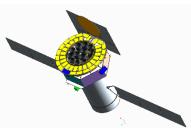
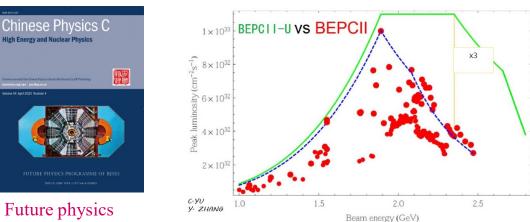
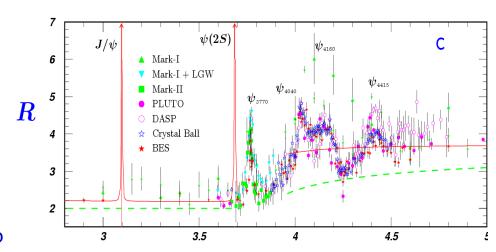
Plans of Particle and Astro-Particle Physics in China

Yifang Wang

Institute of High Energy Physics, Beijing NASEM EPP2024, Nov. 29, 2022



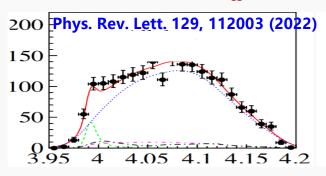


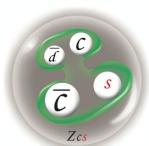

Outline

- Hadrons
- Higgs
- Neutrinos
- Astro-Physics
- Dark matter and other searches
- Strategy study of future large science facilities
- Summary

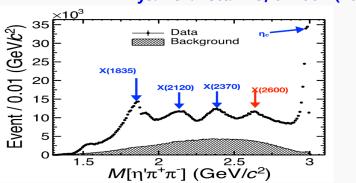
Hadrons: BEPCII/BESIII 2009-2030

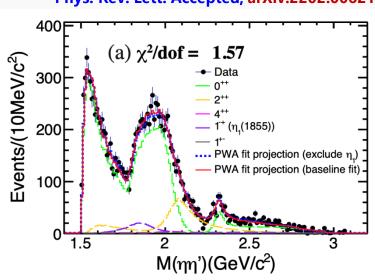
- Reach physics at threshold for exotic states, XYZs, EW test, QCD studies, etc.
- More than 500 papers published and 40 fb⁻¹ more data requested
- Upgrade to be completed in 2024:
 - Luminosity × ~3
 - Maximum beam energy from 2.45 to 2.8 GeV → for charmed baryons
- Large international collaboration:
 - > 500 members from 74 Institutions in 15 countries



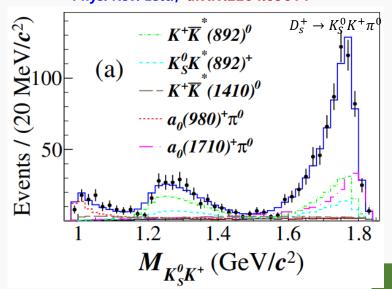


Latest results from BESIII


Observation of Z_{cs}(3985)

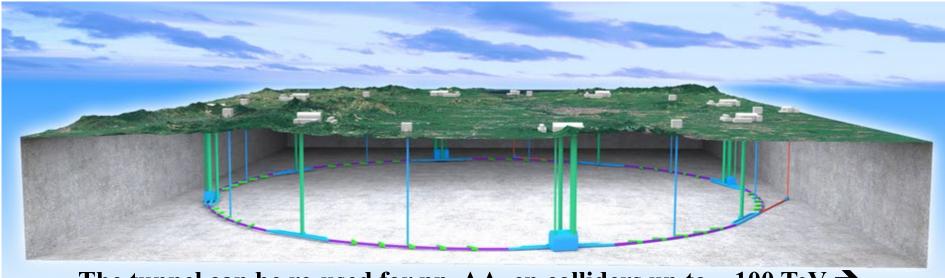

Observation of X(2600)

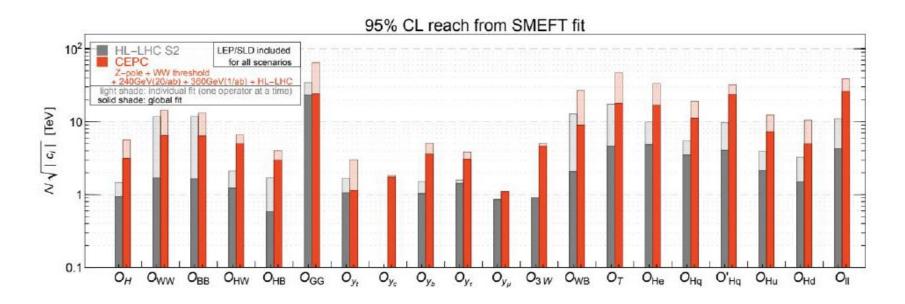
Phys. Rev. Lett. 129, 042001 (2022)


Observation of 1^{-+} $\eta_1(1855)$

Phys. Rev. Lett. Accepted, arXiv:2202.00621

Observation of Isospin=1 scaler $a_0(1817)^+$


Phys. Rev. Lett., arXiv:2204.09614


Higgs: CEPC

- The idea of a Circular e+e- Collider(CEPC) followed by a possible Super proton-proton collider(SPPC) was proposed in Sep. 2012, and quickly gained the momentum in IHEP and in the world
 - Higgs is the best portal to new physics:
 - Self-coupling? Shape of the Higgs potential? EW phase transition?
 - Point-like particle? More Higgs? Unstable vacuum?
 - Coupling with dark matter(Higgs mechanism also for dark matter)?
 - Fine tuning ? Hierarchy ?
 - Flavor symmetry ?

The tunnel can be re-used for pp, AA, ep colliders up to $\sim 100 \text{ TeV} \Rightarrow$ compatibility study needed now

Precision Higgs Physics at CEPC

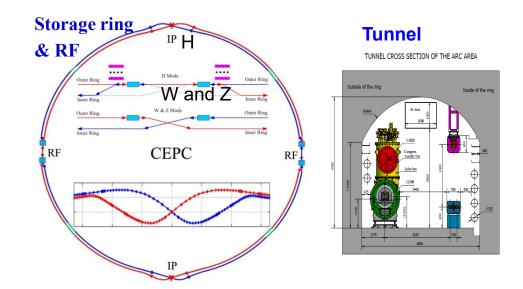
Looking for hints of new physics:

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_i rac{c_i}{M^2} \mathcal{O}_{6,i}$$
 $\delta \sim c_i rac{v^2}{M^2}$

No signal at LHC:

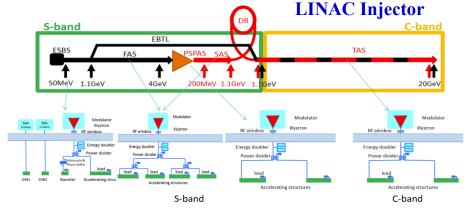
Direct searches: M~1 TeV

10% precision: M ~ 1 TeV


At CEPC/FCC:

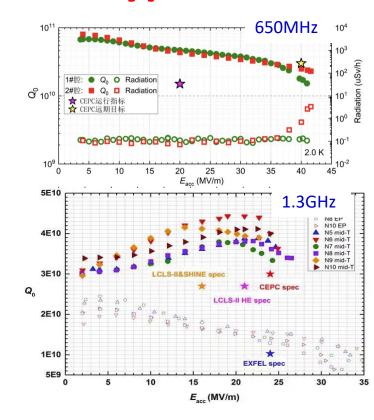
1% precision → M ~10 TeV

Pressing questions best addressed by an e+e- Higgs factory (~1% precision)


CEPC Accelerator Design

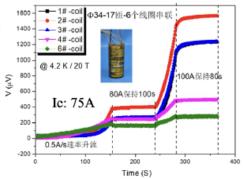
- Strong support from MoST,
 CAS and NSFC, at a total
 funding level of > 40 M \$
- CDR completed, TDR to be completed soon
- Internationally competitive performance based on the detailed design & studies, such as DA and beam-beam effects

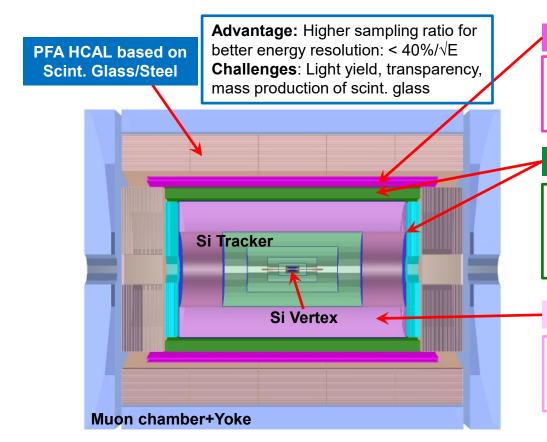
Baseline design(100 km, 30 MW):


Operation mode		ZH	Z	W + W -	ttbar
\sqrt{s} [GeV]		~240	~91.2	~160	~360
Run time [years]		7	2	1	7.7
CDR	L/IP[10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	
Now	L/IP[10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	15.4	0.5
	Events[2 IPs]	1.7×10 ⁶	2.5×10 ¹²	3×10 ⁷	3×10 ⁵

Upgradable to 50 MW, High Lumi Z, ttbar; Compatible to pp collider

Accelerator R&D and Prototypes


- SRF cavities: 1.3GHz for the booster and 650 MHz for collider rings
 - 1-cell 650MHz@ 40MV/m seems feasible
- High efficiency Klystrons to save energy
- Magnets, vacuum pipes, beam diagnostics, polarized electron gun, positron source, ... in good shape
- Plasma wake-field accelerator for the injector to save cost
- Iron-based HTc superconducting tech. for SPPC
- A lot of synergies with HEPS, a 6 GeV light source under construction



Detector Design and R&D

Solenoid Magnet (3T / 2T)

Advantage: HCAL absorber as the return yoke.

Challenges: thin enough magnet not to affect

the jet resolution

PFA ECAL based on Transverse Crystal towers

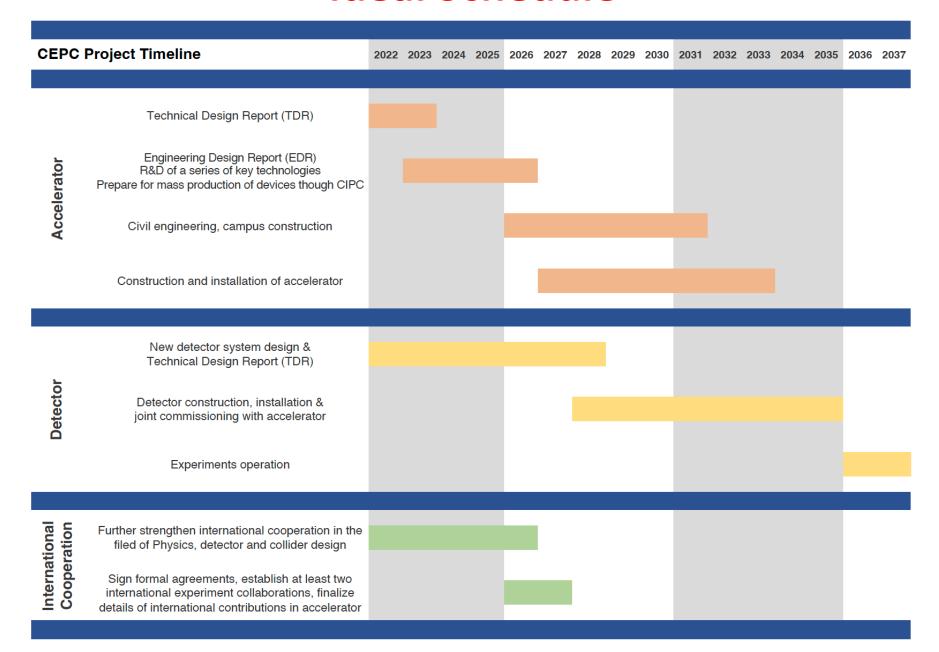
Advantage: e/γ energy resolution< 3%/ \sqrt{E} , 2D

readout with timing for 3D capabilities

Challenges: ambiguity of showers if

overlapping; high energy π^0 reconstruction

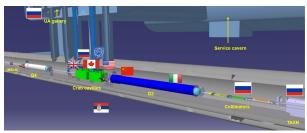
A Drift chamber optimized for PID


Advantage: good PID while improving Si tracking

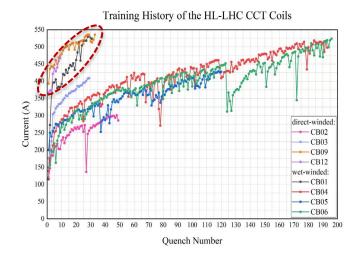
Challenges: withstand high event rate; good

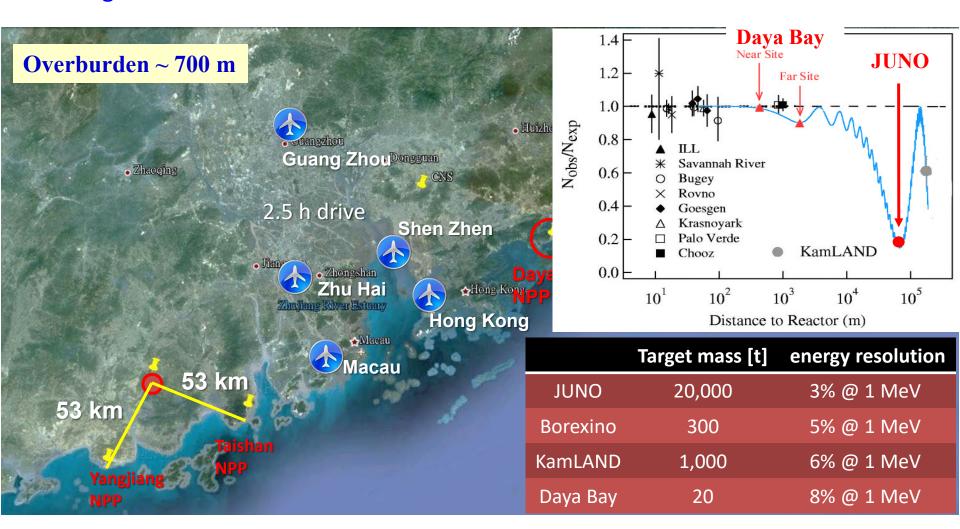
readout for dN/dx

- Silicon pixel sensors and readout chips for better resolution and lower power
- TPC or draft chambers for higher event rate and faster readout(dN/dX & waveform)
- Reconstruction algorithm for showers in Long crystal bars using timing for 3D info.
- Scintillation glass development for higher density and light yield
- Thin solenoid superconducting magnet

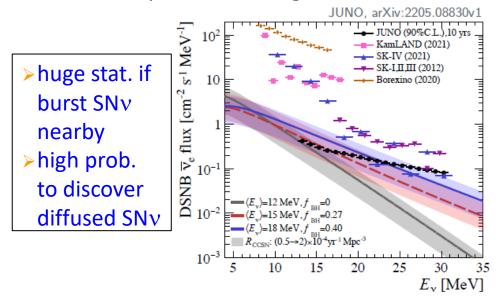

Ideal Schedule

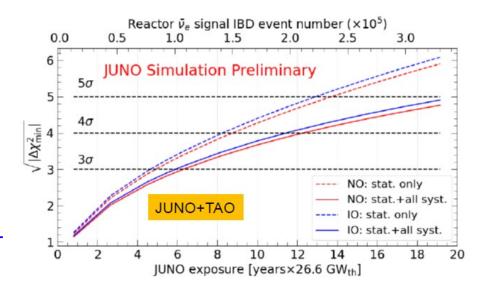
Higgs: International Projects


- China is a member of LHC
 - HL-LHC CCT magnets(by IHEP+IMP)
 - LHC experiments: ATLAS, CMS upgrade and physics analysis



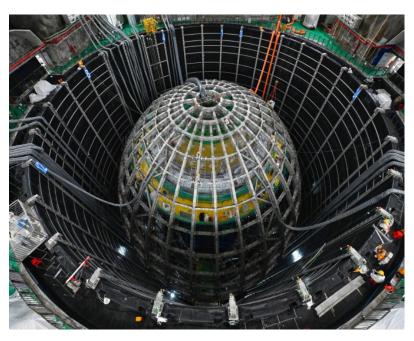
- China is eager and happy to join international projects, ILC, FCC, etc.
- China will be happy to join any USleading major HEP projects, if possible

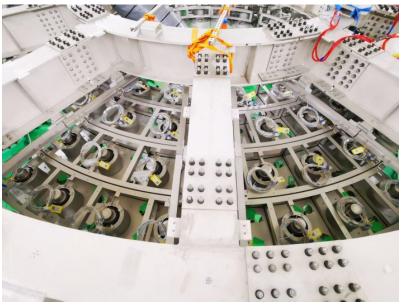

Neutrinos: JUNO Experiment


- A 20 kt liquid scintillator detector at ~53 km baseline from reactors
- A collaboration of >700 members from 79 Institutions in 14 countries and regions

Physics at JUNO

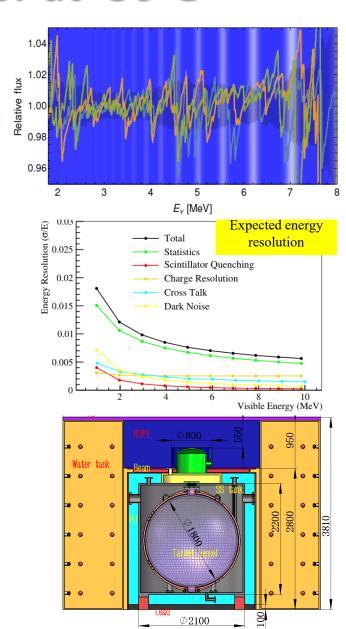
- Energy resolution of ~3%@1 MeV leads to a sensitivity of NMO at 3σ@6 yrs*26.6 GW
- Atmospheric neutrinos contribute another ~ 1 σ @ 6 yrs
- Most of neutrino oscillation parameters can be improved to a subpercent level
- Solar, supernova and geoneutrinos



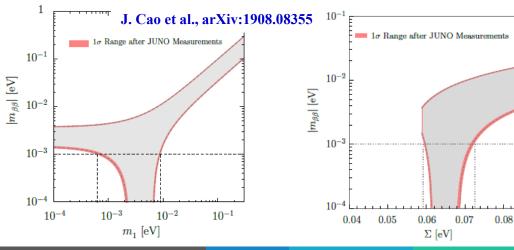

	Current (PDG2020)	JUNO (100 d)	JUNO (6 y)
Δm^2_{31}	1.3%	0.8%	0.2%
Δm_{32}^2			
Δm_{21}^2	2.4%	1.0%	0.3%
$\sin^2 \theta_{12}$	4.2%	1.9%	0.5
$\sin^2\theta_{13}$	3.2%	47.9%	12.1%

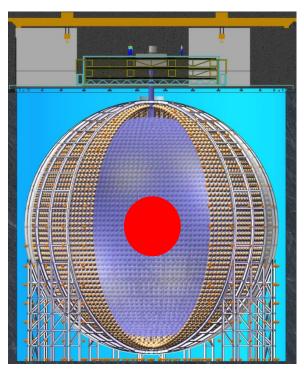
Status of JUNO

- Installation in progress:
 - SS structure completed
 - Acrylic sphere bonding in progress
 - PMT installation started
 - To be completed next year
- LS mixing and purification system mostly ready, will start operation next year
- Good energy resolution(3%@1MeV) and cleanness(10⁻¹⁷ g/g) seems realizable



JUNO-TAO: a LS detector at -50°C


- ◆ A high precise neutrino detector located at the Taishan Nuclear Power Plant, ~30m from a 4.6GW reactor core
 - ⇒ A reference neutrino spectrum to improve MH and constrain uncertainties(arXiv:2005.08745)
 - Sterile neutrino searches
 - ⇒ Nuclear data
- ♦ Highest possible energy resolution $\sim 1.5\%/\sqrt{E}$:
 - ⇒ Large area SiPM:
 - PDE > 50%, >90% coverage, 10 m²
 - 4500 p.e./MeV → × 3 JUNO;
 - Operate at -50°C to reduce SiPM dark noise by 3 orders of magnitude to 100 Hz/mm²
 - ⇒ Gadolinium-doped liquid scintillator working at
 -50°C → a new recipe
- ~2000 IBD/day with ~2% bkg
- To be operational in 2023


JUNO-ββ

0.09

- In 10-20 years from now, oscillation will be mostly understood
- $0v \beta\beta$ decay will be the next focus:
 - Dirac-Majorana nature and the absolute v mass

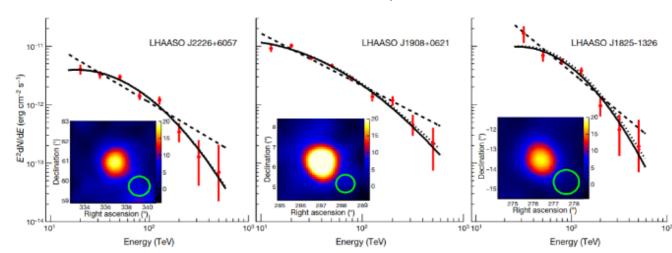
	Isotope	Mass(t)	<m<sub>ββ>,meV</m<sub>
KamLAND-Zen	¹³⁶ Xe	0.8	36-156
EXO-200	¹³⁶ Xe	0.2	93-286
nEXO	¹³⁶ Xe	5	7-22
Cupid-1T	¹⁰⁰ Mo	1	4-7
Legend-1000	⁷⁶ Ge	1	10-40
SNO+	¹³⁰ Te	8	19-46
JUΝΟ-ββ	¹³⁶ Xe	50	4-12
	¹³⁰ Te	100-200	2-6 ?

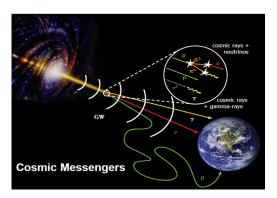
Load ¹³⁶Xe or ¹³⁰Te into the LS of JUNO: good self-shielding, resolution, etc.

Zhao et al., arXiv: 1610.07143, CPC 41 (2017) 5

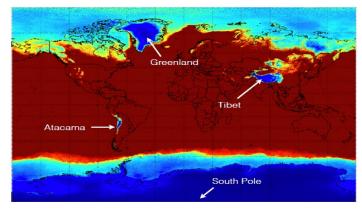
AstroPhysics: Cosmic-Rays and γ-astronomy

— Large High Altitude Air Shower Observatory(LHAASO)


- World largest air shower array(with e, μ, water Č detectors and Č telescope) for the high energy γ-astronomy and cosmic-ray physics
- Construction just completed and interesting results obtained:
 - \triangleright Highest γ-rays from the Milky Way: 1.4 PeV
 - many γ-ray sources up to ~1 PeV identified →
 PeVatrons in Milky Way


Future

- Large Array of Cherenkov Telescopes (LACT)
- Under-water neutrino telescope


Sichuan, 4410m above the sea

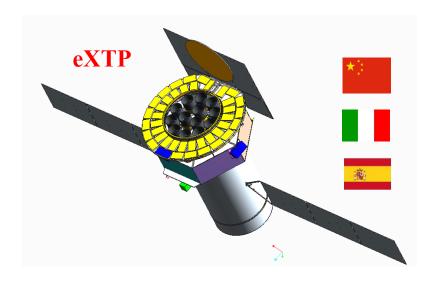
CMB: ALICPT

- located in Ali, Tibet with an altitude of 5250m
 - Best site in the north hemisphere for CMB
 - can be a very important node of an international network
- a collaboration with the Stanford University and other international partners
- Hopefully to start the observation next year with 1 module (the telescope can house 19 modules)

Future Space Programs

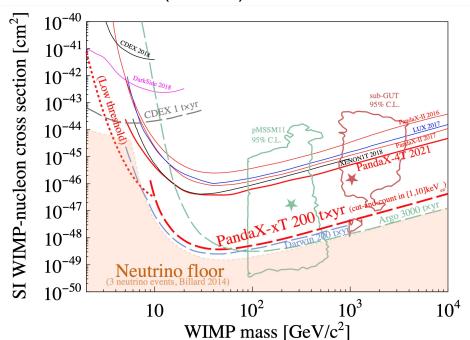
- A 3D crystal calorimeter for ×10
 acceptance and ×10 higher energy
 on board of the Chinese Space
 Station, to be launched in ~2027
 - dark matter searches
 - Gamma-ray sky survey
 - Precise cosmic ray spectrum and composition to calibrate LHAASO
- Large international collaboration
- SCD
 Z measurement

 PSD
 Gamma ID.
 Z measurement

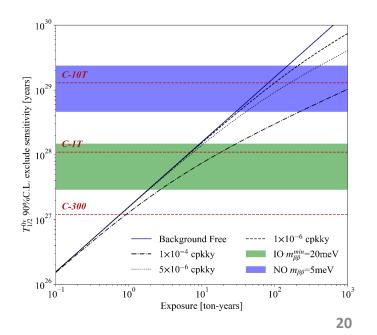

 FIT
 Tracking
 Gamma conv.

 TRD
 TeV nuclei calibration
 Energy measurement
 Particle ID

PI: Shuang-Nan Zhang (IHEP);


Europe led by Italy: G. Ambrosi (Perugia/INFN)

- Enhanced X-ray Timing and Polarimetry satellite for
 - Neutron stars, black holes, etc. to study extreme gravity, magnetism, density, etc.
- With cutting-edge technologies:
 - Large eff. Area (~3.5 m²@6 keV)
 - High spectral resolution (<180 eV@6 keV)
 - Polarimetry
- Large international collaboration



Dark Matter: JinPin Underground Lab

- The deepest underground laboratory in the world with an overburden of 2400 m
- Current experiments: dark matter searches and 0vββ searches
 - Xe-based PandaX-4t (4t LXe)
 - Ge-based CDEX-300 (300 kg)
- Future:
 - PandaX-xT (~50t LXe)
 - CDEX-1T (1t ⁷⁶Ge)

Strategy Study of Future Large Science Facilities

- To better seize opportunities in Science and follow the 5-yrs funding cycle,
 CAS organized a study of the future large science facilities
- This study is organized with 8 groups, such as particle and nuclear physics, astronomy and space, multidiscipline, etc.
- The charge is to foresee the direction of the field, and propose possible short (~ 2025-2030), mid (2030-2035) and long term(>2035) projects

NO.	Project title		
1	"Beijing Isotope-Separation-On-Line Neutron-Rich Beam Facility"		
2	"The Circular Electron Positron Collider"		
3	"China advanced NUclear physics research Facility, CNUF-An upgrade project for the HIAF and CiADS"		
4	"High energy neutrino telescope"		
5	"Search for neutrinoless double-beta decays at JUNO"		
6	"PandaX-xT: Deep UndergroundMulti-ten-tonne Liquid Xenon Observatory"		
7	"A SuperTau-Charm Facility (STCF)"		
8	"Laser Compton Scattering Gamma Source Based on Hard X-ray Free Electron Laser Device (LCGS@SHINE)"		
9	"CDEX-0vββprogram"		

Conclusion will be given by Feb. 2023

Proposed Criteria

An evaluation form is created by the PNP-WG in order to measure the status of the proposed project.

粒子物理和核物理大科学装置设施建设项目建议书评分表

Evaluation form for proposals for the large science facility constructions in particle and nuclear physics in China

Project title:

Section	Subsection	Criteria	Notes	Point
1.科学目标、科学意义和战略价值(16分) 1. Scientific goals, scientific significance and strategic value (16 points)	1.科学目标(4分) 1. Scientific goals (4 points)	科学目标清晰、前瞻、引领: 1.国际引领(4 分); 2. 国际先进(3 分); 3. 国际平均(2 分); 4.低于国际平均(1 分); 5. 差(0) The scientific goals of the project in terms of clarity, prospects, and progressiveness are ranked as: 1. Internationally leading (4 points); 2. Internationally advanced (3 points); 3. International average (2 points); 4. Below international average (1 point); 5. Not qualified (0 point)	The scientific goals of the project in terms of clarity, prospects, and progressiveness should be compared with the counterpart project in e.g. Snowmass 2022, or European particle physics development strategies.	
	2.科学意义(4分) 2. Scientific significance (4 points)	科学目标在粒子物理或核物理领域内的重要性: 1.最重要(4 分); 2. 非常重要(3 分); 3. 重要(2 分); 4. 一般(1 分); 5. 不重要(0) The impact of the scientific objectives in the field of particle and/or nuclear physics can be ranked as: 1. Extremely high (4 points); 2. Very high (3 points); 3. High (2 points); 4. Average (1 point); 5. No impact (0 point)	This criterion is based on such a consideration that given the success of the project, whether its outcomes would bring significant impact on the development of the relevant fields.	

- Evaluation by Chinese groups completed. Evaluation by IAC will complete in Dec.
- Data Analysis will follow and results will be released in Feb.

Summary: Current and Future

		Current	Future
	Precision frontier	BESIII	
Accelerator -based		LHCb, Belle II, PANDA, COMET, GlueX,	ILC, FCC CEPC
	Energy frontier	CMS, ATLAS	
	Underground	Daya Bay, JUNO	JUNO-ββ
Non-		EXO, Darkside	nEXO, ARGO
accelerator-		PANDAx, CDEX	Panda-xT, CDEX-1T
based	Surface	ARGO/Asγ, LHASSO	LACT
	Space	AMS, SVOM	HERD
		HXMT,Polar,DAMPE	eXTP

Applications

- High Energy Photon Sources(HEPS) in north of Beijing is under construction, operational in 2025
 - 6 GeV, 0.036nm·rad emittance, 1260m Circumference,
 - Brilliance: >10²²phs/s/mm²/mrad²/0.1BW
- China Spallation Neutron Source(CSNS)
 operational since 2018 at 100 kW beam power,
 to be upgraded to 500 kW with more beamlines
- A possible light source(SAPS) next to CSNS
- Shanghai hard X-ray free electron laser(SHINE)
 with 8GeV e- beam under-construction
- Possible new ideas:
 - Table top photon sources based on wake-field acceleration
 - Laser+beam facilities

