

Report of the Snowmass'21 Collider Implementation Task Force

Thomas Roser for the Snowmass Collider Implementation Task Force Presentation to EPP-2024

December 13, 2022

AF Collider Implementation Task Force

- The Collider Implementation Task Force (ITF) was charged with the evaluation and fair comparison of future collider proposals, including R&D needs, schedule, cost (using the same accounting rules), and environmental impact.
- Comparison was done for colliders with similar physics goals such as Higgs factories and high parton CM energy colliders.
- ITF effort built on the 2021 report "European Strategy for Particle Physics -- Accelerator R&D Roadmap"
- ITF met over Zoom every other week or more frequently over the last 1.5 years and collected an extensive list of parameters from each of 24 collider proposals.
- The full report is available on the <u>arXiv:2208.06030v1</u>.

Reinhard Brinkmann (DESY)

Sarah Cousineau (ORNL)

Dmitri Denisov (BNL)

Spencer Gessner (SLAC)

Steve Gourlay (LBNL)

Philippe Lebrun (CERN)

Meenakshi Narain (Brown U.)

Katsunobu Oide (KEK)

Tor Raubenheimer (SLAC)

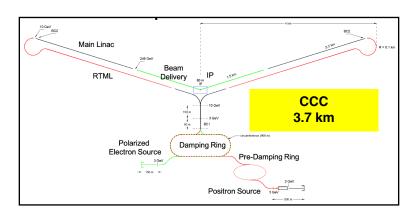
Thomas Roser (BNL, Chair)

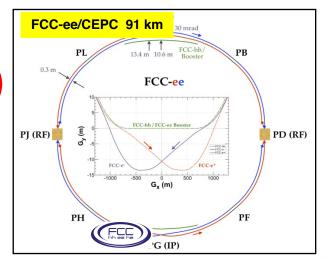
John Seeman (SLAC)

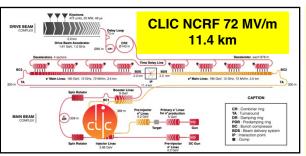
Vladimir Shiltsev (FNAL)

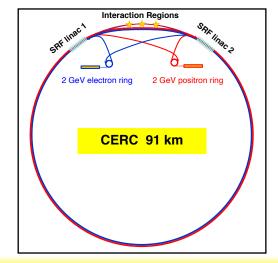
Jim Strait (FNAL)

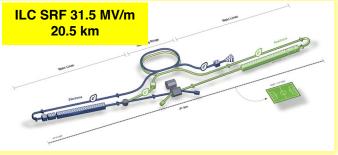
Marlene Turner (LBNL)

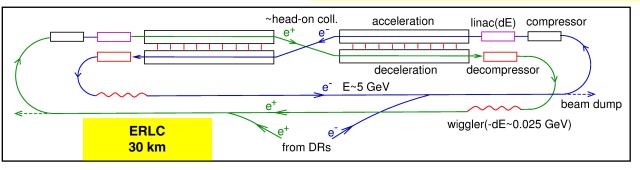


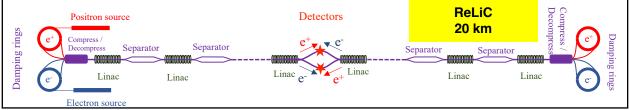

LianTao Wang (U. Chicago)

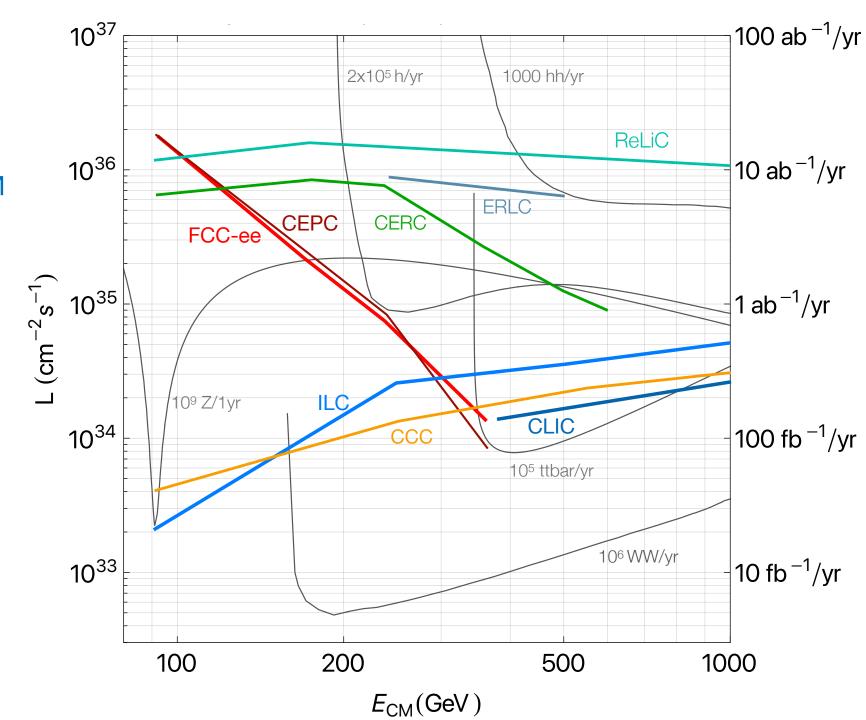

Summary tables of evaluation


- Summary tables for each group have four columns with summary values for the four areas of evaluations:
 - Years of per-project R&D needed (technical risk and maturity)
 - Provides relevant and comparable measure of maturity and estimate how much R&D is still needed before project start. Includes feasibility R&D, R&D to get technologies to TRL of 4-5, and R&D for cost and power consumption reduction. To estimate the time needed for all pre-project R&D we assumed similar progress (and funding) as in the past performance and cost reduction R&D. Focused R&D on energy efficiency of future colliders would be mostly a new effort.
 - Years until first physics (technically limited schedule)
 - This is most useful to compare the scientific relevance of the proposal. It includes pre-project R&D, design, construction, and initial commissioning.
 - Project cost in 2021B\$ w/o contingency and escalation (cost)
 - ITF used various models to estimate the cost and also collected cost estimates from the proponents. It uses known costs of existing installations and reasonably expected cost of novel equipment. For future technologies, the cost estimate is quite conservative, and one should expect cost reductions from pre-project cost-reduction R&D.
- Total operating electric power consumption in MW (environmental impact)
- Includes all necessary utilities. Used information from proponents, if provided, otherwise made a rough estimate. Expect reduction from pre-project R&D to improve energy efficiency and develop more energy efficient concepts, such as energy recovery technologies.


Name	CM energy range
FCC-ee	e+e-, \sqrt{s} = 0.09 – 0.37 TeV
CEPC	e+e-, \sqrt{s} = 0.09 – 0.37 TeV
ILC (Higgs factory)	e+e-, \sqrt{s} = 0.09 – 1 TeV
CLIC (Higgs factory)	e+e-, \sqrt{s} = 0.09 – 1 TeV
CCC (Cool Copper Collider)	e+e-, \sqrt{s} = 0.25 – 0.55 TeV
CERC (Circular ERL collider)	e+e-, \sqrt{s} = 0.09 – 0.60 TeV
ReLiC (Recycling Linear Collider)	e+e-, \sqrt{s} = 0.25 – 1 TeV
ERLC (ERL Linear Collider)	e+e-, \sqrt{s} = 0.25 – 0.50 TeV
XCC (FEL-based $\gamma\gamma$ collider)	ee $(\gamma \gamma)$, $\sqrt{s} = 0.125 - 0.14$ TeV
MC (Higgs factory)	$\mu + \mu - \sqrt{s} = 0.13 \text{ TeV}$

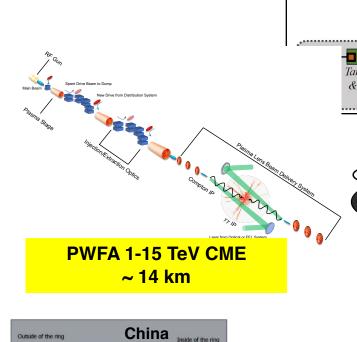


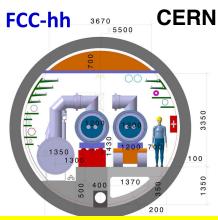


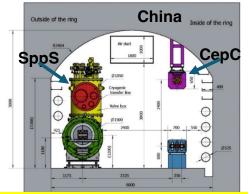

Higgs factory summary table

- Main parameters of the submitted Higgs factory proposals.
- The cost range is for the single listed energy.
- The superscripts next to the name of the proposal in the first column indicate:
 - (1) Facility is optimized for 2 IPs. Total peak luminosity for multiple IPs is given in parenthesis;
 - (2) Energy calibration possible to 100 keV accuracy for MZ and 300 keV for MW;
 - (3) Collisions with longitudinally polarized lepton beams have substantially higher effective cross sections for certain processes

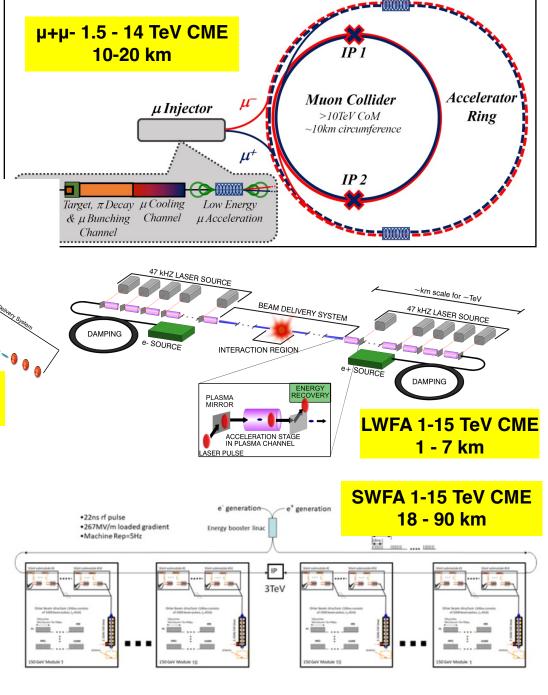
Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
1 Toposai Taine	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
$FCC-ee^{1,2}$	0.24	7.7 (28.9)	0-2	13-18	12-18	290
1.00-66	(0.09-0.37)	1.1 (20.9)	0-2	19-10	12-10	290
$CEPC^{1,2}$	0.24	8.3 (16.6)	0-2	13-18	12-18	340
CEIC	(0.09-0.37)	0.3 (10.0)	0-2	19-10	12-10	340
II C3 II: mms	0.25	2.7	0-2	<12	7-12	140
ILC ³ - Higgs		2.1	0-2	<12	(-12	140
factory	(0.09-1)	0.0	0.0	19.10	7 10	110
CLIC ³ - Higgs	0.38	2.3	0-2	13-18	7-12	110
factory	(0.09-1)					
CCC ³ (Cool	0.25	1.3	3-5	13-18	7-12	150
Copper Collider)	(0.25 - 0.55)					
GERC ³ (Circular	0.24	78	5-10	19-24	12-30	90
ERL Collider)	(0.09 - 0.6)					
ReLiC ^{1,3} (Recycling	0.24	165 (330)	5-10	>25	7-18	315
Linear Collider)	(0.25-1)					
ERLC ³ (ERL	0.24	90	5-10	>25	12-18	250
linear collider)	(0.25 - 0.5)					
XCC (FEL-based	0.125	0.1	5-10	19-24	4-7	90
$\gamma\gamma$ collider)	(0.125 - 0.14)					
Muon Collider	0.13	0.01	>10	19-24	4-7	200
Higgs Factory ³						


Higgs factory summary plot


- Peak luminosity per IP vs CM energy for the Higgs factory proposals as provided by the proponents.
- The right axis shows integrated luminosity for one Snowmass year (10⁷ s).
- Also shown are lines corresponding to required luminosity for yearly production rates of important processes.

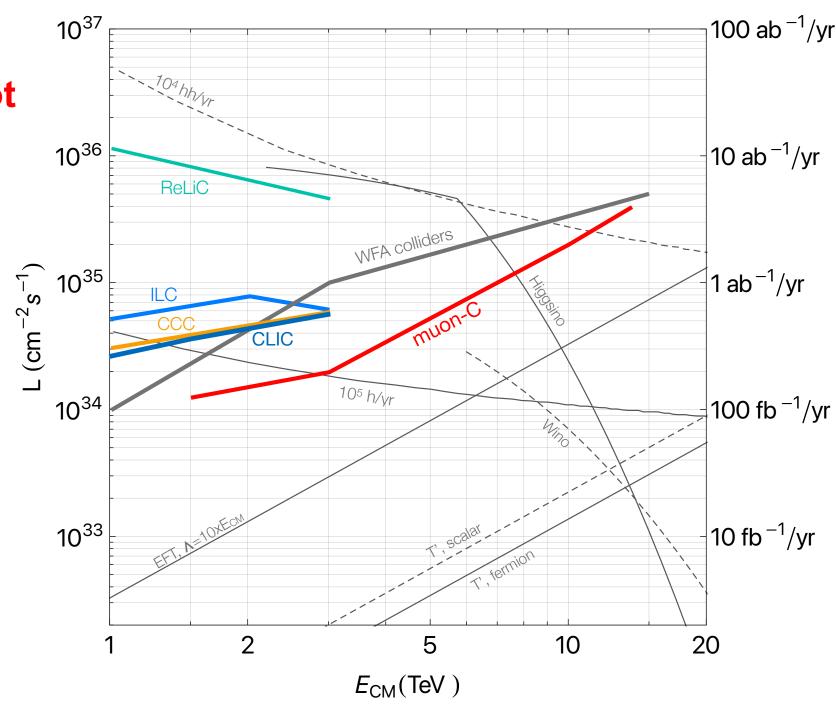

High parton CM energy collider concepts(6)

Name	CM energy range
Muon Collider	μ + μ -, \sqrt{s} = 1.5 – 14 TeV
Laser-driven WFA - LC	e+e-, \sqrt{s} = 1 – 15 TeV
Particle-driven WFA - LC	e+e-, \sqrt{s} = 1 – 15 TeV
Structure WFA - LC	e+e-, \sqrt{s} = 1 – 15 TeV
FCC-hh	pp, $\sqrt{s} = 100 \text{ TeV}$
SPPC	pp, $\sqrt{s} = 75 - 125 \text{ TeV}$



FCC-hh 100 TeV, 16 T magnets, 91 km

SPPC 125 TeV, 20 T magnets, 110 km


Colliders with high parton CM energy, summary table

- Main parameters of the colliders with 10 TeV or higher parton CM energy.
- Total peak luminosity for multiple IPs is given in parenthesis.
- The cost range is for the single listed energy.
- Collisions with longitudinally polarized lepton beams have substantially higher effective cross sections for certain processes.
- The relevant energies for the hadron colliders are the parton CM energy, which can be substantially less than hadron CM energy quoted in the table.

	_ :	,	_	I		
Proposal Name	CM energy	$\operatorname{Lum./IP}$	Years of	Years to	Construction	Est. operating
	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
Muon Collider	10	20 (40)	>10	>25	12-18	~300
	(1.5-14)	, , ,				
LWFA - LC	15	50	>10	>25	18-80	~1030
(Laser-driven)	(1-15)					
PWFA - LC	15	50	>10	>25	18-50	~620
(Beam-driven)	(1-15)					
Structure WFA	15	50	>10	>25	18-50	~450
(Beam-driven)	(1-15)					
FCC-hh	100	30 (60)	>10	>25	30-50	~560
SPPC	125	13 (26)	>10	>25	30-80	~400
	(75-125)	, ,				

High energy lepton colliders summary plot


- Peak luminosity per IP vs CM energy for the high energy lepton collider proposals as provided by the proponents.
- The right axis shows integrated luminosity for one Snowmass year (10⁷ s).
- Also shown are lines corresponding to required luminosity for yearly production rates of important processes.
- The luminosity requirement for 5σ discovery of the benchmark DM scenarios Higgsino and Wino are also shown.

Technical risk registry

 Technical risk registry of accelerator components and systems for future very high energy pp, muon and WFA colliders: lighter colors indicate progressively higher TRLs (less risk), white is for either not significant or not applicable.

Technical Risk Factor	Score	Color Code
$\mid ext{TRL} = 1.2$	4	
$\mid ext{TRL} = 3.4$	3	
TRL = 5.6	2	
TRL = 7.8	1	

Technical risk summary table

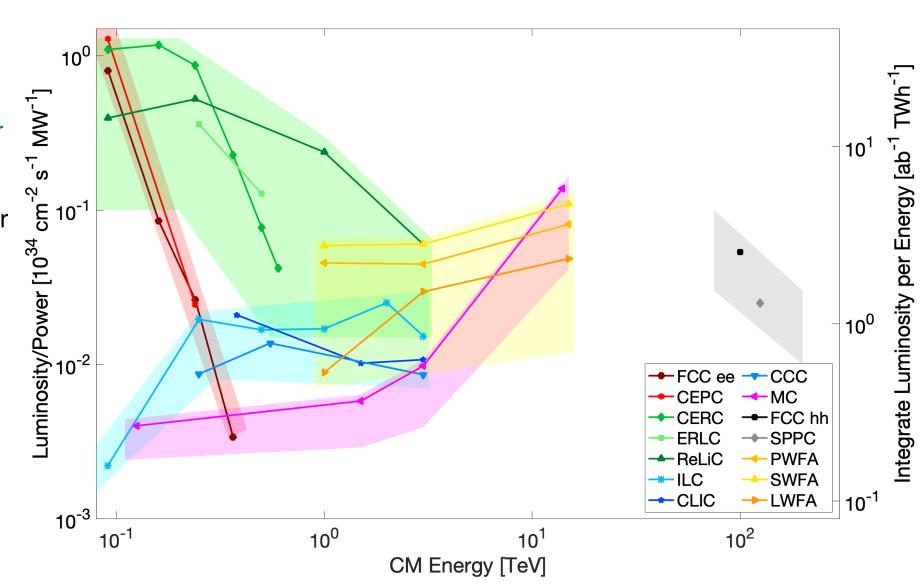
- Technical risk categories (darker blue is higher risk).
- "Design status":
 - I TDR complete
 - II CDR complete
 - III substantial documentation
- IV limited documentation and parameter table
- V parameter table
- "Overall risk tier":
 - 1 lower overall technical risk
 - ...
 - 4 multiple technologies require further R&D

Proposal Name	Collider	Lowest	Technical	Cost	Performance	Overall
(c.m.e. in TeV)	Design	TRL	Validation	Reduction	Achievability	Risk
	Status	Category	Requirement	Scope		Tier
FCCee-0.24	II					1
CEPC-0.24	II					1
ILC-0.25	I					1
CCC-0.25	III					2
CLIC-0.38	II					1
CERC-0.24	III					2
ReLiC-0.24	V					2
ERLC-0.24	V					2
XCC-0.125	IV					2
MC-0.13	III					3
ILC-3	IV					2
CCC-3	IV					2
CLIC-3	II					1
ReLiC-3	IV					3
MC-3	III					3
LWFA-LC 1-3	IV					4
PWFA-LC 1-3	IV					4
SWFA-LC 1-3	IV					4
MC 10-14	IV					3
LWFA-LC-15						4
PWFA-LC-15	V					4
SWFA-LC-15	V					4
FCChh-100	II					3
SPPC-125	III					3
Coll.Sea-500	V					4

R&D Programs and Facilities

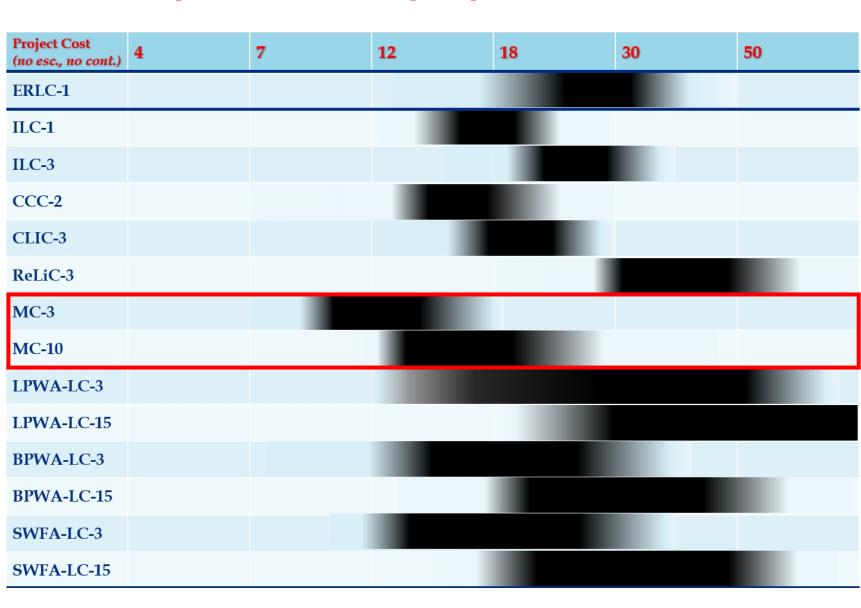
- Duration and integrated cost of the past, present, and proposed R&D programs and facilities (the latter indicated by a shift to the right).
- Funding sources for the past and present programs are indicated ("OHEP" - directed R&D in the DOE OHEP, "GARD" - General Accelerator R&D and facilities operation program in the OHEP, "LDG/CERN" aspirational support requested as part of the European Accelerator R&D Roadmap).
- Inputs with estimates from the proponents on the total cost of demonstration projects and pre-CD2 validations have "tbd" as funding source.

R&D Program	Benefiting	Duration	Integrated	Funding	Key Topics
Facility Name	Concept	(Years)	Cost (M\$)	Source	Rationale
Linear e^+e^- colliders	_				
NLC/NLCTA/FFTB	$\mathrm{NLC}/\mathrm{C}^3$	14	120	OHEP	NC RF gradient, final focus
TESLA/TTF	ILC	~ 10	150	${ m DESY/Collab}$	SCRF CMs and beam ops
ILC in US/FAST	ILC	6	250	OHEP	SCRF CMs and beam ops
ILC in $Japan/KEK$	ILC	10	100	KEK	SCRF CMs and beam ops
$\mathrm{ATF}/\mathrm{AFT2}$	ILC	15	100	${ m KEK/Intl}$	LC DR and final focus
CLIC/CTF/CTF3	CLIC	25	500	CERN/Intl	2-beam scheme and driver
General RF R&D	All LCs	8	160	GARD	see RF Roadmap; incl facilities
ILC in Japan/KEK	ILC	5	50	KEK	next 5 yr request
High-G RF & Syst.	$\mathrm{CLIC}/\mathrm{SRF}$	5	150	LDG/CERN	NC/SC RF and klystrons
$C^3 input$	C_3	8	200	tbd	72-120 MV/m CMs, design
HELEN input	HELEN	n/a	200	tbd	pre-TDR, TW SRF tech
ILC-HE input	ILC-HE	20	100	tbd	$10~\mathrm{CMs}~70\mathrm{MV/m}~Q{=}2\mathrm{e}10$
ILC-HighLumi $input$	ILC-HL	10	75	tbd	31.5 MV/m at $Q=2e10$
Circular/ERL ee/eh co	olliders				<u> </u>
CBB	LCs	6	25	NSF	high-brightness sources
CBETA	ERLCs	5	25	NY State	multi-turn SRF ERL demo
ERLs/PERLE	ERLCs	5	80*	LDG/CERN	NC/SC RF, klystrons
$FNALee\ input$	FNALee	n/a	100	tbd	design and demo efforts
LHeC/FCCeh input	eh-coll.	n/a	100	tbd	demo facility, design
$\stackrel{\frown}{ ext{CEPC}}input$	CEPC	6	154	tbd	SRF, magn. cell, plasma inj.
ReLiC $input$	ReLiC	10	70	tbd	demo Q =1e10 at 20 MV/m
XCC input	XCC	7	200	tbd	demo and design efforts
CERC $input$	CERC	8	70	tbd	demo high- $E \stackrel{\circ}{\text{ERL}}$ at CEBAF
Muon colliders					
NFMCC	MC	12	50	OHEP	design study, prototyping
US MAP	$^{ m MC}$	7	60	OHEP	IDS study, components
MICE	MC	12	60	UK/Collab	4D cooling cell demo
IMCC/pre-6D demo	$MC ext{-HE}$	5	70	LDG/CERN	pre-CDR work, components
IMCC/6D cool.	$MC ext{-HE}$	7	150	CERN/Collab	6D cooling facility and R&D
Circular <i>hh</i> colliders				, , , , , , , , , , , , , , , , , , ,	<u> </u>
LHC Magnet R&D	$_{ m LHC}$	12	140	CERN	8T NbTi LHC magnets
US LARP	$_{ m LHC}$	15	170	OHEP	more LHC luminosity faster
SC Magnets General	$pp, \mu\mu$	10	120	GARD	HF-magnets and materials
US MDP	$pp, \mu\mu$	5	40	GARD	see HFM Roadmap
HFM Program	FCChh	7	170	LDG/CERN	16 T magnets for FCChh
$FNALpp\ input$	FNALpp	n/a	100	tbd	25T magnets demo
FCChh input	FCChh	$\stackrel{'}{20}$	500	tbd	large demo, R&D and design
Coll.Sea input	CollSea	16	400	tbd	300m magnets underwater
AAC colliders					
SWFA/AWA	SWFA-LC	8	40	GARD	2-beam accel in THz structures
LWFA/BELLA	LWFA-LC	8	80	GARD	laser-plasma WFA R&D
LWFA/DESY	LWFA-LC	10	30	DESY	laser-plasma WFA R&D
PWFA/FACET-I,II	PWFA-LC	13	135	GARD	2-beam PWFA, facility
AWAKE	PWFA-LC	8	40	CERN/Collab	proton-plasma PWFA, facility
EUPRAXIA	LWFA-LC	10	570	EUR/Collab.	high quality/eff. LWFA R&D
LWFA/DESY	LWFA-LC	10	80	DESY	laser WFA R&D
SWFA input	SWFA-LC	8	100	tbd	0.5 & 3GeV demo facilities
LWFA input	LWFA-LC	15	130	tbd	2nd BL, e ⁺ , kBELLA project
in virt in pai					
PWFA input	PWFA-LC	10	100	tbd	demo and design effort

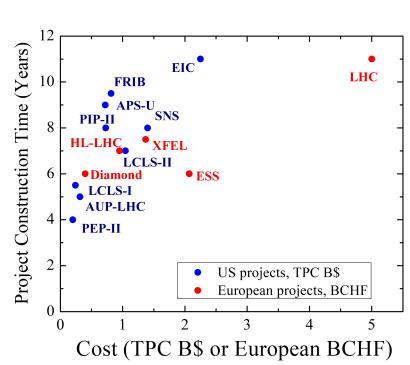

Power, complexity, environmental impact

- Summary table of categories of electric power consumption, size, complexity and required radiation mitigation.
- Darker blue means more impact.
- The WFA at 15 TeV use round beam collisions and have lower power consumption than at 3 TeV with flat beam collisions.

Proposal Name	Power	Size	Complexity	Radiation	13
	Consumption			Mitigation	
FCC-ee (0.24 TeV)	290	$91~\mathrm{km}$	I	I	
CEPC (0.24 TeV)	340	$100~\mathrm{km}$	I	I	
ILC (0.25 TeV)	140	$20.5~\mathrm{km}$	I	I	
CLIC (0.38 TeV)	110	11.4 km	II	I	
CCC (0.25 TeV)	150	$3.7~\mathrm{km}$	I	I	
CERC (0.24 TeV)	90	$91~\mathrm{km}$	II	I	
ReLiC (0.24 TeV)	315	20 km	II	I	
ERLC (0.24 TeV)	250	30 km	II	I	
XCC (0.125 TeV)	90	$1.4~\mathrm{km}$	II	I	
MC (0.13 TeV)	200	$0.3~\mathrm{km}$	I	II	
ILC (3 TeV)	~400	$59~\mathrm{km}$	II	II	
CLIC (3 TeV)	~ 550	$50.2~\mathrm{km}$	III	II	
CCC (3 TeV)	~ 700	$26.8~\mathrm{km}$	II	II	
ReLiC (3 TeV)	~ 780	$360~\mathrm{km}$	III	I	
MC (3 TeV)	~230	$10-20~\mathrm{km}$	II	III	
LWFA (3 TeV)	~340	$1.3~\mathrm{km}$	II	I	
		(linac)			
PWFA (3 TeV)	~ 230	14 km	II	II	
SWFA (3 TeV)	~ 170	18 km	II	II	
MC (14 TeV)	~ 300	$27~\mathrm{km}$	III	III	
LWFA (15 TeV)	~1030	$6.6~\mathrm{km}$	III	I	
PWFA (15 TeV)	~620	$14~\mathrm{km}$	III	II	
SWFA (15 TeV)	~450	90 km	III	II	
FCC-hh (100 TeV)	~ 560	$91~\mathrm{km}$	II	III	
SPPC (125 TeV)	~400	$100~\mathrm{km}$	II	III	


Luminosity per power consumption

- Figure-of-merit Peak
 Luminosity (per IP) per
 Input Power and
 Integrated Luminosity per
 TWh.
- Integrated luminosity assumes 10⁷ seconds per year.
- The luminosity is per IP.
- Data points are provided to the ITF by proponents of the respective machines.
- The bands around the data points reflect approximate power consumption uncertainty for the different collider concepts.


Cost estimates for multi-TeV lepton collider proposals

- The ITF cost model for the multi-TeV lepton collider proposals.
- Horizontal scale is approximately logarithmic for the project total cost in 2021 B\$ without contingency and escalation.
- Black horizontal bars with smeared ends indicate the cost estimate range for each machine.

Timeline of proposals

- ITF estimated the timeline of 3 stages: basic design and pre-project R&D; TDR and industrialization; construction period;
- All projects are treated as "stand-alone" (except ep colliders) and timeline starts now or when funding starts to be available. A technically limited construction time was assumed.
- The first three columns present these timescales as submitted to the ITF by the project proponents.

-	Subm'd	Subm'd	Subm'd	ITF	ITF	ITF	ITF
Collider	R&D	Design	Project	Judgement	Judgement	Judgement	Judgement
Name	Durat'n	to TDR	Constrn.	Duration	Design &	Project	Combined
- c.m.e.	to CDR	Durat'n	Time	Preproject	Industr'n	Constrn.	"Time to
(TeV)	(yrs)	(yrs)	(yrs)	R&D	Duration	Duration	the First
,	(0)	(0)	(0)	to CDR	to TDR	post CD3	Physics"
ILC-0.25	0	4	9	0-2 yrs	3-5 yrs	7-10 yrs	< 12 yrs
ILC (6x lumi)	10	5	10	3-5 yrs	3-5 yrs	7-10 yrs	13-18 yrs
CLIC-0.38	0	6	6	0-2 yrs	3-5 yrs	7-10 yrs	13-18 yrs
FCCee-0.36	0	6	8	0-2 yrs	3-5 yrs	7-10 yrs	13-18 yrs
CEPC-0.24	6	6	8	0-2 yrs	3-5 yrs	7-10 yrs	13-18 yrs
CCC-0.25	2-3	4-5	6-7	3-5 yrs	3-5 yrs	7-10 yrs	13-18 yrs
FNALee-0.24	tbd	tbd	tbd	3-5 yrs	3-5 yrs	7-10 yrs	13-18 yrs
CERC-0.6	3	5	10	5-10 yrs	3-5 yrs	7-10 yrs	19-24 yrs
HELEN-0.25	tbd	tbd	tbd	5-10 yrs	5-10 yrs	7-10 yrs	19-24 yrs
ReLiC-0.25	3	5	10	5-10 yrs	5-10 yrs	10-15 yrs	>25~ m yrs
ERLC-0.25	8	5	10	5-10 yrs	5-10 yrs	10-15 yrs	$>25~{ m yrs}$
MC-0.125	11	4	tbd	$> 10 \mathrm{~yrs}$	5-10 yrs	7-10 yrs	19-24 yrs
XCC-0.125	2-3	3-4	3-5	5-10 yrs	3-5 yrs	7-10 yrs	19-24 yrs
SWLC-0.25	8	5	10	5-10 yrs	3-5 yrs	7-10 yrs	19-24 yrs
ILC-1	10	5	5-10	5-10 yrs	3-5 yrs	10-15 yrs	13-18 yrs
ILC-2	10	5	5-10	> 10 yrs	3-5 yrs	10-15 yrs	19-24 yrs
ILC-3	20	5	10	> 10 yrs	3-5 yrs	10-15 yrs	19-24 yrs
CLIC-3	0	6	6	3-5 yrs	3-5 yrs	10-15 yrs	19-24 yrs
CCC-2	2-3	4-5	6-7	3-5 yrs	3-5 yrs	10-15 yrs	19-24 yrs
ReLiC-2	3	5	10	5-10 vrs	$5\text{-}10~\mathrm{vrs}$	$10\text{-}15~\mathrm{vrs}$	$>25~\mathrm{vrs}$
MC-1.5	11	4	tbd	> 10 yrs	5-10 yrs	7-10 yrs	19-24 yrs
MC-3	11	4	tbd	> 10 yrs	5-10 yrs	7-10 yrs	19-24 yrs
MC-10	11	4	tbd	> 10 yrs	5-10 yrs	10-15 yrs	>25~ m yrs
MC-14	11	4	tbd	$> 10 \mathrm{~yrs}$	5-10 yrs	10-15 yrs	$>25~{ m yrs}$
PWFA-LC-1	15	tbd	tbd	$> 10 \mathrm{~yrs}$	$5\text{-}10~\mathrm{yrs}$	7-10 yrs	19-24 yrs
PWFA-LC-15	15	tbd	tbd	$> 10 \mathrm{~yrs}$	5-10 yrs	10-15 yrs	$>25~{ m yrs}$
LWFA-LC-3	15	tbd	tbd	$> 10 \mathrm{~yrs}$	$> 10~{ m yrs}$	10-15 yrs	>25~ m yrs
LWFA-LC-15	15	tbd	tbd	$> 10 \mathrm{~yrs}$	$> 10~{ m yrs}$	$> 16~{ m yrs}$	>25~ m yrs
SWFA-LC-1	tbd	tbd	tbd	$> 10 \mathrm{~yrs}$	$5\text{-}10~\mathrm{yrs}$	7-10 yrs	19-24 yrs
SWFA-LC-15	tbd	tbd	tbd	$> 10 \mathrm{~yrs}$	$5\text{-}10~\mathrm{yrs}$	10-15 yrs	>25~ m yrs
FCChh-100	2	20	15	> 10 yrs	5-10 yrs	10-15 yrs	$> 25 \mathrm{~yrs}$
SPPC-75	15	6	8	$> 10 \mathrm{~yrs}$	5-10 yrs	10-15 yrs	$>25~{ m yrs}$
Coll.-Sea- 500	10	6	6	> 10 yrs	5-10 yrs	$> 16 \mathrm{~yrs}$	$>25~{ m yrs}$
CEPC-SPPC	tbd	tbd	tbd	3-5 yrs	3-5 yrs	$< 6~{ m yrs}$	>25~ m yrs
$_{ m LHeC}$	0	5	5	0-2 yrs	3-5 yrs	< 6~ m yrs	13-18 yrs
FCC-eh	0	5	5	0-2 yrs	3-5 yrs	< 6~ m yrs	$>25~{ m yrs}$

16

Summary and final comments

- ITF developed metrics to evaluate and compare 24 future collider proposals in physics reach, R&D needs, schedule, cost, and environmental impact and produced summary tables and plots.
- Any of the future collider projects constitute one of, if not, the largest science facility in particle physics. The cost, the required resources and, maybe most importantly, the environmental impact in the form of large electric power consumption will approach or exceed the limit of affordability. ITF suggests that the Snowmass CSS and EPP-2024 recommends that R&D to reduce the cost and the power consumption of future collider projects is given high priority.
- Sustainability of scientific facilities is gaining increased importance, especially in Europe. The 2021
 European Strategy for Particle Physics Accelerator R&D Roadmap made the recommendation:
 - "Environmental sustainability should be treated as a primary consideration for future facilities, including those in the near-to-medium future, and the R&D programme should be prioritised accordingly. Objective metrics should be set down to allow appraisal of the impact of future facilities over their entire life cycle, including civil-engineering aspects, and of the resources needed to ensure sustainability."
- Snowmass CSS and EPP-2024 should consider a similar recommendation.

Additional slides

Lepton-hadron colliders summary table

- Main parameters of the lepton-hadron collider proposals.
- For lepton-hadron colliders only, the parameters (years of pre-project R\&D, years to first physics, construction cost and operating electric power) show the increment needed for the conversion of the hadron-hadron collider to a leptonhadron collider.

Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
LHeC	1.2	1	0-2 ?	13-18	<4	~140
FCC-eh	3.5	1	0-2 ?	>25	<4	~140
CEPC-SPPC-ep	5.5	0.37	3-5	>25	<4	~300

Summary table of collider versions located at FNAL

- Main parameters of the collider proposals located at FNAL.
- Total peak luminosity for multiple IPs is given in parenthesis.
- The cost range is for the single listed energy.
- There is also a recent proposal for a CCC version that can be located at FNAL.
- Other recently developed collider proposals, such as CERC, ReLiC, or wake field accelerators, could also be evaluated for being located at FNAL.

Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
High Energy LeptoN	0.25	1.4	5-10	13-18	7-12	~110
(HELEN) e^+e^- colider	(0.09-1)					
e^+e^- Circular Higgs	0.24	1.2	3-5	13-18	7-12	~200
Factory at FNAL	(0.09 - 0.24)					
Muon Collider	10	20 (40)	>10	19-24	12-18	~300
at FNAL	(6-10)					
pp Collider	24	3.5 (7.0)	>10	>25	18-30	~400
at FNAL						

High energy lepton colliders summary table

- Main parameters of the lepton collider proposals with CM energy higher than 1 TeV.
- Peak luminosity for multiple IPs is given in parenthesis.
- The cost range is for the single listed energy.
- Collisions with longitudinally polarized lepton beams have substantially higher effective cross sections for certain processes.

Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
High Energy ILC	3	6.1	5-10	19-24	18-30	~400
	(1-3)					
High Energy CLIC	3	5.9	3-5	19-24	18-30	~550
	(1.5-3)					
High Energy CCC	3	6.0	3-5	19-24	12-18	~700
	(1-3)					
High Energy ReLiC	3	47 (94)	5-10	>25	30-50	~780
	(1-3)					
Muon Collider	3	2.3(4.6)	>10	19-24	7-12	~230
	(1.5-14)					
LWFA - LC	3	10	>10	>25	12-80	~340
(Laser-driven)	(1-15)					
PWFA - LC	3	10	>10	19-24	12-30	~230
(Beam-driven)	(1-15)					
Structure WFA - LC	3	10	5-10	>25	12-30	~170
(Beam-driven)	(1-15)					