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Question Posed by the Committee

What can we learn from the previous US Muon
Collider Collaboration and how can we frame a
new collaboration?
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d Introduction: Assessing Feasibility

The US Muon Accelerator Program (2011-2014)
Charged with: Assessing the Feasibility of Muon Accelerator Concepts

What was that interpreted to mean?

MAP interpreted this charge to require a multi-phase assessment supporting clear
decision points
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Introduction: The MAP Approach

The US Muon Accelerator Program (2011-2014)

e Phase 1:

* Evaluate the physics limits of the beams required (intensity, lifetime, emittance, decay impacts...)
» Establish a preliminary set of operating parameters for each accelerator sub-system
* Develop technology concepts with the potential to deliver the necessary operating parameters

* Phase 2: 2013-2014:
* Define a baseline design and execute a program of technology R&D MAP concluded while
* Prepare preliminary engineering concepts for each sub-system SRR e 1
* Deliver a reference design suitable for developing detailed system specifications

e Phase 3:

* Develop physics and engineering demonstrators based on detailed machine targets
* Optimize operating parameters and machine configurations
* Deliver a Conceptual Design Report
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What has changed?

The physics landscape
Muon Collider R&D progress
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What has changed? The Physics Landscape — Generic Lessons [(&8)
frOm the LHC P&

Ilaboration
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d What has changed? Strong US Interest

MC Forum Report:

Offering a combination of unprecedented energy collisions in a comparatively clean
leptonic environment, a high energy muon collider has the unique potential to provide
both precision measurements and the highest energy reach in one machine that cannot
be paralleled by any currently available technology.

No fundamental show-stoppers have been identified. Nevertheless, engineering
challenges exist in many aspects of the design and targeted R&D is necessary in order
to make further engineering and design progress.

Engaging in the development of a muon collider will reinvigorate the U.S. HEP
community and provide benefit to the field across multiple frontiers.
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IMCC Efforts for a 10-TeV Class Muon Collider

A Muon Collider with > 10 TeV CoM Energy
offers a unique pathway to the next physics scale of s
interest in our exploration of the Energy Frontier
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International Muon Collider Collaboration IP1
leverages concepts developed by MAP

: Muon Collider Accelerator
H Injector > 10TeV CoM Ring
~10km circumference

----------------------------------------------------------
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The muon injector chain provides cooled muons with
roughly 100 GeV/c for acceleration to the multi-TeV scale EPP2024 Meeting #4, December 13, 2022 11 NABTPMQ&Y
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What has changed? Concept Maturity
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The Path Forward

Successful development of key MC concepts provides a foundation to continue a
machine design that can deliver discovery physics for the particle physics community

A new International Muon Collider Collaboration (IMCC) has been formed
An R&D roadmap has been delivered as an outcome of the European Strategy process

How can the US engage with this process?
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Addressing the Committee’s Question
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What can we learn from the previous US Muon Collider Collaboration and how
can we frame a new collaboration?

Some Lessons and Questions:

1. MAP was focused on accelerator feasibility
* The HEP community is interested in physics capability

* A transformation has come with a more detailed evaluation of the physics potential initiated by our
European colleagues as supported by MAP output

= An integrated physics/detector/accelerator approach is an absolute necessity

2. A commitment to milestones that support informed decisions is critical for community
planning

* This requires a sustained commitment

3. A high brightness muon source has more applications than just an energy frontier collider
* Neutrinos
* Rare processes

 How do we drive a broader assessment that includes more than just the Energy Frontier machine?
Including areas beyond HEP?
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Addressing the Committee’s Question
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What can we learn from the previous US Muon Collider Collaboration and
how can we frame a new collaboration? i

e Further work in the context of an international
collaboration is highly desirable
* Shared resources
e Shared commitment

* Draw on the broadest reservoir of accelerator and detector
expertise to enable a successful conclusion

* The Energy Frontier, and more broadly high energy physics, is a
global effort

* Any plan must provide clear decision points to evaluate
progress towards “concept maturity”
* See slide after next

EPP2024 Meeting #4, December 13, 2022


https://arxiv.org/abs/2201.07895

Timeline to a
Multi-TeV Collider

European Accelerator R&D
Roadmap

This roadmap picks up at
~Phase 2 of the MAP
Approach with clear “decision
points” over the next decade
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Collider Concepts
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Funding Approach

Addressing the Committee’s Question
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What can we learn from the previous US Muon Collider Collaboration and
how can we frame a new collaboration?

* A key element for “emerging” accelerator technologies is to execute a program that
can provide mature concepts that enable informed choices by the HEP community

Collider-In-Sea

Y

maturity

of-of-principle R&D
uired.

cepts not ready for
lity consideration.

ding for basic R&D
uired.

ilability of "generic"
elerator test facility
ess often necessary.

* Emerging

SppcC
CCC (TeV)
ILC (multi-TeV)
RelLiC
(multi-TeV)

accelerator concepts requiring
significant basic R&D and design effort to bring to
maturity.

* Efforts would benefit from directed R&D funding

to mature collider concepts.

* Availability of test facilities to demonstrate a

broad range of technology concepts required.

*Some large-ticket demonstrators are generally

necessary before a detailed "reference" design
can be completed.

* Critical

ILC (TeV)

* Designs have achieved a level of

maturity to have reliable performance
evaluations based on prior R&D and
design efforts.

project risks have been
identified and sub-system focused R&D
is underway where necessary.

* Funding approach typically transitions

efforts with
investment

to "project-style"
significant dedicated
required.

Maturity evaluation from the Accelerator
Frontier Topical Group on Multi-TeV Colliders
(AF4)

* |tis crucial to take concepts to the green
range in the graphic to provide reliable
performance and risk evaluations

e This is a requirement to enable informed
HEP community decisions
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Implications for the US Planning Process

Some thoughts on the US Timeline:

* FY25 (post-P5): US accelerator physicists funded to engage directly with the
International Muon Collider Collaboration
* Engage in R&D, simulation, and planning to deliver a Reference Design
e Lay the groundwork for deploying required demonstration facilities over the course of the next decade
e Execute US efforts in the framework of an integrated US Future Collider R&D Program

e ~2028: Deliver MC Reference Design Report for the next US Planning Process
* Basis for subsequent site-specific efforts — e.g., HF & site-filler options at Fermilab
* Enables a serious discussion of the ultimate limits that may be reached with this technology

e Early 2030s: Deliver a full Conceptual Design Report

e Supported by:
* Detailed end-to-end design
* Significant component prototyping
* First results from Demonstrator Facility operations

» Sets the stage for fully informed decisions by the community on pursuit of this collider technolog
BRO?I(%I-'EEN
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Conclusion

Engagement with the International Muon Collider Collaboration is of
great interest to many members of the US HEP Community
* Provides a structured approach to evaluating this novel technology approach

* Supports informed decision points by the HEP community
* Timescales are consistent with key decision points for the US community

* Allows US expertise to re-engage with a great deal of IP that was developed in
MAP and its predecessor collaborations
e US expertise is important to the overall success of this collaboration!!
* Will help drive growth of a new generation of collider experts

e Path for considering a potential future US facility
A US MC Effort fits in a National Future Collider R&D Program

* As part of a general approach to ensure continued US engagement in delivering

Energy Frontier capabilities
BBMEN
NATIONAL LABORATORY
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Thank you for your attention!
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1 Some Useful References

* A Muon Collider Facility for Physics Discovery, arXiv:2203.08033
* Boscolo, Delahaye, Palmer, RAST, Vol 10, No. 01, pp. 189-214 (2019)

* The JINST dedicated volume on Muon Collider Research and Technology:
Muon Accelerators for Particle Physics

* Demonstration of cooling by the Muon lonization Cooling Experiment,
Nature 578, 53-59(2020).

* Long, K.R., Lucchesi, D., Palmer, M.A. et al, ”Muon colliders to expand
frontiers of particle physics,” Nat. Phys. (2021),

e The Muon Smashers Guide, arXiv:2103.14043
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Current Muon Collider Activities
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* US Snhowmass Process

* Muon Collider Forum
* Slack channel: “muon-collider-forum”
* Mailing list:

* Accelerator Frontier Topical Group 4 (AF4) — Multi-TeV Colliders
* multitev-snowmass21@listserv.fnal.gov

* |International Muon Collider Collaboration

* Working groups and contacts:
e Accelerator design -
Physics & Detectors —
Physics potential —
Detector simulations —
Muon Cooling — ,

* Detector Performance Baseline Efforts
e DELPHES card (methodology utilized for FCC-hh and CLIC evaluations)
* https//muoncollider.web.cern.ch/node/14

* Detector Impacts of Beam Induced Backgrounds
e Studies led by Donatella Lucchesi (Padova) and Sergo Jindariani (FNAL)
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Intense and cold muon beams = unique physics reach
e Tests of Lepton Flavor Violation 2
e Anomalous Magnetic Moment (g-2) m, = 105.7MeV / ¢
e Precision sources of neutrinos T,= 2.2ys

e Next generation lepton collider

Opportunities
s-channel production of scalar objects 2 A
Strong coupling to particles like the Higgs 0] —£1=4x10

2

Reduced synchrotron radiation = multi-pass acceleration feasible m,

Beams can be produced with small energy spread
Beamstrahlung effects suppressed at the collider IP
BUT the accelerator complex and detector must be able to handle the impacts of 1 decays

High intensity beams required for a long-baseline Neutrino Factory are N .
readily provided in conjunction with a Muon Collider Front End H —>e VeVﬂ

Such overlaps offer unique staging strategies to guarantee physics output
while developing a muon accelerator complex capable of supporting ﬂ_ —>e vV V,u
e

collider operations
BHMEN
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* For a muon collider, we can write the luminosity as:

(v7),

2
[: N f;OH _ turns

2
4%O}Gy 4776L

0 . 046
0.029

turns < bunch e 0.004

0.018

* For the 1.5 TeV muon collider design, we have
N = 2x10?%? particles/bunch

o.,~ 59 um, f*=10mm, &  (norm) =25 pm-rad
Nturns

founcn=15 Hz (rate at which new bunches are injected)

utu~ — Hvv - bbvv + beam-induced
>1000 background fully simulated

Preliminary

N’n 5 _
[% 0 tums-]}unch ~ 14)( 1034cm ZS 1
dro |

200 300

Dijet invariant mass [GeV
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d MC Parameters as Developed by MAP

RAST, Vol 10, No. 01, pp. 189-214 (2019)

Table 3. Main parameters of the various phases of an MC as developed by the MAP effort.

=*
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Parameter Units Higgs Top-high
resolution

Top-high
luminosity

Multi-TeV

CoM energy TeV 0.126 0.35
Avg. luminosity 1034 em 251 0.008 0.07
Beam energy spread % 0.004 0.01
Higgs prcrductian,-’l[}? sec 13,500 7000
Circumference km 0.3 0.7
Ring depth [1] m 135 135
No. of IPs 1 1
Repetition rate Hz 15 15
Bz.y cm 1.7 1.5
No. muons /bunch 1012 4 4
Norm. trans. emittance, e m mm-rad 0.2 0.2
Norm. long. emittance, €y, m mm-rad 1.5 1.5
Bunch length, os cm 6.3 0.9
Proton driver power MW 4 4
Wall plug power MW 200

0.35
0.6
0.1

60,000
0.7
135

1
15
0.5

3

10
0.5
4

3.0
4.4
0.1
200,000
4.5
135
2
12
0.5 (0.3-3)
2
0.025
70
0.5
4

6.0*
12
0.1
820,000

* Accounts for off-site neutrino radiation
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Feasibility Status
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 Critical concepts now demonstrated (at the TRL 1-3 level)

Target Solenoid

e Similar LTS parameters to ITER Central Solenoid

e Performance can be improved with a radiation resistant HTS or Cu insert

Muon 6D Cooling

* MICE Demonstration of Emittance Cooling

* High gradient demonstration of RF operating in Tesla-class magnetic fields

* Cooling channel concepts and detailed simulation consistent with operational targets
Muon Final Cooling

» Advances in HTS conductor/cable/magnet technology

* High Field User Magnet program operationally demonstrating magnet parameters that are rapidly approaching the MC
requirements

Muon Acceleration

* Significant recent advancement in HTS-based fast-ramping magnets

* Focused effort on studying the integrated magnet/power supply efficiency issues for TeV-scale acceleration
Collider and Detector

* Detailed studies of backgrounds that may impact physics

* Detector performance studies now demonstrate the ability to successfully measure key processes

e Concepts in development to manage off-site neutrino radiation issues

See dedicated JINST Volume for key references:

BBMEN
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The lonization Coollng Cell
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d Design Status

* Preliminary design concepts exist for all key systems

* Next steps:

* Integrate most recent R&D results into the accelerator designs
e Deliver updated sub-system performance evaluations

* Evaluate all required technologies
* Move from conceptual feasibility to detailed technical designs and evaluations

» Set the stage for the first integrated end-to-end performance evaluations
* |dentify any technology limitations and explore mitigations
» Set the stage for a complete Conceptual Design Report

In summary: mature the design with the goal

of delivering a full CDR within the next decade

)
BRO FAUEN
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oA Target & Capture System it

MERIT Experiment (CERN)

Solenoid Jet Chambe

Secondary gyringe Pump Ty -

Containment \ Proton

!
2 Il

<

ITER Central Solenoid
w/1.7m bore

.-——’\ A

Stainless-steel target
vessel with graphite target
and beam dump, and
downstream Be window.

— mu/proton
-=— emittance
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/
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Accepted muons per proton

C Target
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Distance from Target (m)
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% Cooling Methods

* The unique challenge of muon cooling is its short lifetime
* Cooling must take place very quickly
* More quickly than any of the cooling methods presently in use

=  Utilize energy loss in ¢ Muons cool via dE/dx in low-Z medium

materials with RF re-acceleration —
7 | © ionization
eb W\ L minimum is
.' IR T ] = optimal
dE dE dE :

* MAP R&D Efforts:
working point:

Vi
v

International
UON Collider
/ Collaboration

 RFin High Magnetic Fields:

u

MuCool Test Area (MTA) at dx dx dx _ ” g Y
F 1E]s) r.f. r.f. r.f. r.f. S of » longitudinal +ive
ermiia 32 # feedback at
 High Field Magnet Design R "I‘”e’? .
1Al Pl VIR straggling
and Development [ E . E B <d—E>AS 0.1 I ( ol :,_. 1000 10000 expense Of
e The International Muon _ Absorbers: - dx oy ' reacceleration at

l V a uon um[-' GeVic) r hlgher p

lonization Cooling 0—0+0m _ > ionization ene

Experiment (MICE)

‘space ™V

— RF cavities between absorbers replace AE

— Net effect: reduction in p, at constant p|, i.e., transverse cooling

1 dE# 0.014 GeV)* : .‘
= —E<{ I B == BE,m, X (emittance change per unit length)
\ el LpP LTy Aqg

"
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oA M AP Cooling Targets
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D. Stratakis, et al., PRSTAB 18 031003, 2
D. Stratakis JINST 12 P09027, 2017
Y. Bao, et al., PRAB 19 031001, 2016

coils:R,=42cm, R,..=60cm, L=30cm; RF:f=325MHz, L=2x25cm; LiHwedges

Longitudinal Merge

"ib‘:.leE‘r CO" f:l‘u'IT.IE‘" TDP VIEW

- |

SIDE VIEW :
ey — == — T —— =4 = i e -
300 400 500
ey I —_— s pre— I [ P P— ==

Distance, z (m)

6D Rectilinear Vacuum Cooling Channel:

=0.28mm, ¢ = 1.57mm @488m
Transmission = 55%(40%) without(with) bunch recombination

Hybrid Design: Equivalent performance with gas-filled cavity variant

=
t=1
P
=3
o
3

lu]z
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. HeIicaI Cooling Channel (Gas-filled RF Cavities):
=0.6mm, g, = 0.3mm

RF cavities

LH, Absorber

\‘ 5 .
\ /iw

Energy phase rotation

* Final Cooling with 25-30T solenoids (emittance exchange):
= 55um, g, = 75mm | BROOKARUEN,
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lonization Cooling
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L% Some Cooling Comments

’Qfora“\

* MICE confirms our understanding of the ionization cooling process for
muons

* MAP design studies and R&D provide a basis for the technologies in a
complete cooling channel
* But only piece-wise studies completed
e Technology deliverables were achieved

* Cooling has huge leverage on the overall machine design
 What proton power is required on target?
* What luminosities can be envisioned?

* A fully integrated design study is now warranted

* A technology demonstrator would enable performance studies of the
cooling concepts at high beam intensities

BRMEN
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Acceleration

* Technologies Include:
* Superconducting Linacs Designs to
e Recirculating Linear Accelerators (RLAs)| 125 GeV CoM

* Fixed-Field Alternating-Gradient Rings
(FFAS) Needed for RIS

Multi-TeV Scale # iL‘

* Hybrid Rapid Cycling Synchrotrons
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“P‘“' {.= Pt M ——
R ;-g = N
. = B e -
i . ——— '/ — ‘.. l I -’ ’._'J.., £1 ! -
= i S—_ ~ - o . ¥ & -7 4 o ’ ha
p \\\ \\ e O G . 7 4 | A B g ;
: e RLA I Pl N \ AR A =T
f \\ P N N A . Ty B :
~ \s‘\ ’/, // X 1 - \ e -y . oy
\__\::\“ . - \ \ i I e o .t : - ', > Vo
| 5 ::_—:_';—33’ {:‘;—: R | | 4 f;' T .y > -
\ o 255 m St / /
4 /" ‘\. N
//// 2 GeV/pass e Y
e ., \
/_ ,’/ -

Accelerator suitable for = S
Neutrino Factory Applications mﬁ :mwapped Y

EPP2024 Meeting #4, December 13, 2022



Acceleration to 125 GeV Center-of-Mass
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/ Collaboration
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Higgs Factory (125 GeV) Lattice Design
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Figure 13. Layout and optics functions in half ring of the Higgs factory.
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Alexahin, et al., JINST 13 P11002
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Figure 12.
parameters are given in table 3.

Higgs factory IR quadrupoles aperture and 5S¢ beam envelopes for 8* = 2.5cm. Beam

Table 4. Higgs Factory IR Magnet Specifications

Parameter Q1 Q2 Q3 Q4 B1
Aperture (mm) 270 450 450 450 450
Gradient (T/m) 74 -36 44 =25 0
Dipole field (T) 0 2 0 2 3
Magnetic length (m) | 1.00 140 205 170 4.10
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n/’[ Key Features/Challenges of MC Higgs Factory
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650 F

* Features: ot PP ;
e s-channel production £ 500 £ 1 v
* Exquisite energy spread (dE,/E,~4x107) & 450 ‘ @ 1 R=0.003%
allows direct probe of Higgs line shape sso BT 1 Lag=0025 "
* Spin precession of u allows precise E calibration s00 b _01:“@1":2“/;015 -y | -
(Raja & Tollestrup, arXiv:hep-ex/9801004) o e oo e ol
* Challenges Han & Liu, arXiv:1210.7803 [hep-ph]

* Higgs production rate with preliminary MAP assumptions (~13,500/Snowmass year) hasn’t
been considered competitive
* However, VCC simulations already suggest we can do better than this

* Introduction of alternative techniques such as Parametric lonization Cooling (PIC) offer the potential of
further rate improvements

* Machine-Detector interface
* IR magnet aperture requirements
e Shielding detector from machine backgrounds

EPP2024 Meeting #4, December 13, 2022 B“n TAT[d]]
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H. Piekarz et al., Record fast-cycling accelerator magnet based on HTSEF gl N
NIM A, Vol 943, 2019, 162490, https://doi.org/10.1016/j.nima.2019. IHRE&S

A

TeV-Scale Acceleration

'OfO rac®

 MAP identified concepts ;gﬁ/s
* Final designs are not in hand HTS
0.6 T max

* Challenges:
* Large energy bandwidth lattice at high energies

* Fast-ramping magnets "
e Grain-oriented silicon steel? o L
¢ HTS? 1ok .| -
* Power supply system and efficiency will determine the viability and energy efficiency
of the accelerator

systems

Hybrid Rapid Cycling
Synchrotron Cell Concept
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* MAP Optics Designs for
e Higgs Factory (125 GeV)
* 1.5 TeV CoM
* 3.0 TeV CoM

* 6.0 TeV CoM [extrapolation]

* Ring Magnet Designs

* IR Design

600

Particle tracks (> 0.1 - 0.5 MeV) for 15 mu- decays
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Optics functions from IP to the end of the first arc cell (6 such cells / arc) for p*=Bmm
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High Energy Muon Colliders

* Physics Reach
e At Vs >1 TeV: Fusion processes dominate
e An Electroweak Boson Collider

* A discovery machine complementary to very high
energy pp collider

e At >5TeV: Higgs self-coupling
resolution <10% —

* Limitations
e Beam-induced Backgrounds
* Neutrino radiation -

Dose at earth’s surfaceOCEj

B. King - https://arxiv.org/abs/hep-ex/0005006v1

..........._‘.‘...... “N

. straight section

— e —_—

e
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Pt Looking Forward...

’Qfora“\

 Muon Colliders offer an energy-efficient path to multi-TeV CoM energies
* Recent physics studies indicate that important collider physics is accessible

* The MAP R&D Program has successfully demonstrated critical technologies for
the cooling channel = Now ready for:

* Updated Cooling Channel Conceptual Design
* Demonstrator of a high intensity cooling cell

e Other key developments to pursue for a TeV-class collider (move beyond the
parameters and scope of MAP)

* Ongoing physics studies

* Detailed designs for TeV-class acceleration

* Full end-to-end conceptual design

* Mitigation approaches to minimize “v Radiation” issues at the exit point on the surface

A new international design effort is timely and ready to evaluate an important
option for the HEP community
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' Key Challenges — IMCC Efforts

10+ TeV is NEW Territory = Key Challenges:

 Evaluation of physics potential (including detector concept and technology)
* Impacts of beam induced background across all physics analyses

* Neutrino Flux Mitigation
 Straight accelerator sections at high energy produce an intense v beam

* High Energy Systems

* Acceleration sections can impact the energy reach due to cost, power, technical risk,
and impact on beam quality = requires more detailed evaluation

e 10+ TeV Collider designs must be developed and fully evaluated

* Cooling string demonstration to verify high brightness muon beam delivery

BRMEN
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v Neutrino Flux — IMCC Efforts

International

o : A«HO’; CoHtiqer

ro a«\ " m - nternationg ollaboration

- Team of RP experts, civil engineers, beam
physicist and FLUKA experts

Goal to be similar to LHC: i.e. negligible, “fully

optimised” (10 x better than MAP goal, 100 x

better. th‘_.:m I_Egal reqmremgnts] MC simulations Dose surface map p
* With indirect effects {alr, ground water, ) — presentation G. Lemer — presentation G. Lacerda

C. Ahdida, P. Voijtyla, M. Widorski, H. Vincke

Dose assessment

Addressed by:
Site choice in direction of experiments Efeﬂn’:::g:a' . Sensitivity analysis
* tools in preparation

Mechanical mover system in arcs

* allows 14 TeV in 200 m deep tunnel E:,';“’.’,':;L“j“’” o
Folding with realistic P

G. Lerner, D. Calzolarl A. Lechner C. Ahdida G. Lacerda, Y. Robert, N. Guilhaudin

rse : = s o : Radiatian Line | | Edit / Reposition

MaD X | LI = g : <:
=1 . L i )1 , 15 L I
yoh Jerive ) i

Survey
Command
Based

;I:-i:-.il);;l 11000 12000 N, D- Schulte

Mover system and impact on beam will be addressed in the coming years before end if
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