Quantum simulators consisting of lattice-confined sodium
antiferromagnetic and rubidium ferromagnetic spinor condensates

Yingmei Liu & Members and Collaborators of
Ultra-cold Quantum Simulator Group, Oklahoma State University
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3D monoclinic lattices Discrete-time quantum walks




F=1 spinor BECs: multi-component BECs with spin-dependent interactions

Interaction energy in the collision:

When F = 1, the total spinf=F,+F,=0or 2

Spin-independent @n-dependenD
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a; : s-wave scattering length

“Ferromagnetic” ( 8’Rb ) “Antiferromagnetic” ( *°Na )
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The lowest energy states:
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F'=1 spinor BEC: Coherent Spin-Changing Collisions

The only interesting collisions Because no observed spin domains
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, _ . Single Spatial Mode Approximation
Two conservations in the collision: ( SMA)

1. Magnetization: m=p,,- p_ 'Jme"*’*"“‘ y
2. Total atoms: p,;+py +p4 =1 w(r.t) = Ju(r) | fog(2)e®®
' tion of a spin stat I e i
p; : the fractional population of a spin state i o (H)e 8., (1) )




F=1 spinor BEC : when a magnetic field is applied

For a single particle In the collision: two particles

A Linear Zeeman (same)
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Hamiltonian of F=1 spinor BECs in free space derived from SMA

Quadratic
Zeeman term Two variables remain:
E ZQHet(l —PO)+ poand ¥

Gnet = B + g™ C:C2<H> m:p+—p_ 9:9++9__29ﬂ




3D highly-programmable spinor quantum simulators realized in our lab
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Cold atoms ~ 50 nK

2D optical lattices 3D cubic lattices 3D monoclinic lattices




F=1 spinor BECs in Optical Lattices

Bose-Hubbard model

Hopping term Spin independent term
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.- annihilation operator of a boson in magnetic sublevel £ and lattice site i n; = E Qg ik
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w: chemical potential



Spinor BECs in optical lattices: 3D Programmable quantum simulator with many
tunable parameters, such as temperature, spin, density, and dimensionality

condensed guantum state
matter physics engineering

topological defects

anti/ferromagnetism .
exofic states of matter

quantum phase transitions macroscopic entanglement

collective spin dynamics  spin “squeezing”

1 NnK physics at 100 nK

atomic collision medasurement
ONYSICS ONYSICS




Quantum quench =——> Nonequilibrium dynamics
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Observation of few-body nonequilibrium spin dynamics
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The underlying physics 1s revealed by a fast Fourier Transform (FFT)
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Predicted Energy Gap in Deep Lattices

e | T T £ fo |u, = 28E, gih=385Hz
1.2 L i i
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E is the energy gap between
the ground state and the first
excited state at a given n
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Utilize the FFT spectrum to extract the number distribution
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By dividing the area below the corresponding peak in a FFT spectrum by the spin oscillation amplitude,
we can precisely determine y, (the fraction of atoms localized in lattice sites having n atoms)



Atom Number Distributions

B /ho1d -40ms

0.47 3 Theory

n:3H:4n=5

n="2

X, - the fraction of atoms localized in lattice sites having n atoms

* Good agreement with predictions based on the simplified spinor Bose-Hubbard model



Effects of Varying Lattice Quench Speed

1.0+
Bl =9
0.8
B =7
= Cln=>5
= 0.6+ -
O [1n=3
_
§ B »=8
»n 0.4 = 6
"=
0.2 Ll n=4
' Ll n=2
0.0_ ] T | |

s4 39 28 19 14
(E£;/ms)

Shades of blue represent even occupation number n per lattice site, shades of red represent odd
occupation number n per lattice site, with the shades getting darker as n increases

vramp



Revealing spatial dynamics of 3D lattice systems

Lattice site resolved imaging of 3D systems 1s very challenge
while 1D and 2D systems have been detected by quantum gas microscopy

The observed atom number distributions can be combined with the predicted wedding cake
structure to reveal the spatial dynamics of 3D systems
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Revealing spatial dynamics of 3D lattice systems

A
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Slower lattice quenches allow atoms 1nitially located in the trap center
to have more time to flow to the trap boundaries resulting in a higher
proportion of atoms in sites with lower occupation numbers.

This indirect imaging of spatial dynamics in 3D systems is useful,
because direct imaging methods (e.g., quantum gas microscopy) are
realized only in 1D and 2D systems.




Quantum critical dynamics of Superfluid to Mott-Insulator transitions

Two good observables for the SF-MI
phase transition:
* The SF order parameter
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Quantum critical dynamics probed via spin populations
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Quantum critical dynamics probed via the SF order parameter
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Large theory-experiment disagreements:
Theoretical studies of complicated 3D many-body systems are challenging due to limitations of
existing numerical techniques so only 2D numerical simulation results are shown



Driven lattices: Engineering the dynamic phase diagram
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Driven lattices: Engineering the dynamic phase diagram

QO- Spin-preserving interaction

Dynamic SMA model: cy(t) = Gy + Z G, cos j27rft — d,) G ;- Spin-changing interaction

I Interactions Tuned by I
Geit; = ¢ — jhf/2 Amplitude of Driven Lattice ot i = 0+ D
Effective g Controlled by Effective Phase Controlled
Frequency of Driven Lattice by Phase of Driven Lattices

Free space: Hpr = q(1 — po) + c2p0(1 — po) + capor/ (1 — po)2 — M2 cos(6)

Driven lattices can simultaneously tune multiple key parameters of
spinor physics with negligible heating and atom loss



New separatrices induced by driven lattices at higher g determined by

the driven frequency f
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Additional separatrices induced by driven lattices at higher harmonics
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Coupling of spatial and spin degrees of freedom via moving lattices
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Coupling of spatial and spin degrees of freedom:
Violent spatial evolutions tune long-lived coherent spin dynamics
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Quantum scars 1n Spinor gases

Quantum states thermalize in accordance with eigenstate thermalization hypothesis (ETH):
eigenstate expectation values vary smoothly with energy [J. M. Deutsch, PRA 43,2046 (1991).]

Mechanisms for avoiding thermalization: integrability, many-body localization, quantum many-body scars,
Hilbert-space fragmentation, and quantum scars, with potential applications to quantum transport, quantum
metrology, and quantum information storage.

Weak ETH breaking: generic states obey ETH but a small subset of special states ("quantum many-body
scars") do not. Can be associated with an integrable subspace of a non-integrable model.

Spinor gases uniquely positioned to address both QMBS and quantum scars
FF =1 spinor BECs driven by weak spin-flopping fields

A 62 |
HSpin = h N Sz Sj + E pzsz i T QZ z,i + Pl S_L 7,)
= fL<J -

Integrable Integrabllity
Breaking




Observation of QMBS 1n Spinor BECs
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Conclusion

* In observed few-body nonequilibrium dynamics we can detect discrete energy
signatures that reveal atom number distributions and allow us to deduce the spatial
dynamics of 3D lattice systems.

ictional population of spin-0 atoms)
o o ©

* We probe the quantum critical dynamics of the first-order SF-MI phase transitions
by varying the rate at which our 3D lattice system is quenched across the transition.

* By sinusoidally modulating the lattice depth of a 1D optical lattice, we engineer
dynamical phase diagrams and demonstrate the capability to tune the key =
parameters that determine spinor physics using parameters of the driven lattice.

* We observe coherent spin dynamics in a spinor system that is subject to violent
spatial dynamics. These spin dynamics appear to be well described by an SMA
model demonstrating a surprising robustness of the applrommatlon so long as all
spin components share the same time dependent spatial mode.

[l [D-Driven (DD) »
U-Driven (UD) 4
Free Space (FS) 0
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=

—= 1.50.4
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* Using weak spin-flopping fields, we break the integrability of the spin-1 spinor
BEC model enabling the detection of quantum many-body scars in a scarred
classical phase space.

=
3 1.0+

0.5

0.0

* We demonstrate a momentum space quantum walk which 1s predicted to be a first
step in experimentally simulating all 1D and 2D topological phases classes.

3 10 13
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