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Attosecond Science Future

Attosecond pulses have
readily been followed by
fundamental discoveries in
atomic and solid-state
physics

The current sources lack
power. Free Electron Laser
sources may change that in
the future and open the field
of nonlinear processes to
the attosecond domain

Tunable isolated attosecond X-ray pulses with
gigawatt peak power from a free-clectron laser

Pierre Anne
Agostini Krausz L'Huillier _ ' Joseph Duris etal,  Nat
“for experimental mathods that generate

atiosecond pulsas of light for the study
of electron dynamics in matter”

ure Photonics 2020
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From Nobel Lectures in Physics
8 December 2023

Pierre Agostini: just a quick look toward
the future ... so far attosecond pulses are
created by visible or infrared lasers...but
maybe the future of attoseconds is not in
the our lab but with this x-ray free-electron
laser...




Attosecond x-ray pulses: XFELS v HHG
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J. Duris et al, Nature Photonics (2020) Argonne &




Single-spike attosecond soft x-ray pulses!

XLEAP: With measurement of pulse duration w/ c-VMI streaking
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J. Duris...J. Cryan, A. Marinelli, Nature Photonics (2020)




CONS

il AMO 2020 decadal survey, p. 158

Quantum Systems

AN ASSESSMENT OF ATOMIC, MOLECULAR, AND
OPTICAL PHYSICS IN THE UNITED STATES

Another exciting prospects for attosecond science is the impending availability
of intense attosecond pulses in the soft and hard X-ray regime from XFELs, which
would enable the initiation of electron dynamics (e.g., charge migration) from inner
valence or core electrons that are in general highly localized on specific atoms within
a molecule. In combination with pump-and-probe capabilities, such pulses would
thus allow for both spatial and temporal resolution of attosecond electron dynamics.
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Terawatt-scale attosecond X-ray
pulses from a cascaded
superradiant free-electron laser

2nd stage inserted
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P. Franz ... J. Cryan, A. Marinelli,
Nature Photonics (2024) May

Synchronized attosecond
x-ray pulse-pair generation

Z. Guo ... J. Cryan, A. Marinelli,
Nature Photonics (2024) May
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Original applications of XFELs — enhanced w/attosecond pulses

Single Particle Imaging Molecular Movies
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Minitti et al, PRL 114, 255501 (2015) — XRD
Attar et al, Science 356, 54 (2017) - XAS
Wolf et al, Nat Chem. 11, 504 (2019) - UED

Neutze... Hajdu, Nature (2000)
Chapman...Spence, Nature (2011)
Seibert... Hajdu, Nature (2011) Argonne &



Spatial resolution with CDI at FELs

Ho, Phay J., et al., Physical

Review A 94.6 (2016): 063823.

Courtesy Tais Gorkhover

Experiment
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Yumoto, Hirokatsu, et al. Nat.
Comm. 13.1 (2022): 1-8.
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Optimizing single particle imaging
SASE (fs pulses) v XLEAP (attosecond pulses)

SASE: 18 fs Ne clusters
XLEAP: 0.3 fs
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Resonant as pulses increase scattering & decrease damage
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STRUCTURAL BIOLOGY

Advances and challenges in time-resolved
macromolecular crystallography

Gisela Brandén and Richard Neutze* Diffract before destroy — SFX
+ optical pump laser

~770 SFX deposits in PDB
~200,000 total deposits

Photosystem |, Photosystem I,
Photoactive yellow protein,
human rhodopsin,
bacteriorhodopsin, light-
activated ion channels,
fluorescent proteins, myoglobin-
CO, cytochrome c oxidase-CO

Science 373, 980 (2021) Argonne &




Science 1 Dec (2023)

MOLECULAR BIOLOGY

Filming DNA repair at the atomic level

Dissection of multistep catalysis by a photoenzyme could inspire green chemistry applications

Light-induced DNA repair
Cyclobutane pyrimidine dimer (CPD) DNA photolyase repairs ultraviolet (UV) light-induced CPDs that arise between two adjacent pyrimidine bases. Four temporally distinct
chemical steps occur that involve the flavin-adenine dinucleotide (FAD) coenzyme of the photolyase and the bases to break the two bonds that form the CPD.

UV DNA damage _ Electron transfer CPD link break CPD link break Electron return DNA damage repaired

DNA phototy
By Marten H. Vos
Visualizing the DNA repair process by a photolyase Time-resolved crystallography captures light-driven
at atomic resolution DNA repair Argonne &

Maestre-Reyna et al., Science 382, eadd7795 (2023) 1 December 2023 l Christou et al., Science 382, 1015-1020 (2023) 1 December 2023[




Article

Influence of pump laser fluence on ultrafast
myoglobin structural dynamics

Nature 626, 905 (2024)
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Energetic laser pulses alter
outcomes of X-ray studies of Nature 626, 720 (2024)
proteins ’

Cutting-edge X-ray sources have enabled the structural dynamics of proteins to be
tracked during biochemical processes, but the findings have been questioned. Two
experts discuss the implications of a study that digs into this issue.

By Richard Neutze & & R. J. Dwayne Miller &

Grand challenge: structure & fcn at atomic resolution at physiological conditions




Original applications of XFELs - enhanced w/attosecond pulses

Molecular Movies

Minitti et al, PRL 114, 255501 (2015) — XRD
Attar et al, Science 356, 54 (2017) - XAS
Wolf et al, Nat Chem.11, 504 (2019) -UED
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Radiolysis: radiation effects in liquid water
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Standard method for e- beam radiolysis

Optical detection of radiolysis products

Hart & Boag JACS 1962 Picosecond pulse radiolysis: ELYSE
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All x-ray attosecond pump/probe expts

A new tool to understand radiolysis —> mechanistic origin of reactive
species

AX-ATAS: All X-ray Attosecond Transient Absorption Polzn response — sub fs
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AX-ATAS spectral snapshots freeze all nuclear motion

Shuai Li et al. Science 383, 1118 (2024) Argonne &
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Equilibrium properties from our attosecond pump-probe
experiments

resolving a debate in liquid water structure

See Physics Today, April 2024 issue, Johanna Miller
Physics, April 2024, Charles Day

Argonne &
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X-ray emission spectroscopy has been used to infer the structure
of liquid water

“High resolution X-ray emission spectroscopy of liquid

a) T ' I water: The observation of two structural motifs”
S'E)Odgc XES Tokushima ... Chem Phys Lett (2008)
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“Isotope and Temperature Effects in Liquid Water
- Probed by X-Ray Absorption and Resonant X-Ray
i i e Emission Spectroscopy”
= o ==, o G Fuchs ...Phys Rev Lett (2008)

Emission Energy [eV]
A.Nilsson et al., N Cimento (2016) Ultrafast dissociation in the core-excited state
Argonne &
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AX-ATAS compared to X-ray Emission Spectroscopy
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AX-ATAS @ 0.7 fs shows no evidence for two structural motifs in
ambient liquid water
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OPPORTUNITIES w/XFELs
Tunable, synchronized attosecond pulse pairs +

= High repetition rate —> big data —> rare events

ExaFEL: extreme-scale real-time data processing for X-ray free electron laser science
J. P. Blaschke et al., Frontiers in High Performance Computing Oct 2024

= Extreme focusing —> nonlinear phenomena
Extreme focusing of hard X-ray free-electron laser pulses enables 7 nm focus width and
10?2 W cm2 intensity
J. Yamada et al., Nature Photonics 18, 685—690 (2024)

= More accessibility: biology, chemistry, materials, condensed
matter physics, warm dense matter
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Features and futures
of X-ray free-electron lasers

Nanshun Huang,’-2 Haixiao Deng,’-** Bo Liu,'* Dong Wang,'* and Zhentang Zhao'->*

The Innovation 2(2), 100097 (2021).

SHINE
The first quasi-CW
high-repetition-rate XFEL in China
LCLS-1I
The first quasi-CW

. high-repetition-rate XFEL
Swiss-FEL
An ultra-compact hard x-ray FEL
driven by low-energy electron beam

European-XFEL
The first MHz-repetition-rate
hard X-ray FEL

PAL-XFEL

Ahard X-ray FEL with
femtosecond-scale timing jitter European

SACLA P REEL
A compact hard X-ray FEL
LCLS

The first hard X-ray FEL
in the world

SXFEL
The first soft X-ray FEL in China

FERMI
The first seeded FEL at soft X-ray region

SHINE

8 GeV, SC accel, 1 MHz
3 undulators, 0.4-25 keV
10 endstations

User expts 2027

FLASH
The first soft X-ray FEL in the world
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