics

NF09: Artificial Neutrino Sources

NF10: Neutrino Detectors

- Other Snowmass white papers, talks, and reports
- Other community planning documents in particle, nuclear, and astro
- My own opinions

Overview of Questions

First in the laboratory:

- Neutrino mass
- Neutrino mass splitting and mixing
- Neutrino scattering

First in the skies:

- Neutrinos in the cosmos
- Neutrinos from astrophysical sources

Cross-cutting:

Neutrino exotica

Questions: Neutrino Mass

Neutrino mass is BSM physics

- What mechanism sets the mass?
- Why is the mass scale so small?
- Dirac or Majorana masses?

What do the answers reveal about other BSM physics?

- New particles and interactions?
- Lepton-number violation?

Questions: Neutrino Mass Splitting and Mixing

Neutrino mass splitting and mixing is BSM physics

- What mechanism sets the mass splitting and order?
- Why sets the angles?
- CP violation?

What do the answers reveal about other BSM physics?

- New particles and interactions?
- Effects on emergent mixing in matter and in neutrinos?

Questions: Neutrino Scattering

Neutrino scattering is fundamental physics

- Complicated by the emergent properties of systems
- From quarks → nucleons → nuclei → nuclear matter

Essential to probing BSM physics

- Determines sensitivity to mixing
- New particles and interactions?
- Self-scattering in dense neutrino gases?

Questions: Neutrinos in the Cosmos

Neutrinos in the cosmos is fundamental physics

- Probe nu-genesis \rightarrow BBN \rightarrow CMB \rightarrow LSS \rightarrow direct detection
- Neutrino number density probes dark radiation
- Neutrino mass density probes small part of dark matter

Essential to probing BSM physics

- Enabled by precision cosmology and theoretical physics
- Sensitivity to a wide range of neutrino exotica

Questions: Neutrinos from Astrophysical Sources

Neutrinos from astrophysical sources are fundamental physics

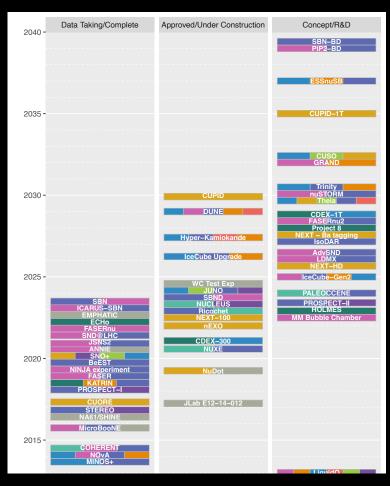
- Probe nuclear fusion, with Sun as prototype for other stars
- Probe hot, dense matter in proto-neutron star formation
- Probe hadronic acceleration up to ultra-high energies

Essential to probing BSM physics

- Enabled by "precision astronomy" and theoretical physics
- Leveraged by MMA and nuclear-physics investments
- Sensitivity to a wide range of neutrino exotica

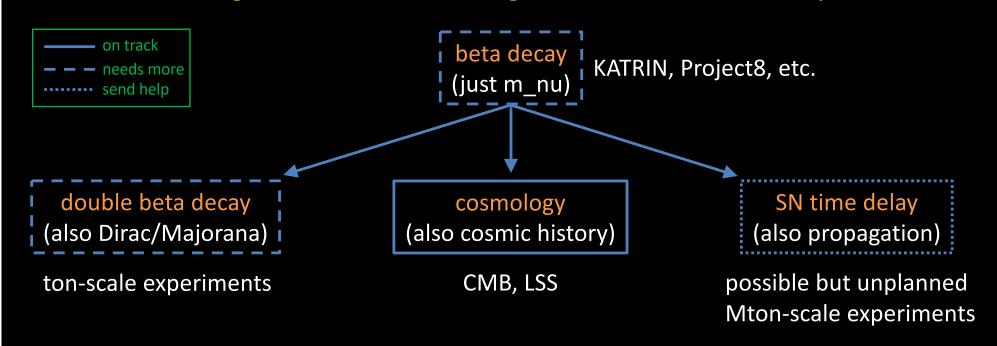
Questions: Neutrino Exotica

Neutrino exotica is BSM physics


- Sterile neutrinos?
- New contributions to interactions with matter?
- New contributions to interactions among neutrinos?

Essential to understand the fundamentals

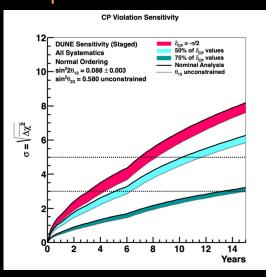
- Theoretical physics needed to connect inputs
- Many opportunities for surprises


Overview of Experimental Timelines

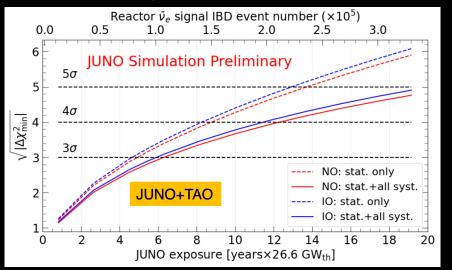
Snowmass Neutrino Frontier Report (2022)

Programs: Neutrino Mass

Knowing a number isn't enough; we want to know why it is


Winning means finding BSM physics; losing means doing great SM physics

Programs: Neutrino Mass Splitting and Mixing (1)

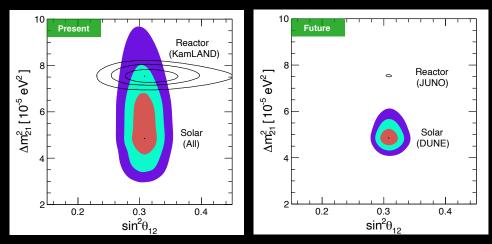


Robust program with nu and nubar; many sources, detectors, and channels

Example: DUNE accelerator

Example:JUNO reactor

Also:


Hyper-K accelerator

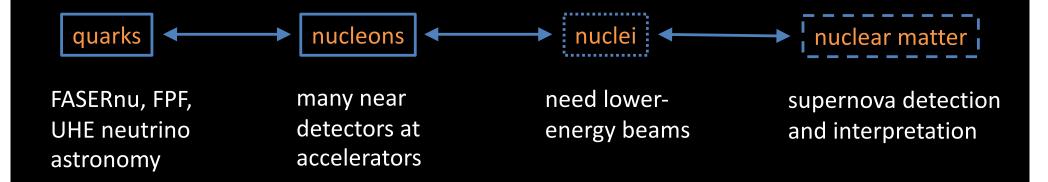
Super-K-Gd, IceCube, KM3NeT, JUNO, Hyper-K, DUNE, others for atmospherics

Programs: Neutrino Mass Splitting and Mixing (2)

proposal for DUNE Solar

Capozzi, Li, Zhu, Beacom (2019)

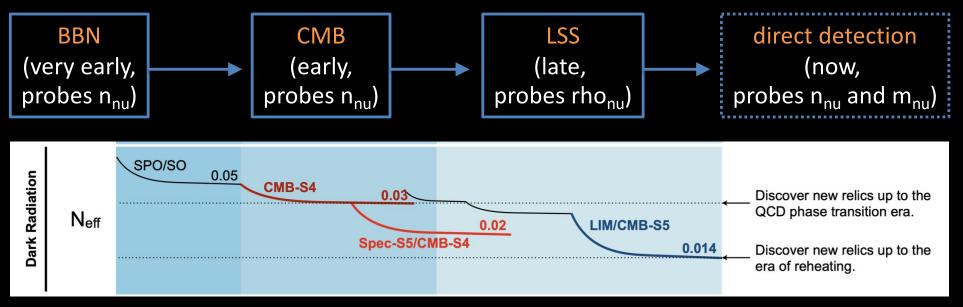
Supernova waiting problem


What happens after DUNE et al.?

John Beacom, The Ohio State University

NAS Elementary Particle Physics, Irvine, November 2022

Programs: Neutrino Scattering


A comprehensive understanding of neutrino scattering on all scales would greatly leverage neutrino mixing and BSM studies

Dedicated new efforts are needed to connect experiment, theory, and simulation (generators), plus particle, nuclear, and astrophysics

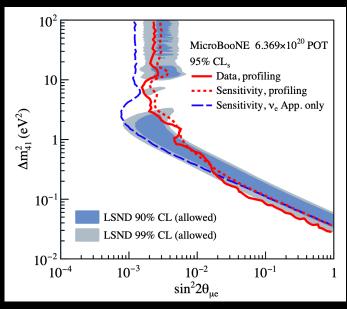
Programs: Neutrinos in the Cosmos

Neutrinos are a unique probe of the physics of the universe

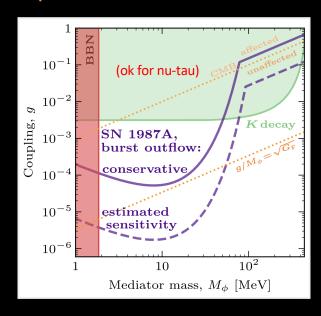
Snowmass Cosmic Frontier Report (2022)

Cosmic neutrino mass would show that radiation is really neutrinos!

Programs: Neutrinos from Astrophysical Sources


Exploiting neutrino astrophysics requires a wide range of detected sources

The better we understand the astrophysics, the better we can probe BSM physics of neutrinos, dark matter, and surprises


Programs: Neutrino Exotica

Example: sterile neutrinos

MicroBooNE (2022)

Example: neutrino self-interactions

Chang, Esteban, Beacom, Thompson, Hirata (2022)

Must use laboratory, cosmology, and astronomy data, connected by theory

Importance of Technical and Theory Development

What does fostering experimental and theoretical innovation bring us?


- Pathways from technology → small → medium → large experiments
- Attracting and retaining top talent
- Training on cutting-edge techniques
- Leadership development
- Spinoffs to benefit society

The entire present liquid-argon ecosystem is a wonderful example

- Successfully standing up a world-leading program at all scales
- Stimulating lots of new ideas to make the most of this incredible technology

Examples of Cross-Cutting Problems

- Improving the MeV-range response of MeV-GeV-TeV detectors
 Better nuclear physics (neutron tagging, nuclear gamma rays, positrons vs. electrons, etc.) means better particle physics
- Improving our understanding of neutrino cross sections
 Need to combine fields, experiment, theory, and simulation
- Improving our plans to measure supernovae well
 Experimental plans are incomplete; there is no standard theory
- Improving our leveraging of different approaches
 Need to better connect laboratory, cosmology, and astronomy

Examples of Improving Our Approaches

- Accelerate progress with Diversity, Equity, and Inclusion efforts
 We need the most creative teams, plus our workforce should reflect our nation
- Accelerate progress with stronger connections within particle physics
 Synergies with dark matter, cosmic history, QCD, flavor physics, model building, ...
- Accelerate progress with stronger connections outside particle physics
 Synergies with astrophysics, nuclear physics, gravitational physics, ...
- Accelerate progress by new considerations of funding boundaries
 Some of the most exciting next steps may be outside the box

Concluding Remarks

Neutrino Frontier: Progress and Promise

The legacy of decades of investment is

- 1. Progress: we have outstanding, well-defined questions
- 2. Promise: we have outstanding prospects for getting answers!

First in the laboratory:

- Neutrino mass
- Neutrino mass splitting and mixing
- Neutrino scattering

First in the skies:

- Neutrinos in the cosmos
- Neutrinos from astrophysical sources

Cross-cutting:

Neutrino exotica

Neutrinos take patience, but they reward it richly