Nanotechnology in the US: Leading in an Increasingly Competitive World

Chad A. Mirkin

Departments of Chemistry, Materials Science & Engineering, Chemical & Biological Engineering, Biomedical Engineering and Medicine International Institute for Nanotechnology

Northwestern University

September 18, 2019

Northwestern International institute for Nanotechnology

Northwestern University Center for Nanofabrication and Molecular Self-Assembly Northwestern University
Simpson Querrey Biomedical
Research Center

Argonne National Laboratory Center for Nanoscale Materials

The first and the largest nanotechnology institute in the country

Uniting >\$1 billion in Nanotechnology Research, Education, and Infrastructure

>36 Reand >2

>36 Research centers and >20 shared/core facilities

Global
Partnerships
across six
continents

Northwestern INTERNATIONAL INSTITUTE FOR NANOTECHNOLOGY

Faculty
>240 affiliated
faculty members
across 32
departments

>80 companies
worldwide, including
Baxter, GE, and
Schlumberger

Students & Postdocs >3,000, including NSF and NDSEG Fellows, and Fulbright, Rhodes, and Marshall Scholars Translating Nanotechnology Innovations to the Marketplace

>2,000 commercial products

>\$1 billion venture capital invested to-date

Nanosphere, Inc. (2000, Mirkin)

Integrated Microdevices (2001, Liu)

Ohmx Corporation (2003, Meade)

Nanodisc (2003, Sligar)

Acumen Pharmaceuticals, Inc. (2004, Klein)

Nanotope (2005, Stupp)

Polyera (2005, Marks)

SilenTech (2006, Sontheimer)

PreDx (2006, Meade)

NanoIntegris (2007, Hersam)

American Bio-Optics (2007, Backman)

SAMDITech (2007, Mrksich)

NanoSonix (2008, Dravid)

AuraSense (2009, Mirkin)

Citrics BioMedical (2009, Ameer)

iNfinitesimal (2010, Espinosa)

Exicure (XCUR, 2012, Mirkin)

PanaceaNano (2012, Stoddart)

NUMat Technologies (2013, Farha)

TERA-print (2015, Mirkin)

Azul 3D (2016, Mirkin)

Zylem Biosciences, Inc. (2018, Thaxton)

Vybyl Biopharma (2018, Gianneschi)

Outline

- What is the current state of nanoscience and nanotechnology resulting from the NNI as authorized in 2003?
- How does the US compare to other nations with respect to nanotechnology research and development?
- Should the NNI continue and what should the NNI be doing?
- What are critical research areas where the US should be the world leader to best achieve the goals of the NNI?

The NNI has Established World-Leading Academic Infrastructure

Academic research facilities

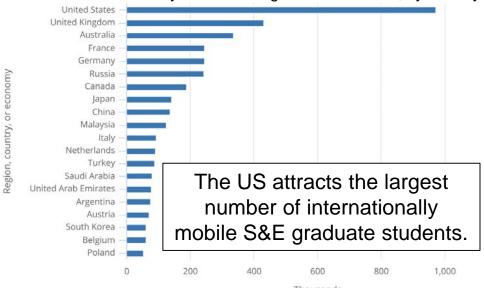
- NSF Nanoscale Science and Engineering Centers
- NSF Nanosystems Engineering Research Centers
- NCI: Centers of Cancer Nano. Excellence, Innovative Research in Cancer Nanotech., Cancer Nanotech. Training Centers
- EPA Centers for the Environmental Implications of Nanotechnology
- NSF's National Nanotechnology Coordinated Infrastructure
- Network for Computational Nanotechnology

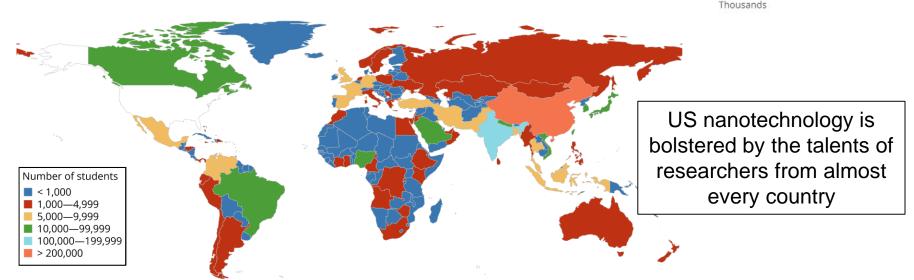
Global reach of nanoHUB from the Network for Computational Nanotechnology (nanohub.org)

Graphic from National Nanotechnology Coordinated Infrastructure (nnci.net)

The NNI has Established World-Leading Federal Infrastructure

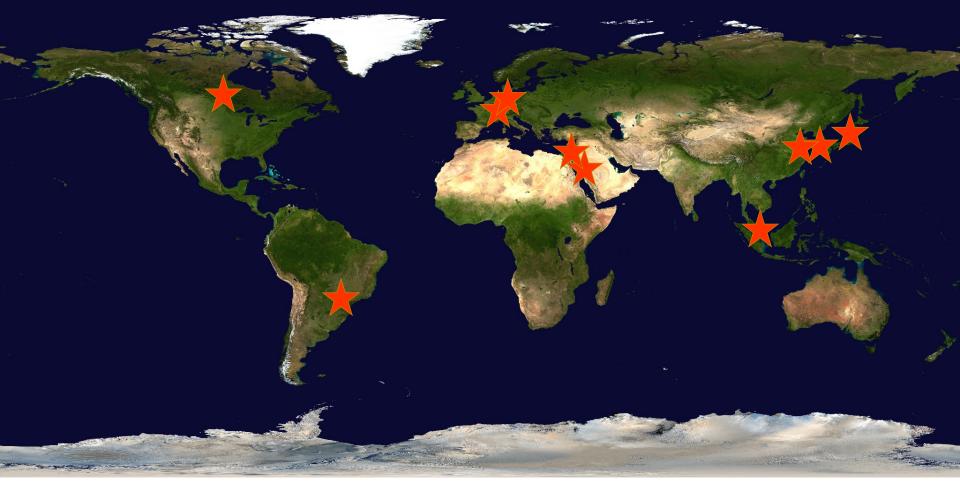
Federal research facilities


- NCI's Nanotechnology Characterization Laboratory (Frederick, MD)
- NIST's Center for Nanoscale Science and Technology (Gaithersburg, MD)
- DoD Naval Research Lab.'s Institute for Nanoscience (Washington, DC)
- Five DoE Nanoscale Science Research Centers (NSRCs)



NNI-Supported Infrastructure Attracts World-Class Talent

Nanotechnology in the US leads by recruiting the best researchers from around the globe



Outline

- What is the current state of nanoscience and nanotechnology resulting from the NNI as authorized in 2003?
- How does the US compare to other nations with respect to nanotechnology research and development?
- Should the NNI continue and what should the NNI be doing?
- What are critical research areas where the US should be the world leader to best achieve the goals of the NNI?

Where is the US Global Nanotechnology Competition?

China Singapore Saudi Arabia Canada Israel
Japan South Korea Switzerland Germany Brazil

China is Developing Numerous Nanotechnology Centers

National Center for Nanoscience and Technology (NCNST) has co-founded 19 collaborative laboratories with Tsinghua University, Peking University, and Chinese Academy of Sciences (CAS).

CAS, Suzhou Institute of Nano-Tech and Nano-Bionics

 CAS, Beijing Institute of Nanoenergy and Nanosystems

 Shanghai Jiao Tong University, National Engineering Research Center for Nanotechnology

 Hunan University, Institute of Chemical Biology and Nanomedicine (ICBN)

Singapore and South Korea Continue to Develop their Research Programs in Nanotechnology

Institute of Bioengineering and Nanotechnology (IBN), the world's first bioengineering and nanotechnology research institute

Nanyang Technological University (NTU)-wide network of research centers with shared facilities for nanofabrication, nanocharacterization and nanotechnology applications, called *NanoCluster*

Korea Advanced Institute for Science and Technology (KAIST)
Graduate School of Nanoscience and Technology acts independently to house experts pursuing nanoscience technology.

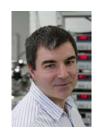
Korea Advanced Nano Fab Center (affiliated with KAIST) establishes country-wide support for nanodevices

US is Losing Top Talent and Research Output

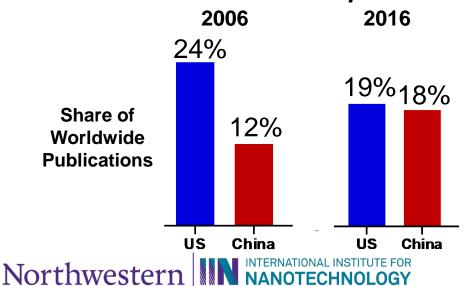
Top talent is moving overseas due to improving foreign infrastructure

Dr. Weihong
Tan
Professor,
Hunan University

Dr. Michael SheetzProfessor, National
University of Singapore


Dr. Steve Granick
Founding Director,
Center for Soft and
Living Matter, Korean
Institute for Basic
Science

Dr. Dean HoProfessor, National
University of Singapore



Dr. Xiaoliang Sunney Xie Professor, Peking University

Professor Sir Konstantin Novoselov Professor, National University of Singapore

The consequences of losing top talent...

US is ranked 5th in scientific nanotechnology article output per million population (behind Switzerland, Republic of Korea, Germany, and France)

Outline

- What is the current state of nanoscience and nanotechnology resulting from the NNI as authorized in 2003?
- How does the US compare to other nations with respect to nanotechnology research and development?
- Should the NNI continue and what should the NNI be doing?
- What are critical research areas where the US should be the world leader to best achieve the goals of the NNI?

The NNI Must Continue and Grow to Further Accelerate Progress in Nanotechnology in the US

Compare drug discovery...

1960s Cholesterol synthesis enzyme (HGMR) identified

1970s Lovastatin discovered as an inhibitor of HGMR

1996 Atorvastatin receives FDA approval for medical use

...to the NNI's investment in nanotechnology

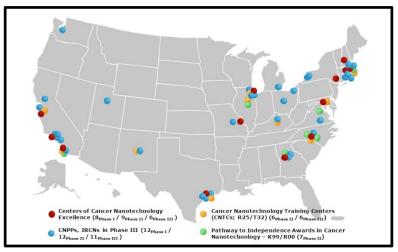
\$23 billion investment >60 world-class facilities thousands of researchers only 16 years

The inter-agency **collaborative** approach of the NNI is uniquely placed to rapidly build nanotechnology expertise in the US

Priorities for the NNI over the Next Four Years

Continue to develop fundamental knowledge towards new discoveries

Support engineering of discoveries into new technologies and their translation to market


Recruit and retain top talent from across the globe and invest in their success in the US

The Best Infrastructure Attracts The Best Talent

The NNI cannot be complacent; infrastructure needs to have continuing support (centers, facilities) to retain the best researchers

Northwestern University Center for Nanofabrication and Molecular Self-Assembly

NIH-Sponsored Centers for Cancer Nanotechnology Excellence (CCNEs)

Argonne National Laboratory
Center for Nanoscale Materials

Losing Talent is Not a Winning Proposition

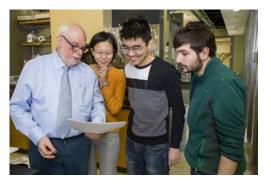
In Terms of Approach, NNI Support Must be Directed Both to Centers and Individuals

Centers

- Focal point for some research fields
- Foster interactions between disciplines
- Enhanced researcher mobility to access facilities
- Stronger federal-academic-industrial collaborations

Individuals

- Commitment to top talent
- Longer-term funding to enable highreward explorative research
- Larger individual grants to allow institutions and individual research groups to reach a critical mass for innovation


The NNI Must Make Science Relevant and Interesting to the Public

Enhance the visibility of science by engaging and educating the general public

Encourage translation of new knowledge into products on the market to improve lives

Foster a welcoming environment for all, including foreign scientists

Outline

- What is the current state of nanoscience and nanotechnology resulting from the NNI as authorized in 2003?
- How does the US compare to other nations with respect to nanotechnology research and development?
- Should the NNI continue and what should the NNI be doing?
- What are critical research areas where the US should be the world leader to best achieve the goals of the NNI?

Critical Research Areas

Medicine

Materials &

Devices

Clean Environment Solutions

Catalysis

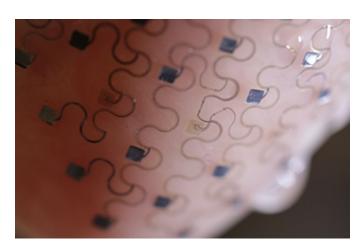
Energy Solutions

Security & Defense

To achieve the goals of the NNI, the US must be a world leader in these areas

Future Research Priorities: Medicine

Nanomedicine has the greatest chance to make the largest impact, not only to treat disease, but to cure it.


Engineered immunity

Targeted drug delivery

Gene regulation

Injectable and wearable electronics

Future Research Priorities: Energy and Environment

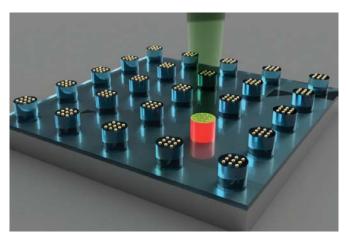
Reduced dependence on fossil fuels

Food manufacture and processing

Clean water

Chemical catalysis

Future Research Priorities: Defense


Nanoalloy materials

Impact-resistant armor

Lasers, photonics, and optics

High-throughput discovery

Conclusion: The US Needs the NNI to Remain Competitive

We must retain talent and pursue science at the highest levels to remain the world leader in nanoscience and nanotechnology

- Investment in centers, individuals, and partnerships
- Support for science at all levels, from K–12 to multi-PI centers
- Engagement with the general public to bolster trust in science
- Translation of knowledge to bring products to market