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Integrated Computational Materials
Engineering (ICME) Is The Future
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ICME is an approach to the design of products and the materials which comprise them by linking experimentally
validated materials models at multiple length scales. 5



2040 Ecosystem Revolutionizes Design Paradigm n.i?;g,;

The cyber-physical-social ecosystem that marries “the design of materials” (material scientist
viewpoint) with “the design with materials” (structural analyst viewpoint) approaches into
one concurrent transformational digital paradigm.

Today’ s Design Paradigm 2040 Design Paradigm

Design Of Materials And Systems Is Design Of Materials And Systems Is
Disconnected Integrated
Stages Of The Product Development Stages Of The Product Development
Lifecycle Are Segmented Lifecycle Are Seamlessly Joined

Tools, Ontologies, And Methodologies Are  Tools, Ontologies, And Methodologies Are

Domain-specific Usable Across The Community
Materials Properties Are Based On Materials Properties Are Virtually
Empiricism Determined
Product Certification Relies Heavily On Product Certification Relies Heavily On

Physical Testing. Simulation



y Vision 2040: A Roadmap for Integrated, Multiscale
’ Modeling and Simulation of Materials and Systems

Provides a public/private investment strategy for the design of fit-for-purpose materials and structures

2040

cyber-physical-social ecosystem

Information
system
o ?

Collaboration

2017

NASA CR 2018-219771
https://ntrs.nasa.gov

| Infrastructure
Thermal | Custom

Analysis

@ Material &
Structural Process

Analysis Modeling
Nine Identified Key Element Discipline Areas
. 1. Models and Methodologies . 6. Data, Informatics, & Visualization
2. Multiscale Measurement & 7. Workflows & Collaboration
Characterization Tools and Methods Frameworks
B 3. Optimization & ) .
Optimization Methodologies 8. Education & Training
4. Decision Making and UQ 9. Computational Infrastructure
I 5. Verification & Validation

2040 Vision State:
A cyber-physical-social ecosystem that impacts the supply chain to accelerate model-based
concurrent design, development, and deployment of materials and systems throughout the
N product lifecycle for affordable, producible aerospace applications )
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Key Element

End State Characteristics Wit
Most Connections to Gaps and

Models and Methodologies
All models and methods, at all length scales, whether phenomenological, physics-based, data-driven, deterministic,
or probabilistic. Also concerned with methods and protocols to characterize and validate models.

Methods, practices, and measurement devices for observing, defining, and characterizing material and structural
response and underlying causational mechanisms as associated with deformation, damage, and failure.

Optimization and Optimization Methodologies

Computational/numerical approaches and mathematical formalizations for optimizing or improving the performance
of products, materials, structures, manufacturing processes, and design workflows for given applications.

The investigation, characterization, and management of uncertain or variable inputs to quantify prediction
confidence, enhance the design process, enable optimal decision making for new material and component design,
facilitate materials and component certification, and enable a response to regulatory requirements.

Verification and Validation
Methods/practices associated with verification of algorithms and validation of models.

Data, Informatics, and Visualization
All aspects associated with the electronic capture, analysis, archival, maintenance, dissemination, and visualization
of material and system data and metadata, whether experimental or simulation, at all length scales.

Workflows and Collaboration Frameworks
Technologies associated with workflows and collaboration functions, both physical (e.g., human, organizational) and
computational.

Education and Training
All aspects of curriculum development, education, and training opportunities for preparing the current, emerging, and
future workforce in the capabilities and skills needed to realize and utilize the Vision 2040 end state.

Computational Infrastructure
All computer hardware, firmware, software, networks, platforms, and HPC architectures required to support the 2040
vision.

Recommended Actions
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Identified Critical Gaps & Possible Subset
of Actions Required To Close Each Gap

Time Frame End State

Element Critical Gap Priority Action Characteristics

2018 2020 2025 2030 2035 2040

Multiscale V&V methods (5.6)
. ) . Integration of uncertainty across scales (1.13)
-I Underdevelopment of physics-based models that link length and time  ICME-based fast process models (1.21)
scales for relevant material systems Multiscale models for rare-events/nucleation (1.22)
Information framework for 3D/4D model dev. (2.11)
Models for key uncertainty sources (1.23)
. ) o Real-time measurement methods (2.14)
Inability to conduct real time characterization and measurement of Real-time visualization for experiment modeling (6.15)
structure and response at appropriate length and time scales Lifecycle data: automated ingestion and storage (6.23)
Protocols: link characterization, test data, models (2.10)
New optimization formulation methods (3.13)
3 Education modules: data analytics tools/methods (8.2)

Lack of reliable optimization methods that bridge across scale Optimization methods with uncertainty incorporated (3.11)
Coupled multiphysics and optimization methods (3.5)
Surrogate models for large scale optimization (4.15)
Benchmark characterization methods (2.3)

ot ; Optimization methods with uncertainty incorporated (3.1)
Existing models and software codes are not designed to compute UQ: sensivty analysis methods (4.19)

input sensitivities and propagate uncertainties to enable UQ Holistic test methods (2.16)

Models for key uncertainty sources (1.23)
Best practices: data collection (5.7)

T " . : : : Multiscale V&V standards and definitions (5.1)
5 Lack of guidelines and practitioner aids for multiscale/multiphysics Student resources; industry VAV data (8.9)

(e.g., ICME) V&V V&V training (5.2)

Holistic test methods (2.16)
Workflow data modeling: automation, recognition, tagging (7.1)

6 No Wldely accepted Community standards or schema for materials Training: informatics framework interpretation & integration (6.21)

. . I Best practices: data federation (6.1)
information Storage and communication methods Best practices: defining multidisciplinary ontologies (6.3)

Lack of open, community/industry standards defining inputs/outputs, gzg‘fSf;c‘t’l’;gg"ﬁuﬁfzg’;m&“rﬂ%’;ém .
7 needed functionality, data quality, model maturity levels, etc. for P : '

@

@
0

Q

I

0
&

L L Data quality and model maturity standards (7.21)
smooth operation in the envisioned ecosystem Access-controlled adaptive file formats (6.2)
Education/Training: decision/UQ approaches (4.7)

: s : « Al New computational certifications programs/tracks (8.14)
Education/training does not bridge the gap between “essential” or Workforce transifon raining for students (85)

—
—
p—
—_—
“fundamental” knowledge and industrially relevant skills V&V training (5.2) _._._._._
p—
——

@ X

Student access to equipment/facilities (8.6)
Modernize existing codes (9.6)

Lack of support, or adequate business models, for code development  Best practices: multi-domain workdlows (7.16)
d maintenance, particularly for software used in engineerin Web platform for code benchmarking (5.3)
an Y y 9 g Open-source/alternative code writing tools (8.3)

applications Early-stage collaborative code development (9.4) ———
Initiative: support key modeling software tools (9.8) S —




Ten Crosscutting Streams Identified To Help Organize Gaps
And Recommended Actions Across Key Elements

These streams aim to show similarities among the challenges facing the various disciplines
within the multiscale modeling and simulation community and the actions needed to overcome

them:
1. Data Management

Data Analytics and Visualization

Information Sharing and Reusability
Multidisciplinary Collaboration
Institutional Paradigms

Benchmarking and Business Case
Scalability and Computational Efficiency

Linkage and Integration

0 0O NSO &~ WN

Input / Output Confidence and Reliability

10. Behavior of Materials and Structures



Key Element

KE6
Data,
Informatics
and
Visualization

[KE9]
Computational
Infrastructure

Gaps Associated with
Data Analytics and Visualization Stream

Lack of community-accepted practices or standards for mining and
quantifying complex materials information and datasets between experiments
and models

Many materials information frameworks are not sufficiently developed for
compatibility with state-of-the-art data analysis and management technology

Human involvement in thresholding and segmentation limits the suitability of
2D/3D/4D images for analysis

Limited ability to capture and represent time dependent data (4D)

Limited ability to represent translucency among multiple layers of data

Deep Learning and Machine Learning (ML) techniques are not implemented
across MS&E disciplines, and across length scales

Workforce not sufficiently trained in data science, machine learning,
programming, and analysis

* Not yet accepted as vital aspect of materials and structures engineering
disciplines

University curricula—especially for non-computer science disciplines—are
not sufficiently imparting undergraduates with the skills needed to transition
to industry

+ Data analysis; Code development; Version control; Quality assurance

« Familiarity with commercial modeling and simulation software packages

Lack of methods capable of using artificial intelligence/machine learning to improve
scalability

Accessible Adaptive

Interoperable

Robust

Traceable

User-
Friendly




Major Recommendations: Vision 2040 €2

RECOMMENDATION #1

Federal agencies and industry both should fund sustained R&D programs to address
the critical gaps and actions identified in this report.

RECOMMENDATION #2:

NASA and other relevant federal agencies should form an interagency coordinating
body to not only affect alignment of federal investments but also coordinate those
federal investments with industry investments to ensure government, industry, and
academia work in concert to achieve the 2040 vision.

RECOMMENDATION #3: NASA should engage with government, industry, and
academic stakeholders to develop an agreed-upon interoperability framework for
the envisioned ecosystem, with emphasis on data-exchange mechanisms

Software Forum/Panel Session @ SciTech 19; San Diego, CA, Jan 2019

RECOMMENDATION #4: NASA should partner with other government agencies and
professional societies to identify and pursue benchmark materials, systems, and
applications to focus early efforts on addressing critical gaps and actions identified in

this report. Intension is to solicit help from AIAA to help coordinate

RECOMMENDATION #5: NASA and other government agencies (e.g., NIST) should
lead a coordinated effort to produce, maintain, and disseminate “gold-standard”
datasets with which the community can develop, characterize, verify, validate, and
certify datasets, models, tools, and other aspects of the 2040 ecosystem.




v7) Major Recommendations: Vision 2040 @)

RECOMMENDATION #56:
NASA should lead demonstration projects that document and publicize the broad

benefits (e.g., cost savings) of model-based concurrent design, development, and
deployment of materials and systems
RECOMMENDATION #7: NASA and other relevant federal agencies (i.e., NSF, DOE,

DoD, and others) should increase fundamental research efforts to develop,
characterize, and validate improved physics-based and data-driven materials

models.

RECOMMENDATION #8 NASA should work with industry, academia, and
professional societies to update education and training programs™* to reflect the skills
needed to achieve the 2040 vision and develop a highly skilled future materials

science and system engineering workforce  *collaboration Institutes of Education and Training (CIETs)

RECOMMENDATION #9 NASA, with support from academia and professional
societies, should stimulate widespread cultural change by encouraging researchers
to meaningfully share and work collaboratively on the data and models needed to

increase progress toward the 2040 vision.

RECOMMENDATION #10 NASA and other federal agencies should support the
growth of small businesses working in ICME to strengthen U.S. manufacturing

competitiveness and establish U.S. leadership in this emerging field.
11



. Mitigation of high-temperature environmental damage, oxidation, and hot
corrosion of high-temperature turbine engine components

. Development and optimization of polymeric matrix composites for aerospace
applications

. Design and lifing of aerospace components with 20 percent weight reduction
using location-specific design methodologies, including tailoring of component
properties using chemistry or microstructural modifications

. Optimization of structures and materials for mitigation of thermomechanical
fatigue

. Design and development of unique materials such as shape memory alloys
and high-entropy alloys in aero structures and components

. Automated re-adaptation and updating of computer software suites to
infrastructure changes (moving away from manual recoding of software to take
advantage of new computer architectures such as GPUs or CPU+GPU)

. Development and optimization of ceramic matrix composites for aeronautic
applications

8. Application of microstructure definition tools and methods to enable model-
based material and probabilistic component definitions

9. Electrification of aircraft propulsion

(F7)Multidisciplinary Engineering Challenges (MECs)@

12



Revolutionary Tools & Methods (RTM) Swim
Lanes Tightly Aligned with 2040 MECs

Combine “design of the materials” (material scientist viewpoint) and “design with the materials”

(structural analyst viewpoint) approaches into a concurrent transformational paradigm
Design “Of” The Material

Design “With” The Material

Physics-based Data driven-based

Scale Atomistic Micro/Meso Scale Part  A¥sembly System

PMC & oz -
EBC/CMC . ey
Composite ) \l |
Multidisciplinary Modeling Enabling .Rapld
Engineering (MEC1) Materials Daesignand
Discover S
Grand . y Certification of
Challenges Metallic Integrating Advanced
Identified in : Data Driven and .
e Material . Manufacturing-
Vision 2040 Design Physi¢s- Based B =
[
(MEC 5) Medthods
NASA’S and Structiras
immediate areas —
of emphasis Electric :
aircraft - — . | - S "f —
(MEC9) First Principles %{a
Material Designer Macro Material Designer

-

Strategy aligned with Vision 2040 and supporting ARMD bpriorities

13



\RTM - Materials and Structures Technologies
Will Address These Vision 2040 Gaps

+» Underdevelopment of physics-based models that link length and time scales for relevant material systems

* Underdevelopment of models that simulate materials response against harsh environments or operating conditions (i.e., insufficient
data to support these models)

* Establish model building block approach for multiscale modeling methods and tools

* Underdevelopment of atomistic models that simulate thermal behavior, chemical reactions, and electron transfer across time scales

1 and phases with respect to specific operating conditions.

* Lack of comprehensive material property database (e.g., physical, thermal, temperature, and strain-rate-dependent metallurgical
properties)

* Models that simulate systems behavior are commonly based on simplified linear approximations, and do not continuously adapt to
unforeseen by-products which can lead to inaccurate results

+» Inability to conduct real time characterization and measurement of structure and response at appropriate length and time
y) scales
* Lack of routine practices for accurately characterizing mixed mode failure behavior (e.g., delamination, crack growth) in
advanced complex material systems

3 +» Lack of reliable optimization methods that bridge across scale

4 * Lack of systematic data fusion methods for combining and weighting multiple sources of information into single states of
knowledge to inform decision making

6 ¢ No widely accepted community standards or schema for materials information storage and communication methods

7 * Inability to automate the linking and execution of disparate models and computational methods with data from federated
databases

9 +¢ Lack of support, or adequate business models, for code development and maintenance, particularly for software used in

engineering applications

< Indicate Vision 2040 identified critical gaps within a Key Element Area

14



Building and Validating a Vision 2040 Ecosystem
RTM M&S Contribution Areas

Development/Research Areas
* Models & Mechanisms (KE1)
* EBC/CMC Models (TGO, Recession, CMAS)
* First Principle Models (Coatings, , Electrolytes) QG
* Micromechanics (Power Cable Materials)
* ML surrogate models (MAC/GMC)

* Computational Framework (KE3 & KE9)

* NASMAT Multiscale Modeling

* Collaboration GE - SPFEA

* Nanohub/MAC-GMC

* Desire collaboration Sandia (SAW)
* Material Designer

* SMA Alloys

* LPTS (Local Phase Transformation (KE # 1)

Strengthening) Alloys
* Electrolytes

* Optimization

* Connection with openMDAO Levels of
S
framework o =aale

15



MACRO-SCALE

i  MEso-scALE ‘ ‘ 20 4 e Test Data — Fill
MICRO-SCALE 4///? | O Test Data — Warp
ATOMISTIC-SCALE Constituents ’ '8 A Test Data — Out-of-Plane
o S e § e ; 5 161 - MSGMC — In-plane
D L = & 1y MSGMC — Out-of-Plane
Fiber Interface | | = |
B 2 L8
E ' Repeating Unit Cell -
I 2
infclﬁr‘\ce)?isgrf:t‘:tyuem In&::;iw 5 8 -
properties (O]
- LY oL L] ] > y |
Significance for Vision 2040 A
2 |
A A
0 ; ; . . :
MODELS &_ METHODOLOGI.ES _ 0 100 200 300 400 500
Methodologies based on Multiscale Generalized Method of Cells TEMPERATURE (-C)
(MSGMC) will enable linkages with lower length-scale models.
CHARACTERIZATION
Quantitative structure definitions tied to models and test protocols 207
will enable hierarchical characterization of complex g 1.8 1 ’ o o
failure mechanisms. S 16 o—cre———S82 o
> 14 -=*"9 ® o °®
OPTIMIZATION S L e
Improved predictive capabilities and analytical tools will help § |>0 b"q » A %
H ] . . V1O = - S=SVA-==g
determine strength margins and optimum layup strategies % 08| ﬁA(,——'" - &
for complex material architectures, such as composites. ; 06 A Test Data — Out-of-Plane
s MSGMC Simulation
DATA, INFORMATICS, VISUALIZATION T ooy e~ MSGMC Simulation, reduced, fiber K
E ool ® Test Data — Fill

Statistical descriptors and data structures will improve

data quality and help automate the extraction of data from 0
processing, characterization, and testing equipment.

S.M. Arnold, et al., Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties, NASA (Ohio: NASA, 2016).

O Test Data — Warp
100 200 300 400 500
TEMPERATURE (°C)
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NASMAT: NASA’s State-of-the-Art Multiscale Analysis Tool

NASMAT FEA Predictions
* NASMAT: NASA’s New State-of-the-Art Multiscale e

Analysis Tool — NASMAT is a new thread safe state-of-
the-art multiscale analysis software capable of executing
industrial-scale multiscale structural analyses. It is based on
the legacy multiscale analysis codes MAC/GMC and FEAMAC,
first developed 20+ years ago, which do not effectively support
parallel computing or modular functionality. Consequently,
NASMAT has been designed for HPC platforms with enhanced
upgradability, maintainability, interoperability, and distribution.
NASMAT version 1.0 was recently released. The modularity of

NASMAT was tested and verified by implementing a new )
micromechanics technique— the Parametric High-Fidelity 35
Generalized Method of Cells (PHFGMC) — that allows for more =j:
general subcell geometries. 2 20  p53281.78 (heat-treated)
g 15 ~==-Model: no cooldown
’ 10 = P5-3281-T5 (non-heat-treated)
« NASA's FEAMAC software was heavily utilized and validated 5 7 Modelwith cooldoun
by GE during an AFRL four year contract wherein they ° 01 02 03 04
successfully predicted CMC smooth bar, open hole tension strain %

100 bins of 8000 elements each

and single edge notch specimen behavior. Details were
revealed during AFRLFA8650-11-C-5227 Final Review, Feb
2019.

-
/ @ Int pt /elem

Single Edge-Notched Bend Simulations 17

o 2 4 6 8
10*
distribution | h“\
0 5 10
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Steps in Design of Materials

Discovery

Design Rule

K)Understanding SOA Materials

a) High fidelity property predictions
b) Physics based mechanisms discovered
c) Property screening descriptor derived

2) Design of New Materials
a) Database generation (exp. and/or comp.) |

of SOA Materials

b) High throughput screening

c) Rapid property predictions (reduced order/
ML model)

d) Optimization

3) Multiscale coupling to composites, structures,
evices, chemical kinetics models, etc.

Screening >

tiscale/Multiphysics

Target Materials

1) Coatings

3) Electrolytes

2) Alloys (SMA, LPTS)

High throughput calculations

Chemical ol
motif design datal

1. Redox potential

2. 5olubility

3, Stability

Results
analysis 3P
'I

Synthesis,

aaaaaaaaa

4. More focused
computational study

High Throughput Database

Screening for New
Materials

descriptors

screening and validation

1) High fidelity models of SOA materials yield physics based mechanisms and screening
2) Descriptors and rapid property predictions enable detailed high throughput

3) Designed materials coupled to larger structure, device, etc. with multiscale model

Multiphysics Coupling of
Designed Materials

18



Material Designer Applications

Advanced coatings reduce emissions, noise and engine weight

N
\‘\\

? g ”‘l . :‘/ ”’h = “Q \'\\\‘— WO ’ ) p

High fidelity EBC Degradation . . .

Thermochemistry Mechanisms Advanced EBC Design High EfflClency
Engines
Morphing SMA structures reduce noise and improve energy efficient
COQ ; 2000 Temperat:i;

U g 1500
E < o Low

Atomic Composition SMA Design Tool Tunable Actuation Morphing Aircraft Structure

Ultra-high energy batteries enable long range, low noise, low emission electric aircraft

Batteries

Large Scale Simulations

High Throughput Screening

-

Novel Device Architectures

Long Range Electric Aircraft

19



OBJECTIVE
First principles thermodynamics prediction of SMA transition temperature
for arbitrary ternary high temperature SMA (HTSMA)

APPROACH

Ab initio molecular dynamics simulations used to compute thermodynamic
phases of HTSMA. Transition temperatures and other thermodynamic
information (specific heats, thermal expansion, etc) obtained as spin-offs

SIGNIFICANCE

+ Traditional HTSMA development has been empirical

+ Phenomenological models, e.g. CALPHAD, require large, expensive
databases to fit models and can give wrong answers.

 First principles methods give high fidelity, parameter-free, predictions
with no databases and no fitting.

+ Computational tool can be extended beyond thermodynamics to
include other properties (actuation work output, cycle life, etc).

* HTSMA design rules obtained from fundamental insights

* Reduced order models derived for rapid properties predictions.

RESULTS

* Anharmonic energies E,, are crucial for SMA predictions but currently
require months of supercomputer simulations

* Recently developed linear parameterizations of E,;, (top figure) hint at
possible reduced order models that may enable rapid predictions and avoid
costly, lengthy supercomputer simulations.

* Model has two parameters (E,n o and E,y 1). The first is material dependent
and also /inear (bottom plot) while the second is universal (0.025)

FUTURE WORK
» Couple simple parametrizations to machine learning algorithms
+ Extend computational tool to include SMA cycle life, work output, etc.

POC: John Lawson (ARC)

Simple Parameterizations Hint at Reduced
Order Models for SMA Predictions

(b) 7
i —

PdTi

o

NiZr

1
[o1]
o

[~ AE, =AE_ +AE_ T ]
h h, h, .
al ah,0 ah,1 PETi

-90 . ! : -\- |

0 500 1000 1500
Temperature (K)

AE_, (meV/atom)

AE,, , =0.025

Simple linear parameterizations of difficult to compute
anharmonic energies hints at possible reduced order
models which may enable rapid SMA predictions.

(meV/atom)

EZz
Eahl'.l
b
=]
T

-mgz - -50 0
E; - E; (meV/atom)
Constant term in linear model can be fit to crystal

energy differences. Remarkably this relationship is
linear as well for NiTi, NiZr, NiHf, PdTi and PtTi.
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Discovery of a Novel Strengthening Mechanism
for High Temperature Superalloys

OBJECTIVE
Evaluate the effect of recently observed atomic-scale stacking fault phase APB Energy
transformations have on creep strength in Ni-base Superalloys. 05
APPROACH S o4 Ni-site Al-site - o
.. . . L 03
+  Through state-of-the-art characterization and modeling techniques 2 s -
two different Ni-base superalloys with minor changes in refractory S o1 -
content were explored. £ o
»  Density functional theory (DFT) models provided groundbreaking >-o01 & F&| 1o 2Cr Mo 2Mo AW 2W
insights into new atomic scale high temperature deformation g 02 - |
mechanisms active for these alloys. b
* Scanning transmission electron microscopy (STEM) confirmed the

_ _ Segregation Type
analysis performed using DFT. ] ,

Figure 1: The change in APB energy when Cr, Mo, and W
SIGNIFICANCE segregate to the Al-site or Cr along a Ni-site. The number

It was discovered that higher amounts of Tungsten facilitated a solid-state phase  associated with each bar represents he number of solute atoms
transformation along intrinsic stacking faults within the strengthening y’ (Cr, Mo, oriW) included in the calculation
precipitates. Density functional theory models demonstrated that this phase
transformation would inhibit further shearing of the precipitate improving the
overall creep properties of the alloy. This is one of the first studies to explore the
effect stacking fault segregation has on the creep properties for this class of alloys
and this finding may have strong implications in how future high temperature
alloys are characterized and designed.

ACCOMPLISHMENTS

fjé'
: - ] (d)
» Creep tests on two microstructurally similar superalloys were performed. z
* Post-test microstructural and deformation analysis was performed using high a s g
resolution scanning and transmission electron microscopy. - - :
. . . « . . . . C '
* Ajournal article entitled, “Effect of Stacking Fault Segregation and Local Phase |Si il 0 Distance (vm) 2
Transformations on Creep Strength in Ni-base Superalloys” was recently
published in Acta Materialia. Figure 2.: (a) Experimgntal and (b) simulgted HAADF image
. o of a intrinsic fault in LSHR. (c) Experimental and (d)
* Future work will explore new superalloy chemistries that may leverage the new  imyjated averaged intensity of the atomic columns moving
strengthening mechanism recently discovered. down the fault as highlighted the boxes in (a) and (b).

POC: Tim Smith, Brian Good, Tim Gabb, Laura Evans, Steve Arnold (GRC) 21



Building and Validating a Vision 2040 Ecosystem
RTM M&S Contribution Areas

Development/Research Areas
Experimentation (KE2)
Exploration
* EBC/CMC steam cycling (no mechanical)
- Coating chemistry screening (TGO)
* High Temp Reaction Calorimetry
* Open SLM additive manufacturing

Characterization
* EBC/CMC Testing 2700 in Steam
*Creep
* Fatigue
* SPLCF
* Mini EBC/CMC Testing in Steam
* Creep/Fatigue
* Argonne/APS — DXR & HEDM
* Plasma FIB In-situ testing

Validation Testing
* QARE2 evels of Scal
* CE-5 Rig Testing

22



Virtual Testing Can Enable Significant
Cost Savings in Certification Process

Experimental .M.odel
Building Block Building Block
Approach Approach
FULL SCALE TESTING PRl SCALE TESTING

v 7 2
£
FULL PANEL TESTING A FULL PANEL TESTING %
\armen= g
leveld / : leveld | £ o
. \ S
°,

- (I]IPO]IE!IT D INTERMEDIATE SINULATIONS %,
- il i
‘ ——

COUPON SINULATIONS
— ’ 7] =

NOLECULAR SIMULATIONS NICROMECHANICS SINULATIONS

=

A robust validated computational platform
is essential for sustainable, cost-effective

SaVingS! ) ammmmd technology development program

» reduced testing and time to certify!

INTERMEDIATE TESTS

Material data

— §
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Building and Validating a Vision 2040 Ecosystem
RTM M&S Contribution Areas

Development/Research Areas
Data, ML, Visualization (KE2)
Data Management
* Granta MI (ICME schema)
* CMC
* EBC
* CMAS
Machine Learning
Optimal Experimental Design
* Deep Learning NN (Neural Network)
* MAC/GMC - Laminate (Tensile &
Fatigue)
* Atomistic (Anharmonic Energy)
* Polymers for Rapid Manufacturing
* Physically-Informed NN EAM
Potentials
* Estimation Theory
* Stochastic Optimization
Visualization
* Multiscale

S

24



Information Management Enabling
Multiscale Modeling Within ICME Paradigm

PROCESS MATERIAL
TESTING TESTING
v

IMPORTER DATA

Y
INTERFACE ® «
1 W Z MODEL OUTPUT
Microstructure (VIRTUAL DATA) ICME infrastructure

TEST VIRTUAL

DATA DATA

for housing both

A B Z COMPUTATIONAL TOOLS l
DATA ANALYSIS & w = Optimizer/ .
TRANSFORMATION c D,IA)TABASE @ Nr\//}gé/gr\RA%S Elémg}nt Integrator mOdellng and
Analysis - - -
PEDIGREE ALLONABLES,£TC A ) testing information
Processing M\crostructur% :g%zELO%ULZl;LAL
DATA)
EXPORTER DATA A B W
INTERFACE >
DATA VISUALIZATION & MATERIAL SELECTION & .« - . . .
INFORMATICS TOOLS INTERFACE TO CAE TOOLS Arnold, et al.; “Combining Material and Model Pedigree is
Foundational to Making ICME a Reality”, IMMI, 4:4, 2015.

Significance for Vision 2040

DATA, INFORMATICS, & VISUALIZATION
Coupling data management libraries and visualization software suites will drive the ecosystem for generating

fundamental 3D/4D datasets, thereby enabling the validation of crucial physics-based models .
CHARACTERIZATION
Robust model-structure-response definitions will provide the foundation for reliable methods of managing error and

uncertainty
WORKFLOW & COLLABORATION FRAMEWORKS
Database and optimization software suites will enhance workflow functionalities and facilitate cross-organizational

sharing of data, tools, and models.

COMPUTATIONAL INFRASTRUCTURE
Machine learning and analytical tools will help design software suites take advantage of novel HPC paradigm and

various hardware configurations.
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Established Data Scheme for ICME that Enables Linkage of
Test Data with Simulation Data at Different Length Scales

To accomplish this introduced Model Tables in addition to Microstructure and Software Tools Table

( ~ Applications N

Material
i Reference Data ;

L [ MIHRBAGE,
: L MLHOBGAY | LSoftware ToolsJ >
Microstructure j| M G —— |

i Universe : i

Processing ‘ —-_—— e e R
B ( )ouslp/edEm / Virtual D3
abariel Pedigres : [/ Composite Models Process Models

,
d m | (" Deformation Models Damage/Life Models
Composite System/
Laminate

Reversible CDM
| J
| Coatings _
Ply / Layer | — g ”1\
Archiwcture j  L{ Reinroments )

Irreversible

--------- I
rTest Information ‘, Test Data

! [
1

1

I ! ( Tensile ][ LCF )[ FCG ]

[ t—

1 | :

: : | ( Creep j[Relaxa:icn)[ + others ]

1 ! '

Arnold, S.M., Holland, F. and Bednarcyk, B.A.; (2014). Robust Informatics Infrastructure Required For ICME: Combining Virtual and
Experimental Data, 55th AIAA/ASME/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference, National Harbor,
Maryland, 13 - 17 January 2014, AIAA-2014-0460

Arnold, S. M., et. al (2015). ; “Microstructural Influence on Deformation and Fatigue Life of Composites Using the Generalized Method of
Cells”, 56th AIAA/ASME/ASCE/AHS/SC Structure AIAA SciTech 2015, ICME Special Session, Kissimmee, FL, 2015; AIAA 2015-0202

Arnold, S.M., Holland, F.A., Bednarcyk, B.A., and Pineda, E.J.;(2015) “Combining Material and Model Pedigree is Foundational to
Making ICME a Reality”, Integrating Materials and Manufacturing Innovation, IMMI, 4:4 DOI 10.1186/s40192-015-0031-2.
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Constituent
Response

N

Micromechanics Provides the Link Between

Structural
Model

Composite
Micromechanics
Repeating Unit Cell

Structures and Materials

Fiber Interface Matrix |

Fully coupled (Synergistic) |

f

Continuum Deformation
and damage models

Atomistic Informed g

GRC'’s Multiscale Analysis Approach Links
the Behavior of a Multi-phased
Material/Structure to the Behavior of its
Constituents

Granta MI Software Coupled with GRC'’s
MAC/GMC to Enable ICME of Composites

Coupling between testing and simulation data is key to realizing ICME

Importer
Data Interface

TN

Test | Virtual
data | data

Data Analysis & |

Component
Design

Co;f;putational tools: |

I Microstructure |/| Properties |

- Finite
Transformation Database Process NASA GRC'’s Element
X Models MAC/GMC Analysis
Material properties, \
pedigree, etc.
|
I Processing | kM\crostructure | I Properties I
Exporter | \ | J
N Data Interface \/ -

Model Output
(virtual data)

Model input
(real or virtual data)

* Linkage to Granta Ml software done in collaboration with Granta

Design Ltd.

Linkage Established through Workflow and Python Scripts

Workflow enables full traceability
1. Material/Model pedigree

- ( Python A 2. Script version
S MI Material [<——— lyt 3. Simulation version
© mport . .
- . 4. Results (simulation data)
] Script )
] < ] PUT
=
£8 |
§ s ( Python warLas ) Computational Framework
©
2% Export Script | @ oo
S g | Script MAC HPC Server
S ‘é :l: Analysis MAC/GMC
£ S [ MAc/GMC / Code Executable
% Input File | R

Workflow captures GRC’s MAC/GMC simulation data, with full model pedigree,

within Granta Ml

Simulation results, including nonlinear curves, are captured and stored in
Granta M database, along with all relevant metadata

[ © integration Test Root
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Delete | Copy.
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Curve Data
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Stress vs Strain Response
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Composite Material Discovery Using ML

PROBLEM
Develop a general workflow for creating interpretable, high-fidelity surrogate models trained on virtual composite data
coupled with optimal experimental design framework to obtain insight into lower length scale information.

Phase I: Training the Surrogate Phase llI: Interpretation

PL / uTs

‘g.

Information-Theoretic,
multiscale connections between
constituent properties and
macro stress/strain response

Surrogate Model 1
LAstificial Neural Network ) Optimal Experimental Design

ﬁ (via Approximate Coordinate Exchange)
g H — 7A7 =—>| argmin(|[n — 7l2) — U(n*) = argmax I1(Q; 4 | )
Yy neH
H C R®

ACCOMPLISHMENTS o e me“"°‘
« Established a framework that incorporates artificial neural network W oss ™Y g™ poae®"

(ANN) model and optimal experimental design algorithm to enable

extraction of information relative to multiscale material behavior [45\-45]¢¢

(constituent, macroscale) given 5 point-wise properties E, PLS and
UTS (for both stress and strain).

Frequency

« Surrogate (ANN) model represents PB micromechanics model [0] [75\-75]1,
(MAC/GMC) within 2% accuracy. Enables millions of calculations 1
in seconds. Ran 19 laminates, 10,000 cases for training

« |nitial results appear promising. Provided “most informative” !; Ilh
laminates to test. -l

POC. Matthew Piekenbrock and Steve Arnold L s




Future 2040 Funding Opportunities

 NASA Research Announcement (NRA) due to be released

Aug/Sept 2019 — see
https://nspires.nasaprs.com/external/solicitations/solicitations

do

* SBIR/STTR -see https://shir.nasa.gov/prg sched anncmnte

 Anticipating a new $10Mil funding wedge to begin in FY21 (Oct
2020) targeted toward revolutionary materials development

NASA CR 2018-219771
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180002010.pdf
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https://nspires.nasaprs.com/external/solicitations/solicitations.do
https://sbir.nasa.gov/prg_sched_anncmnte

Thanks for Your Attention

Questions

‘)
<

Contact: Steven.M.Arnold@nasa.gov
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Actions Associated with
Data Analytics and Visualization Stream

<+ Mid Lon
Key Element Recommended Action J-: Term Ten1g1 Funding
Develop calibration tools that incorporate V&V and UQ methods to
[KE1] tomatically fit model t X X S
Models automatically fit model parameters
and
Deploy machine learning (ML) approaches to enable development of X X
Wethodologies models that predict materials behavior s
Develop and integrate analytical tools (e.g., machine learning and
[K'EZ] autonomous systems technology) or software packages to support large- X X $55%
Multiscale scale characterization datasets; Examine industry practices across
Measurement bioinformatics community
and
Characterization Formalize methods to recognize and use unexpected data (e.g., . = "
Tools and anomalies) relative to proposed mechanistic models
Methods
Explore statistical methods that use process-structure data to represent 55
extreme-value responses of materials in predictive models
Establish decision-making strategies and/or toolsets for highly complex
environments that draw upon principles from diverse fields/specialties X 555
including risk analysis, decision support, and reasoning under uncertainty
Devise novel UQ methods that uses low-fidelity physics based surrogate X X 55
[KE4] models to balance computational efficiency with convergence accuracy
Decision Making
and Uncertainty Devise novel methods for interpreting large uncertainties that are
Quantification | intrinsically generated by computationally inexpensive surrogate-based X $5%
models
Investigate creative approaches (e.g., machine learning) for interpreting,
visualizing, and summarizing quantified uncertainties and decision making X 555

processes

31



Actions Associated with
Data Analytics and Visualization Stream

Key Element Recommended Action




Actions Associated with
Data Analytics and Visualization Stream

Key Element Recommended Action

[KES]
Computational
Infrastructure

Develop approaches to use technology such as machine learning, Al, and
cognitive computing to improve and implement algorithms on new hardware
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