

Robert Leland

Director

Climate Change Security Sandia National Laboratories

August 15-16, 2023

Workplace Safety in Hybrid Federal Laboratories: A Workshop Hosted by the National Academies of Sciences, Engineering, and Medicine

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under

contract DE-NA0003525. **SAND2023-07680C**

Engineered Safety – A Risk-Based Approach to Safety for Technical Cultures

- Old approach: Identify hazards, apply controls
- New approach:
 - Identify risks and manage that risk to prevent unacceptable consequences
 - death, serious injury, significant impact to the environment, loss of use of a facility
 - Preference for engineered solutions versus administrative controls
 - Deeper applications of systems thinking
- Workforce engagement as a critical benefit
- Emphasis on principle-based critical thinking

Principles of Engineered Safety

UNDERSTAND TECHNICAL BASIS

Understanding the technical basis is a deep knowledge of the system and interconnected elements. If we understand how it works, we can understand how it can fail.

DEFINE UNACCEPTABLE CONSEQUENCES

Defining unacceptable consequences (vs. undesirable) **provides a framework** to guide us on how much time and effort we want to expend developing various controls and barriers.

SAFE BY DESIGN INTENT

Safety is **incorporated into the design** of the system at the very beginning and as a deliberate effort, not as an afterthought.

RISK ASSESSMENT APPROACH

What can go wrong? How can it happen? What are the consequences? What defenses/barriers/controls are in place? Are the defenses adequate? What if it still goes horribly wrong?

IDENTIFY AND CONTROL ENERGY SOURCES

Identification and control of **all energy sources** is a deliberate process. Uncontrolled or unidentified energy sources can result in an accident or system failures.

POSITIVE VERIFICATION

Positive verification is **an ongoing process** to ensure that the work can be performed, is being performed safely, and can be performed as intended.

Other Key Attributes

- Performance of a formal hazard analysis at the system level
 - Analyze What-if, Failure Modes and Effects, Hazard Operability, etc.
- Recognition that the worker is:
 - o part of the system and
 - the primary cause of error
- Lifecycle analysis to ensure risks are effectively managed

Systems Approach

System definition includes **everything associated with an operation**.

People (workers) are generally the **most common** source of error within a system.

-James Reason, *Human Error*

Key Benefits

- Major Events have been significantly reduced.
 - Previously, Sandia experienced a major event (significant injury or facility damage) about every 18 months.
- Since implementation in 2014, no unacceptable consequence events have occurred.
 - Minor events are evaluated and rolled into the Hazard Analysis to update the system controls.
 - Enhanced cultural legitimacy of safety effort

- Arsine gas release at MESA
- Plutonium experiments on Z
- Atomic precision tool phosphine gas control

Engineered Safety at the Z Facility

