
New approaches to 

atom interferometry

Keep the quantum state alive! 
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The Era of precision uncertainty

CDMSPlanck

W.M. Keck Observatory

Chandra

Loud and clear signals from the skies…. …but silence in our detectors

ATLAS

LHC



Moore’s law in atomic physics



Interferometers

• Using matter to manipulate light
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• Using light to manipulate matter



Applications: Local gravity, geophysics
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X. Wu, et. al., Science Advances 2019



Dropping atoms for high precision…

Measurement of G Tests of GR and QM Fine-structure constant



The most precise test of the standard 

model

Fine structure constant Standard Model Gyromgnetic Anomaly

Sensitive to hypothetical particles beyond the standard model



Limitations: free-fall time

Stanford 10-m 

fountain

Bremen 100-m drop 

tower

French zero-g flights NASA cold atom lab

2 -3 s (height) <1 s (atom temp, 

vacuum, vibrations)

< 1s (atom temp, 

vacuum, vibrations)

<1 s (atom temp, 

vacuum, vibrations)



Longer coherence 
times 

It takes at least 1/ 𝐺𝜌 ~ 15 minutes for 

locally-generated gravity to dominate in 
an experiment!

• E.g., gravitational harmonic oscillator

Minimum time scale on which quantum 
aspects of gravity can be expected to be 
noticeable
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Lattice 

interferometer



Longer coherences11

Probing gravity by holding atoms for 20 seconds. Xu et al., Science 366, 745-749 (2019)
Minute-scale gravimetry using a coherent atomic spatial superposition, Panda et al., Nature 
Physics 20, 1234 (2024)

http://science.sciencemag.org/cgi/content/full/366/6466/745?ijkey=1R4yQozWh9Sns&keytype=ref&siteid=sci
https://www.nature.com/articles/s41567-024-02518-9
https://www.nature.com/articles/s41567-024-02518-9


Suppression of 
vibrational 
noise, immune 
to tilt
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Operation under strong B-field… …tilt o…

immune against vibration, no vibration isolation requiredAtomic gravimeter robust to environmental effects, 
Appl. Phys. Lett. 123, 064001 (2023)



But what about systematics….?

Test case: measuring the gravity of a small mass

 Light shift

 Lattice imperfections

 Toggle mass nearby ( ෩ℳ = 1) and far-away ( ෩ℳ = 0).

 Atoms above ( ሚℰ = +1) and below source mass ( ሚℰ = +1).

𝑎mass = Τ𝑎 1,1 − 𝑎 1,−1 − 𝑎 0,1 + 𝑎 0,−1 2



… 6 x as sensitive as atomic fountain

 𝑎mass = 33.3 ± 5.6stat ± 2.7systnm/s
2

 Rules out screened (chameleon) forces



Feynman, 1957: what is a superposition 

of space-times?

 Spatial superposition of mass => 

superposition of gravitational 

fields.

 Surprisingly testable… collapse 

and revival of atomic interference 

fringes 

 …signal scales with T2 or T4. 

Carney, Muller, Taylor PRXQ 

2021



Laser phase plate in cryo-

electron microscopy
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Extract all the information that is carried on the electron beam



Single-particle cryo-EM is growing quickly, as we 

know very well…
17

…and we want cryo-ET to grow 

equally well very soon!
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What’s so hard about that?

 Radiation damage 

 ~10 e-/Å2 significantly alter structure 

 ~100 e-/Å2 cause bubbles, etc.

=> Very low SNR <0.1

 Need to average 10,000s of particles,100s-

1,000s should suffice

 Tomography extremely difficult 
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Raw image example



(Volta) phase contrast is elegant, but…

 …effect is not well-controlled

 …few labs have successfully tried it

Thin carbon film

e-

Electron Detector

Danev et al., eLife 6:e23006, 2017.

0o

180o

0 500

Phase 

shift

Micrograph number 
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10 hours

Laser Phase Plate (LPP)

Power vs time

…but needed relay optics triples Cc currently

• Phase shift through ponderomotive 

potential

• No charging

• No radiation damage

• Well-controlled

• Need 75 kW focused to 8 μm for 300 

keV beam
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Phase shift is stable
22



Single-particle cryo-EM with the LPP

Rubisco 20S proteasome

Laser off Laser on Laser off Laser on

Thanks to Yifan Cheng! 

Carter Turnbaugh, et al., Rev. Scientific 
Instrum. 92, 053005 (2021)

https://doi.org/10.1063/5.0045496
https://doi.org/10.1063/5.0045496
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ApoF Rubisco

LPP reveals unexpected particle-to-

particle variations…

Light center (“ring”)

Dark center (“disc”)

Incomplete rings (“Gs”)



…making structural heterogeneity 

much more visible

 See structural variation between individual particles 

(rather than class average)

 AI can be trained to do this in large datasets 

 Doing so on a large scale may open new areas in cell & 

structural biology
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Tomography is the next frontier….
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e-

…but can we align the electron beam to the laser at each tilt angle?
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-57°

-32°

-15°

+57°

+32°

+15°

0°

Rubisco on quantifoil grids, uncoated
-57° to 57° in 3° increments 

-24° to 24° symmetric

2e-/ tilt angle



Tomogram (laser on)

z-slices 0 to 84 nm
28

Hongwei Wang’s talk

Journal of molecular biology 435, 9, 167926 

(2023)



We expect 

much better 

results with 

the new 

microscope

First images in Fall 2024 (projected) 29

• 1 Å resolution 

instead of 3 Å

• Cs- correction

• Long effective 

focal length 

• High throughput



Getting ready for 

applications

 Nearly 100% of the information that is carried by the 

electron beam is finally accessible. 

 Hope to see images in 2024

 Working with CZII on XLPP & outfitting their microscope

 Working with TFS to transfer the technology
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 Alpha: Jack Roth, Madeline 
Bernstein, Andrew 
Christensen, & Yuno Iwasaki

 Lattice interferometer: 
Prabudhya Bhattacharyya, 
James Egelhoff, Garrett Louie, 
Cristian D. Panda, & Matthew 
J. Tao 

 TEM & cavities: Jessie Zhang, 
Petar Petrov, Jeremy Axelrod, 
Hang Chen, Ian Hicklin, 
Jonathan Remis, & Robert M. 
Glaeser



Bringing it all back home: universal 

dipole trap

 Insensitive to internal 
state, energy level 
structure, and magnetic 
properties. 

 Helium buffer gas at 1.5 K 

 10-20K trap depth 

 Studied loading 
dynamics, loss rates

 Potentially new 
possibilities in molecular 
spectroscopy, 
cold chemical reactions,  
precision measurement

32


	Slide 1: New approaches to  atom interferometry  Keep the quantum state alive! 
	Slide 2: The Era of precision uncertainty
	Slide 3: Moore’s law in atomic physics
	Slide 4: Interferometers
	Slide 5: Applications: Local gravity, geophysics
	Slide 6: Dropping atoms for high precision…
	Slide 7: The most precise test of the standard model
	Slide 8: Limitations: free-fall time
	Slide 9: Longer coherence times 
	Slide 10: Lattice interferometer
	Slide 11: Longer coherences
	Slide 12: Suppression of vibrational noise, immune to tilt 
	Slide 13: But what about systematics….?
	Slide 14: … 6 x as sensitive as atomic fountain 
	Slide 15: Feynman, 1957: what is a superposition of space-times?
	Slide 16: Laser phase plate in cryo-electron microscopy
	Slide 17: Single-particle cryo-EM is growing quickly, as we know very well…
	Slide 18: What’s so hard about that?
	Slide 19: (Volta) phase contrast is elegant, but…
	Slide 20: Laser Phase Plate (LPP)
	Slide 21
	Slide 22: Phase shift is stable
	Slide 23
	Slide 24: LPP reveals unexpected particle-to-particle variations…
	Slide 25: …making structural heterogeneity much more visible 
	Slide 26: Tomography is the next frontier….
	Slide 27
	Slide 28: Tomogram (laser on) z-slices 0 to 84 nm 
	Slide 29: We expect much better results with  the new microscope
	Slide 30: Getting ready for applications
	Slide 31
	Slide 32: Bringing it all back home: universal dipole trap

