

United States Department of Agriculture

National Institute of Food and Agriculture

BIOENERGY, CLIMATE, AND ENVIRONMENT

AND SUSTAINABILITY

YOUTH, FAMILY, AND COMMUNITY

FOOD SAFETY AND NUTRITION

INTERNATIONAL PROGRAMS

USDA

NATIONAL INSTITUTE OF FOOD AND AGRICULTURE

Nanotechnology at the USDA

Hongda Chen, Ph.D.

National Program Leader, Bioprocess Engineering and Nanotechnology USDA National Institute of Food and Agriculture (NIFA)

Quadrennial Review of the National Nanotechnology Initiative

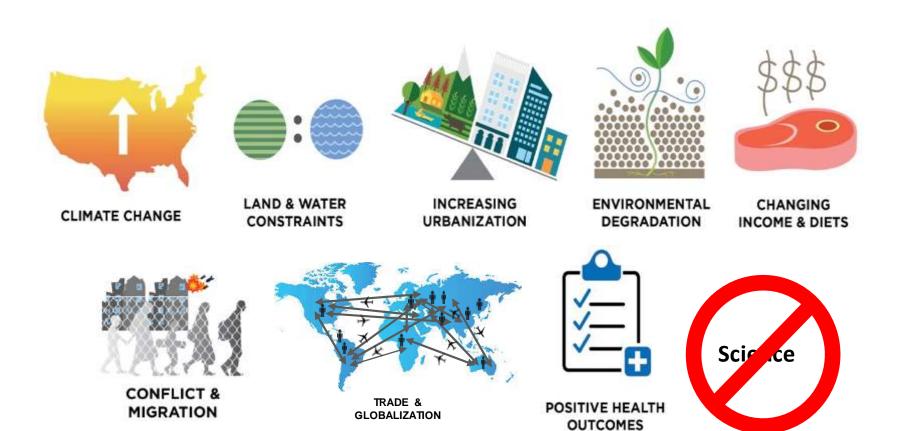
NRC, Washington, DC, USA March 14-15, 2019

Outline

- Grand Societal Challenges Facing Agriculture and Food Systems
- ➤ Nanotechnology in the U.S. Department of Agriculture
- Nanotechnology in National Institute of Food and Agriculture (NIFA)

Interstellar, The Movie

- "The world doesn't need any more engineers. We didn't run out of planes and television sets... we ran out of food."
 - Starring: Matthew McConaughey and Anne Hathaway



United States

Agriculture

Department of

"An Existential Threat"

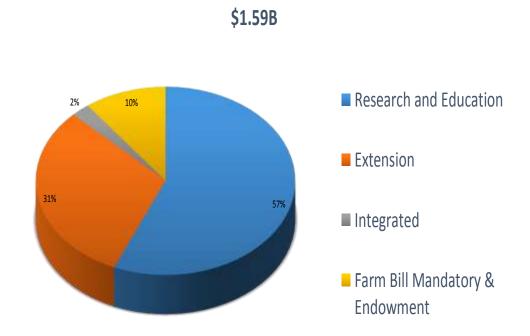
http://rsd.gsfc.nasa.gov/goes/pub/goes/050828.katrina.gif

Nanotechnology in the USDA

- National Institute of Food and Agriculture (NIFA)
- Agricultural Research Service (ARS)
- Forest Service (FS)

	2017 Actual	2018 Estimated	2019 Proposed	
USDA (total)	24.2	23.3	20.7	
NIFA	15.0	15.0	15.0	
ARS	3.0	3.0	2.0	
FS	6.2	5.3	3.7	

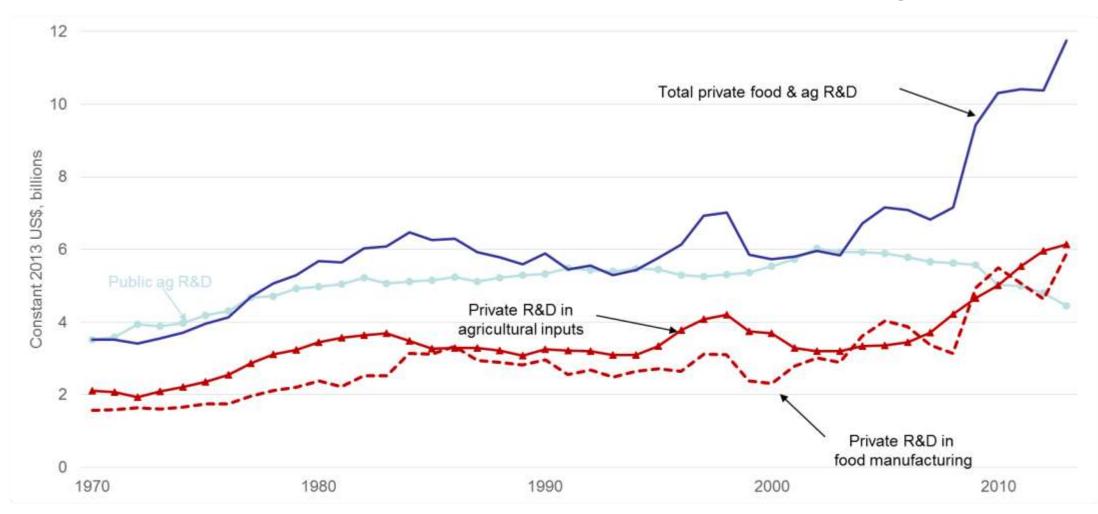
Source: The NNI Supplement to the President's 2019 Budget



National Institute of Food and Agriculture (NIFA) User Inspired Science Transforming Lives

MISSION: Invest in and advance agricultural research, education, and extension to solve societal challenges

VISION: Catalyze transformative discoveries, education, and engagement to address agricultural challenges.

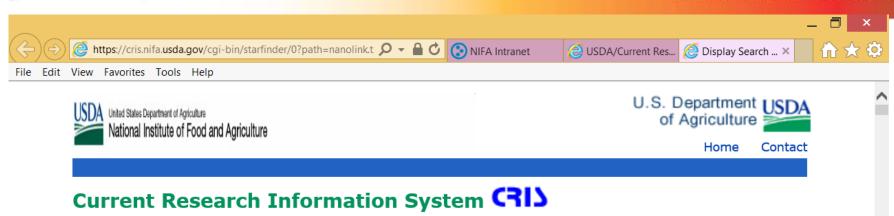


NIFA FY2018

Public and Private Investments in Ag. R&D

"We do not want science floating in the skies. We want to bring it down and hitch it to our plows."

(Anonymous Wisconsin farmer, from "One Hundred Years of Agricultural Research at Cornell University", 1987).


CSREES-National Stakeholder Strategic Planning Workshop
November 18-19, 2002
USDA, Waterfront Center
Washington, DC

Dr. Norman R Scott
Biological & Environmental Engineering
Cornell University

Dr. Hongda Chen USDA/CSREES

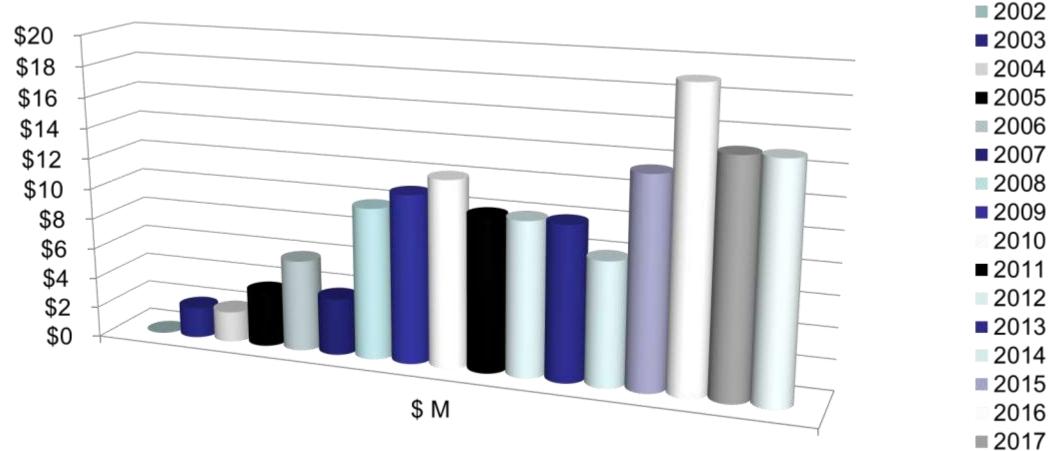
www.nseafs.cornell.edu

United States Department of Agriculture National Institute of Food and Agriculture

https://cris.nifa.usda.gov/

Nanotechnology

Retrieved 700 records


	Title	Investigator	Institution	View
F 7 P F F C P C	BUILDING ABILITIES OF STUDENTS, FACULTY AND ALABAMA A&M UNIVERSITY THROUGH WORKSHOPS IN FOOD & ANIMAL SCIENCE	Herring, J. L.	ALABAMA A&M UNIVERSITY NORMAL, ALABAMA	Brief Full
	NANOTECHNOLOGY APPLICATION IN THE FOOD ENGINEERING CURRICULUM	Kassama, L. S.	ALABAMA A&M UNIVERSITY NORMAL, ALABAMA	Brief Full
	MODELING CONTROLLED RELEASE AND DIFFUSION OF LYCOPENE LOADED NANOPARTICLES (LLNP) IN THE GASTROINTESTINAL (GI) TRACT AND THEIR IMPACT ON FOOD	LIU L S	ALABAMA A&M UNIVERSITY NORMAL, ALABAMA	Brief Full
	MODELING IN VITRO CONTROL RELEASE AND DIFFUSION OF LOADED NANOPARTICLES (LND) IN THE GLITPACT	Kassama, LA, S.	ALABAMA A&M UNIVERSITY	Brief Full

As of 3/14/2019

2018

NIFA Investments in Nanotechnology R&D and Education started from zero and has grown significantly

Source: The NNI – Supplements to the President's Budget including FY2018

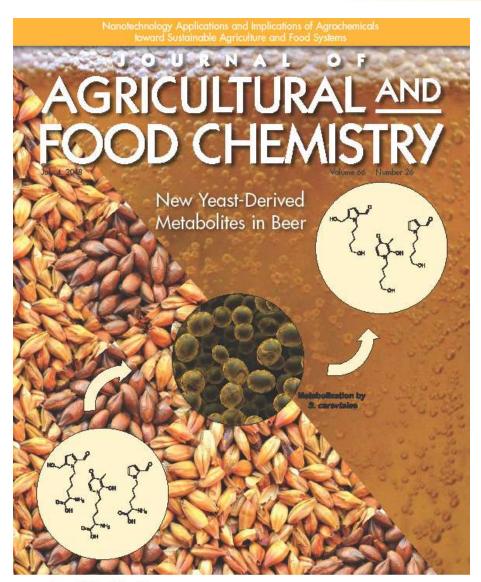
National Challenge Areas

- FOOD and NUTRITION SECURITY
- CLIMATE VARIABILITY AND CHANGE
- WATER for AGRICULTURAL and FOOD SYSTEM
- NUTRITION and HEALTHY (CHILDHOOD OBESITY PREVENTION, AGEING)
- FOOD SAFETY
- SUSTAINABLE BIOECONOMY and BIOENERGY

- NIFA STRATEGIC PLAN, FY2014 - FY2018

Grand Societal Challenges in the 21st Century: Continuation of life on the <u>PLANET</u> for a world more sustainable, safe, healthy and joyful

- Sustainability resolving diminishing natural resources against increasing demands of the growing world population
- Vulnerability food safety, biosecurity, and others
- Human Health food and nutrition related developmental and degenerative illness
- Joy of living food and culture, improved working condition, advanced education and learning, better environment, etc.



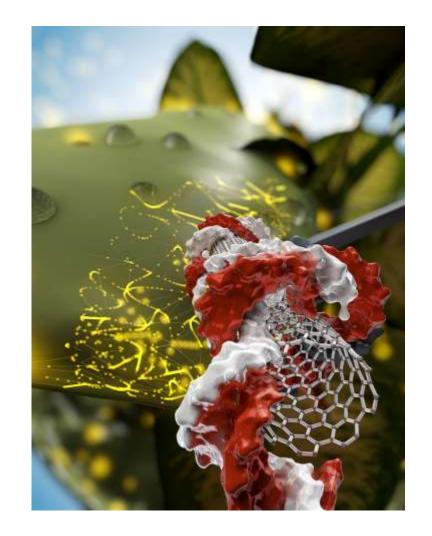
The NNI PCAs

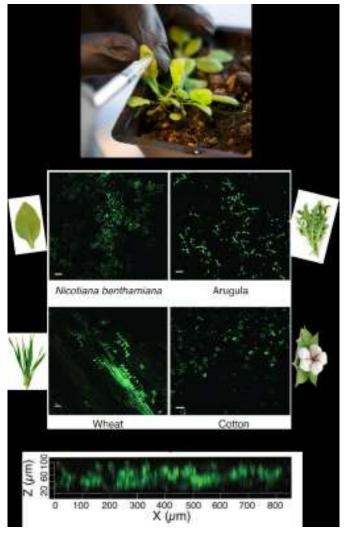
- PCA 1 NSIs/GC
 - Sensors
 - Water
- PCA 2 Foundational Research (including ELSI)
- PCA 3 Applications/Devices/Systems
- PCA 4 Infrastructure/Instrumentation
- PCA 5 EHS

- Nanoscale delivery of agrochemicals
- · Benefits of engineered nanomaterials in crop production
- Sensors and detection for precision agriculture
- Environment, health and safety (EHS) Implications of nanoparticles
- Economic, legal and social implications (ELSI) of nanotechnology
- Communication, education and public perception

Nanotechnology Applications and Implications of Agrochemicals toward Sustainable Agriculture and Food Systems special issue, vol. 66, issue #26, 2018. Nano-cellulose Crystals to Prevent Frost

Damage in Tree Fruits



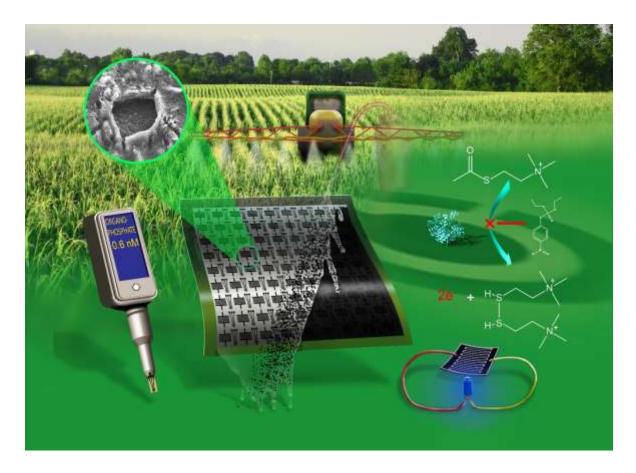

Healthy cherries not affected by frost damage.

Frost-damaged cherry buds, left, and healthy cherry buds.

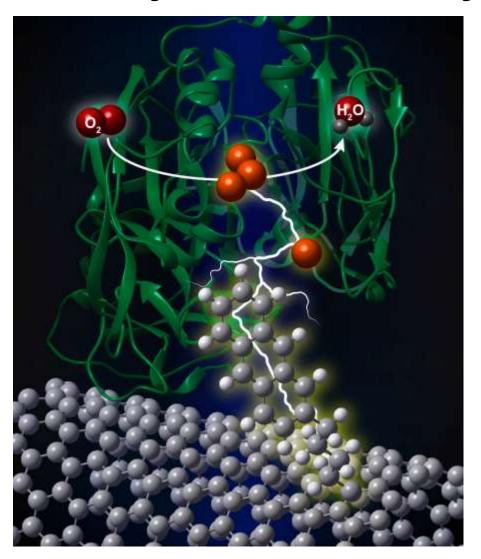
High Aspect Ratio Nanomaterials Enable Biomolecule Delivery and Transgene Expression or Silencing in

Mature Plants

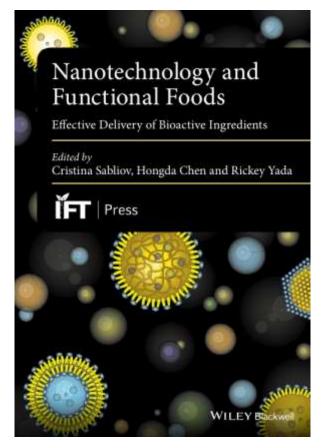
DNA-based Polymers and Functional Structures for Novel Applications



- Nano-bio barcode
- Novel tool for traceability
- Sensors for detecting pathogens and contaminants
- Delivery of vaccines and drugs
- Cell free high output productions of molecules


Luo, Cornell University

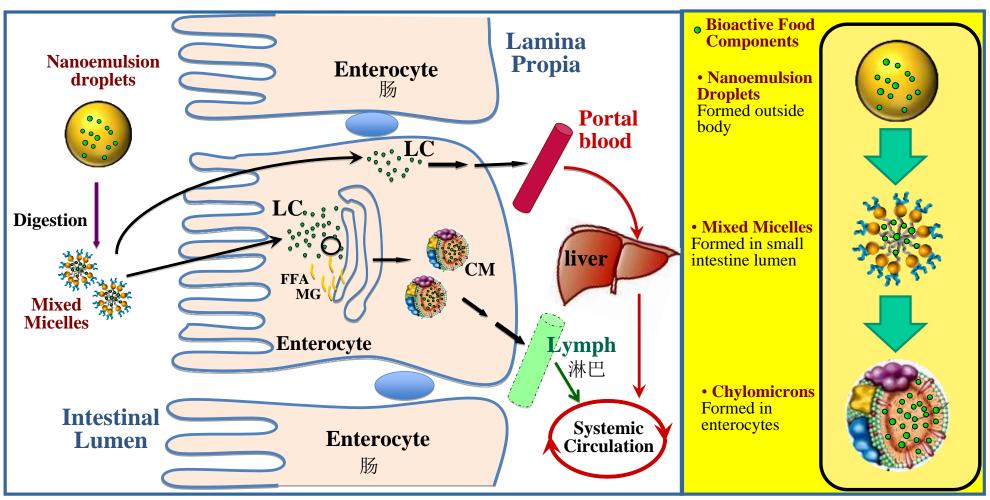
IB In Depth—Special Issue on <u>Nanobiotechnology</u>, Part 1, Dec. 2012, Guest Editors: Norman Scott and Hongda Chen


Enhanced electrochemical biosensor and supercapacitor with 3D porous architectured graphene via salt impregnated inkjet maskless lithography

Next Generation Water Quality Sensors (Self-Powered and Portable Sensors for Detection of Toxicants)

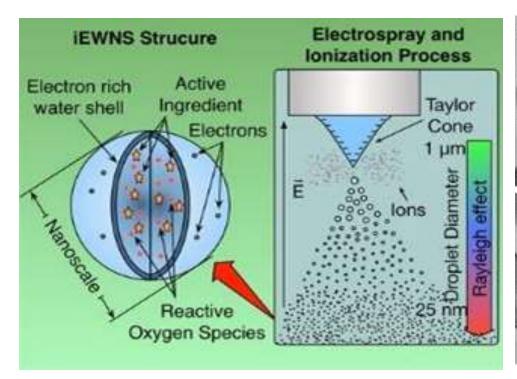
Engineered Nanomaterials and Nanoscale Structures in Foods

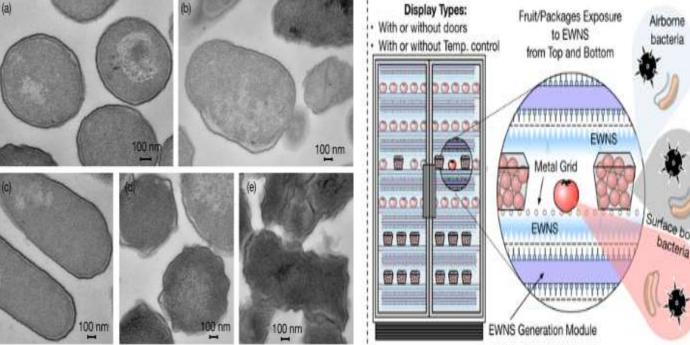
C. Sabliov, H. Chen, and R. Yada


- Emulsions
- Liposomes
- Polymeric nanoparticles
- Solid lipid nanoparticles
- Coacervates
- Bi-continuous structure
- Carbohydrate-lipid-protein complexes
- Nano cellulosic materials

•

...


The 2016 World Food Prize, found by Dr. Norman Borlaug, 1970 Nobel Peace Prize winner, honored four scientists for their outstanding pioneer <u>biofortification</u> (breeding micronutrient-dense staple crops).


Absorption of lipophilic food components (<u>LC</u>) encapsulated in <u>nanoemulsions</u>

Engineered Water Nanostructures for Food Safety Intervention

... Making water nanostructures out of "thin air".....

Food Control 96 (2019) 365-374

Contents lists available at Sciencethron

Food Control

Image credit: Philip Demokritou and team, Harvard T.H. Chan School of Public Health Research supported by USDA/NIFA and NIH

A nano-carrier platform for the targeted delivery of nature-inspired antimicrobials using Engineered Water Nanostructures for food safety applications

THE REAL PROPERTY.

Nachiket Vaze^{n,1}, Georgios Pyrgiotakis^{n,1}, Lucas Menaⁿ, Robert Baumannⁿ, Alexander Demokritouⁿ, Maria Ericsson^r, Yipei Zhangⁿ, Dhimiter Belloⁿ, Mary Eleftheriadou^{n,b,c}, Philip Demokritou^{n,c}

Antimicrobial efficacy of new films containing halamine groups

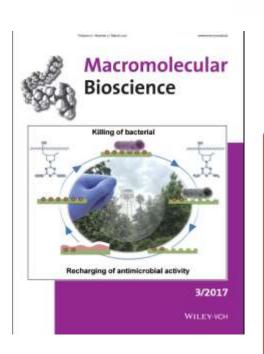
5. Chlorine Bleach Rinse

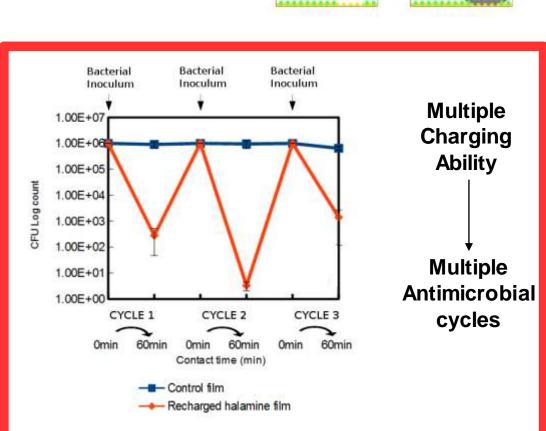
Recharges Surface

4. Chlorine is

Consumed

Surface Treated with Halamine technology


2. Bacteria Come Into

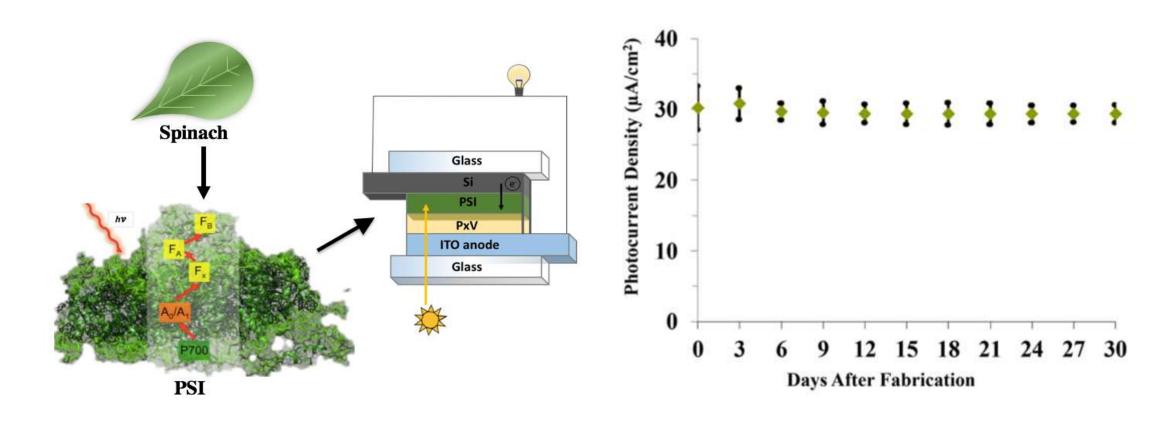

Contact with Surface

3. Bacteria

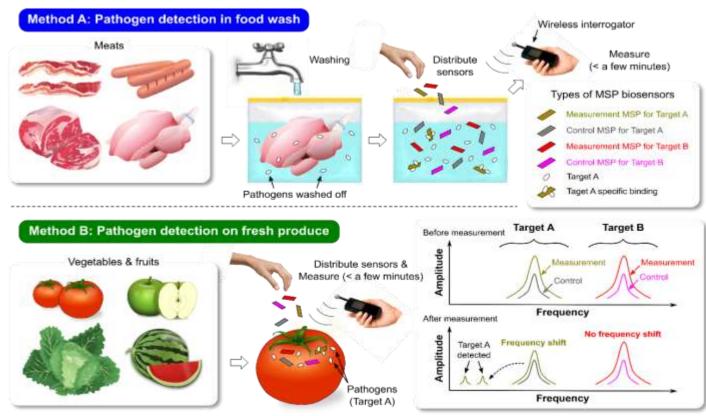
are Killed

(Legi-section)

N-CI + H₂O - N-H + CI+ + OH


Kill bacteria

Bleach


Bacterial Reduction by contact (E. coli O157:H7) 1:00E+0 COD 0 1:00E+04 1.00E+03 1.00E+0 1.00E+0 45 1,00E+07 1.00E+0 1.00E+05 1.00E+04 **COD500** 1.00E+03 - Control film 1.00E+0 30 45 1.00E+07 1.00E+0 1.00E+08 1.00E+04 1.00E+03 COD 1.00E+03 2000 1.00E+00 Contact time (min): Up to **3 to 5 Log** reduction of 1x10⁶ CFU spotted on 1x1 cm2 after 30-60 min contact with Halamine film

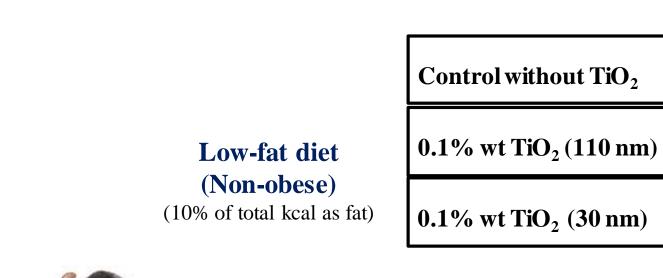
Nitin and Sun, University of California, Davis

Polyviologens as Electron-Transport Material in Photosystem I-Based Photovoltaic Cells

Development of a multiplex biosensor system for real time detection of foodborne pathogens

Proposed real-time detection of foodborne pathogens with multiplex MEP biosensors. In this figure, a multiplex detection system is used to detect the presence of multiple pathogens in food wash (Method A) or directly on food (Method B) and food preparation surfaces.

- Addresses the need for real time detection of common foodborne pathogens to minimize outbreaks
- ➤ Based on magnetoelastic particles complexed with molecular probes (phage-displayed oligopeptides) to detect resonant frequency change upon ligand (pathogen) binding
- Easy to use, cost-effective, and can be expanded to include more pathogens
- Versatile and can be used for indirect or direct measurements on-site (farms, processing plants, stores, etc.)


Nanotechnology Enabled Biosensor Systems

- Detection of abiotic and biological analytes in food and its environment
 - Recognition surface molecule: antibody, synthetic peptides, aptamers
- Transduction of signals
 - optical, photonic, electromechanical, electromagnetic, electrochemical, electronic, others
- Current status of biosensors (lessons from last 15 years)
 - Very highly sensitive biosensors and many transduction mechanisms have been reported in research literature- single biomolecule to single pathogen.
 - Almost none of the new biosensors have made it to the commercial space, especially sensors with nanoscale features (Reproducibility issues)
 - http://www.nature.com/nnano/journal/v9/n12/full/nnano.2014.287.html
 - Monitoring of biological entity is a challenge (bio-interfaces degrade)
 - New robust recognition chemistry is needed (aptamers have been disappointing)

Nanoparticle in Food is a broad topic

- Broad scope of applications of nanoscale science, engineering and technology to enhance food safety, quality, sensory attributes, and improve human health – Ex:
 - Sensing and detection
 - Processing technologies
 - Contact surface modifications
 - Food packaging
 - Nanoscale materials in food products
 - Naturally existed
 - Intentional vs unintentional addition/creation nanoscale materials in food

"Is Nano Safe to Eat or Not?" is not a right Question.

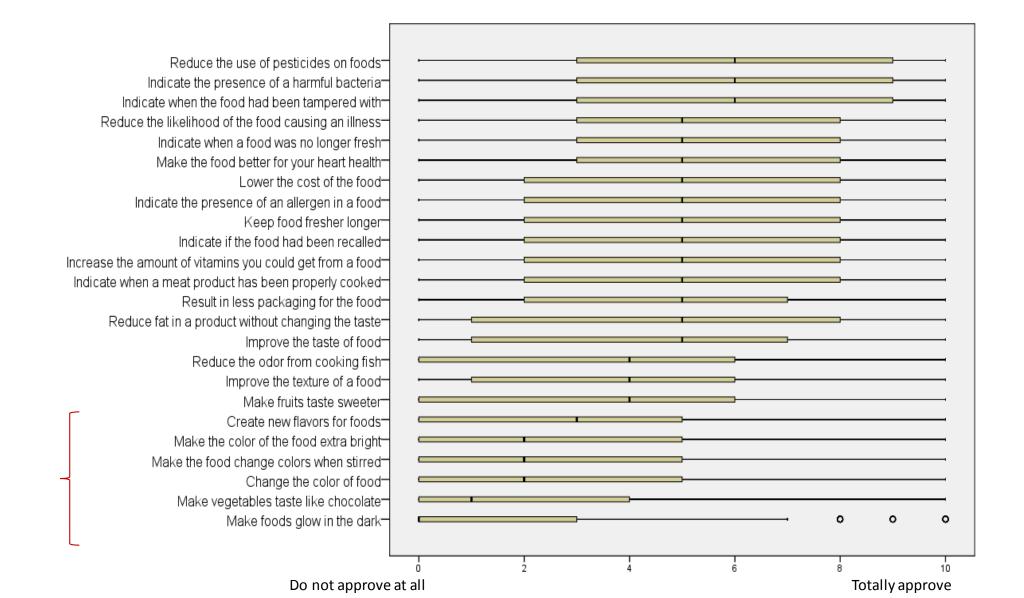
6-week old C57BL/6 mice

8 weeks

High-fat diet (Obese)

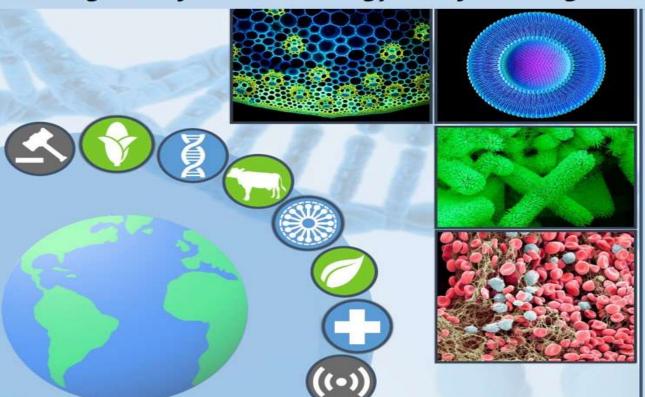
(60% of total kcal as fat)

Control without TiO₂


0.1% wt TiO_2 (110 nm)

0.1% wt TiO₂ (30 nm)

Understanding Public Acceptance of Nanotechnology In Food and Agriculture


- Fulfilling the promise of nanotechnology depends as much upon consumers' perceptions of nanotech products as it does on the ability to create them.
- The current controversies over GMOs demonstrates that failing to consider the perceptions of consumers is a poor strategy
- People's starting conception of nanotechnology may make it more difficult for them to extend their mental model of the technology to applications in food and agriculture
- Approval may depend on what benefits are achieved using nanotechnology

Approval based on Benefits

Nanoscale Science and Engineering for Agriculture and Food Systems

Convergence of nanotechnology with food & agriculture

Discussion Topics

- Convergence of nanotechnology with food & agriculture
- 2. Advances in Nanomaterials
- 3. Environmental Nanotechnology
- Nano-enabled approaches to improving human and animal health
- Translation of nano-based science for application in food & agriculture
- 6. Internet of Food & Ag Nano-things: Big Data, Machine Learning, AI, Modelling
- 7. Emerging Investigators Session
- 8. Nanotechnology's impact on food safety
- 9. Nanotechnology's role in agriculture

Gordon Research Conference Frontiers of Science

Gordon Research Seminars

Graduate Research

Chair: Antje Baeumner, University of Regensburg Co-Chair: Julie Goddard, Cornell University Vice Chair: Carmen Gomez, Iowa State University Co-Vice Chair: Melanie Kah, University of Vienna, Austria GRS Chair: Ying Wang, UC Santa Barbara GRS co-Vice Chair: Daniel White, UC Riverside

Summary

- USDA pursuits in advancing nanoscale science and technology has greatly benefited from and contributed to the NNI and its goals.
- Nanoscale Science and Nanotechnology for agriculture and food applications has been steadily progressing to make impact for addressing societal challenges of sustainability, vulnerability, human health and joy of living.
- Nanotechnology will be a part of system approach of convergence of sciences for the future agricultural and food systems, and the economic prosperity and national security.

Thank you!

Hongda Chen

hchen@nifa.usda.gov

202-401-6497