Al-Based Knowledge Systems for Supporting Materials-Manufacturing Innovations

Surya R. Kalidindi

Funding: DoD, NIST

AI-Based Materials Knowledge Systems (MKS)

System

- Specifically designed to <u>support</u> accelerated discovery, development, and deployment of new/improved materials in advanced technologies
- Main Functions: Diagnose, Predict, Recommend
- Expressed as a library of Process-Structure-Property (PSP) linkages covering all materials classes and all relevant material structure length scales (and relevant time scales)
- Formulated on a rigorous Bayesian statistical framework that accounts for the uncertainty of the curated knowledge
- Continuously ingests a variety of information from disparate sources and dynamically evolves
- Highly efficient both in front-end (user-facing) and in the back-end (knowledge update) computations

PSP Linkages Over a Hierarchy of Material Structure Scales

Process

- Thermo-mechanical (T(t),
 L(t), σ(t), ċ(t), ...)
- Placement of Specific Defects (e.g., grain/phase boundaries, g, Δg, n)
- Placement of chemical species $(c_i, V, p, x_n, ...)$

Structure

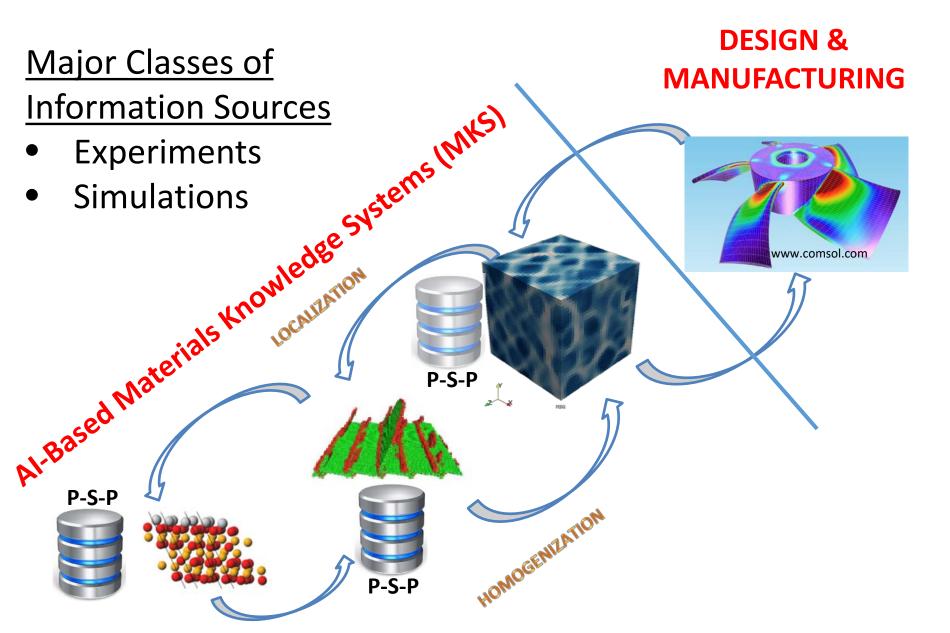
- Microstructure
- Dislocation/defect structure
- Interface atomic structure
- Atomic structure with defects, disorder, etc.
- Electron density field

Property

- Young's Modulus
- Yield Strength
- Fatigue Strength
- Conductivity
- Permeability
- Critical Resolved
 Shear Strength
- Grain Boundary Energy
- Vacancy Formation Energy
- Process and Property variables have rigorous mathematical definitions
- Critical Need: A framework for high-value low-dimensional representations of the material structure (minimal information loss with maximum recoverability) that is broadly applicable to various material classes at different length scales.

AI-Based Materials Knowledge Systems

(knowledge integration as opposed to tool integration)



Stochastic Framework for MKS

- Property: $P \in \mathcal{R}$; $p(P) = \mathcal{N}(P|\bar{P}, \sigma_p^2)$
- Material (Hierarchical) Structure: $\mu \in \mathcal{M}$; $p(\mu) = \mathcal{N}(\mu | \overline{\mu}, \Sigma_{\mu})$
- Process: $\mathcal{P} \in \mathcal{R}^n$; $p(\mathcal{P}) = \mathcal{N}(\mathcal{P} | \overline{\mathcal{P}}, \Sigma_{\mathcal{P}})$
- Governing Physics: expressed as field (differential) equations and material constitutive laws or equivalently as Green's functions

$$\varphi \in \Phi; p(\varphi) = \mathcal{N}(\varphi | \overline{\varphi}, \Sigma_{\varphi})$$

- Physics-Based Simulations: $p(P|\mu, \phi, \Sigma_{\mu}, \Sigma_{\phi})$ and $p(\mu|\mathcal{P}, \phi, \Sigma_{\mathcal{P}}, \Sigma_{\phi})$ machine learning has opened new avenues for sampling these distributions within practical computational budgets
- Physical Experiments (typically small datasets): $p(P|\mu, \Sigma_{\mu}, \varphi^*)$ and $p(\mu|\mathcal{P}, \Sigma_{\mathcal{P}}, \varphi^*)$; φ^* = undetermined governing physics

Bayesian Update of Governing Physics

(a formal framework for uncovering new physics)

$$p(\boldsymbol{\varphi}|\boldsymbol{E},\boldsymbol{\Sigma}_{\boldsymbol{E}}) \propto p(\boldsymbol{E}|\boldsymbol{\varphi},\boldsymbol{\Sigma}_{\boldsymbol{E}}) p(\boldsymbol{\varphi})$$

Sequential Design of Physical Experiments

Decide on the next experiment that is likely to produce the largest information gain in updating the governing physics.

Physics-Based Models

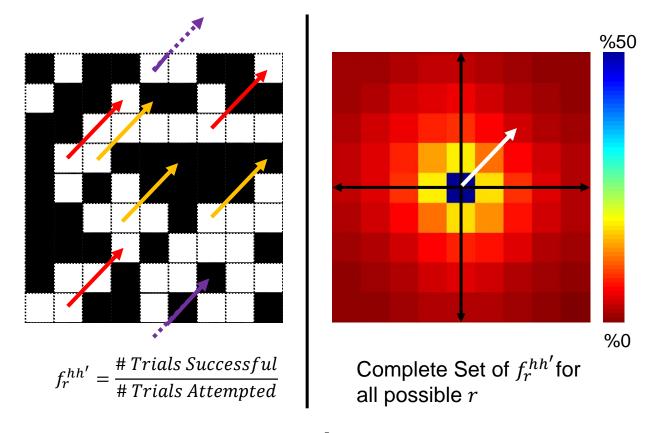
Build Gaussian Process models trained to simulation datasets produced by executing physics-based models by adaptive sampling of input domain for maximizing fidelity of extracted GP.

Process-Structure: $p(\mu | \mathcal{P}, \varphi, \Sigma_{\mathcal{P}}, \Sigma_{\varphi})$

Structure-Property: $p(P|\boldsymbol{\mu}, \boldsymbol{\varphi}, \boldsymbol{\Sigma}_{\boldsymbol{\mu}}, \boldsymbol{\Sigma}_{\boldsymbol{\varphi}})$

Structure Quantification: n-Point Spatial Correlations

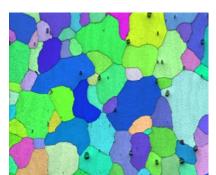
- Spatial correlations capture all of the salient measures of the microstructure
- Allow efficient computations using discrete Fourier transforms (DFTs)



$$f_r^{np} = \frac{1}{S_r} \frac{1}{J} \sum_{s} \sum_{i=1}^{J} {}^{(j)} m_s^{n} {}^{(j)} m_{s+r}^p$$

S. R. Kalidindi, "Hierarchical Materials Informatics", Butterworth Heinemann, 2015.

Polycrystal Microstructures



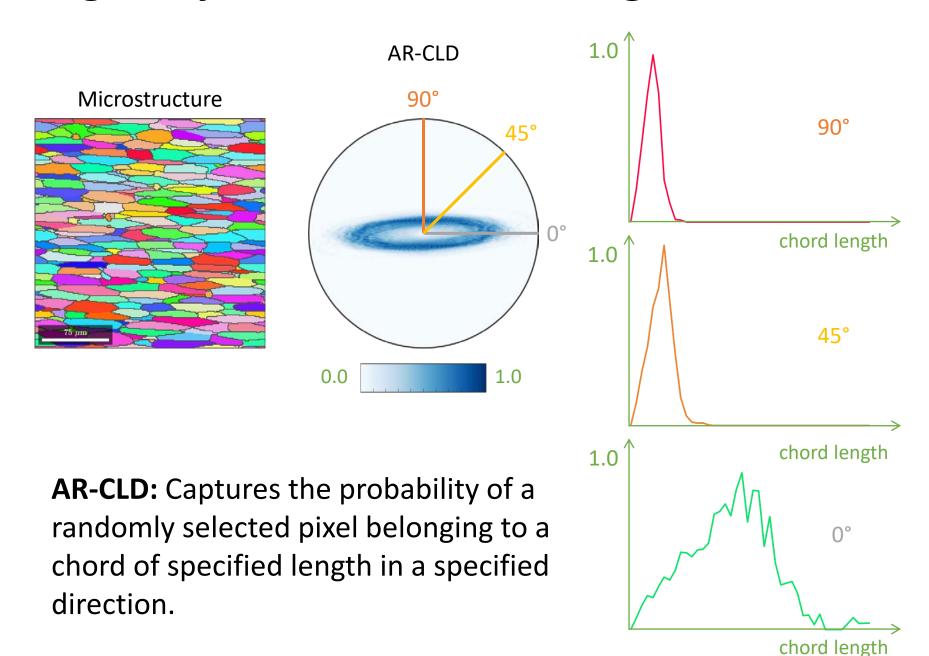
$$m(g, \mathbf{x}) \approx \sum_{L}^{\tilde{L}} \sum_{s}^{S} M_{s}^{L} T_{L}(g) \chi_{s}(\mathbf{x})$$

$$f(g,g'|\mathbf{r}) \approx \sum_{L}^{\tilde{L}} \sum_{K}^{\tilde{L}} \sum_{t}^{S} F_{t}^{LK} T_{L}(g) T_{K}(g') \chi_{t}(\mathbf{r})$$

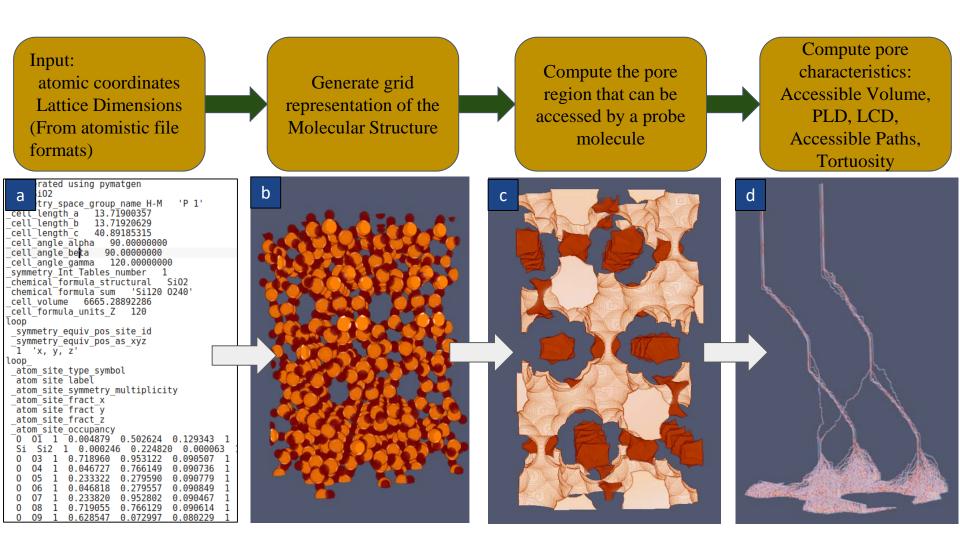
$$f(g, g'|\mathbf{r}) = \frac{1}{Vol(\Omega_r)} \int_{\Omega_r} m(g, \mathbf{x}) m(g', \mathbf{x} + \mathbf{r}) d\mathbf{x}$$

$$F_t^{LK} = \frac{1}{|S_t|} \sum_{s}^{S_t} M_s^L M_{s+t}^K$$

Angularly Resolved Chord-Length Distirbution



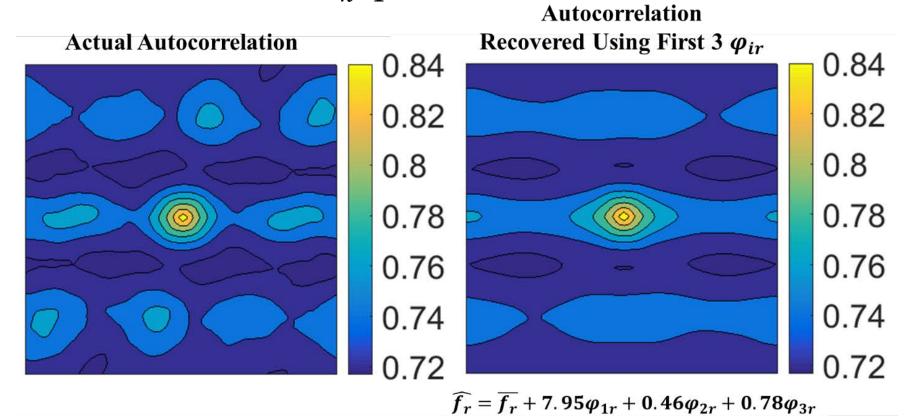
Quantification of Atomic Structures



Define features of interest in a rigorous statistical framework → Feature Engineering

Low-Dimensional Representations of material structure distributions Using PCA

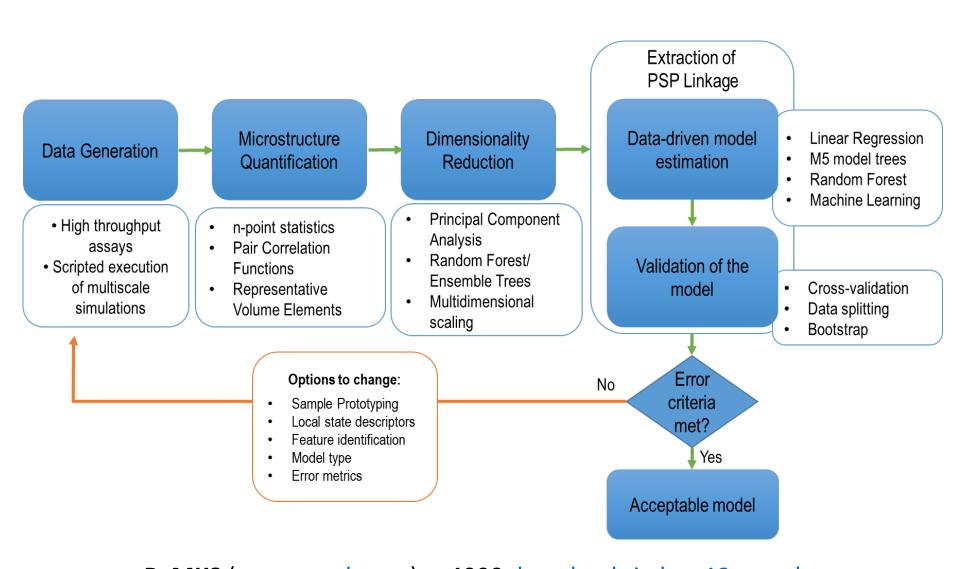
$$f_r^{(j)} \approx \sum_{k=1}^{\tilde{R}} \alpha_k^{(j)} \varphi_{kr} + \bar{f_r}$$



Microstructure (μ) = (7.95, 0.46, 0.78)

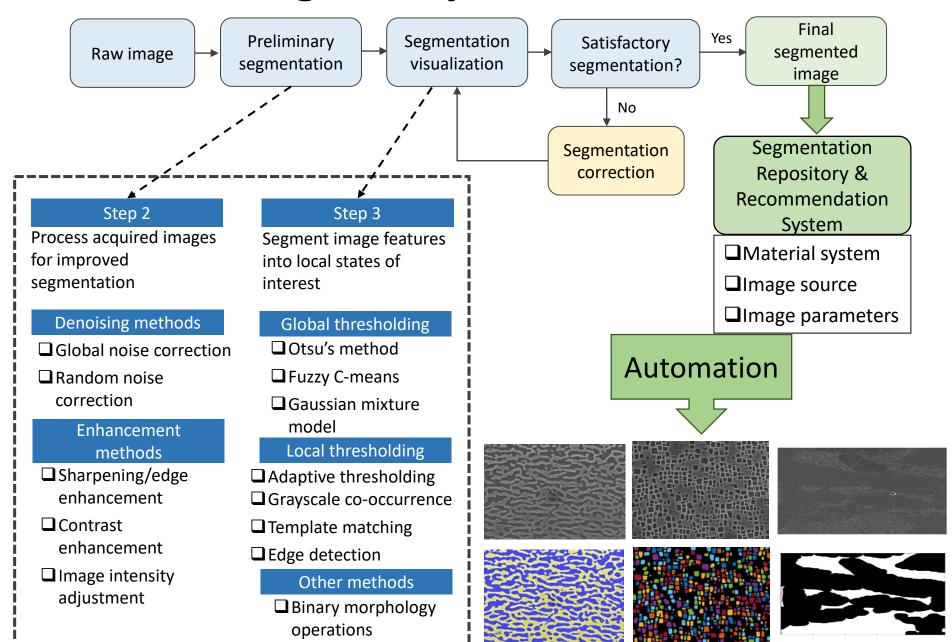
S. R. Kalidindi, "Hierarchical Materials Informatics", Butterworth Heinemann, 2015.

Templated Workflows for Extracting PSP Linkages



PyMKS (<u>www.pymks.org</u>) ~ 4000 <u>downloads in last 12 months</u> <u>https://github.com/ahmetcecen/MATLAB-Spatial-Correlation-Toolbox</u>

Image Analyses Workflow



MKS Homogenization for Multiphase Plasticity

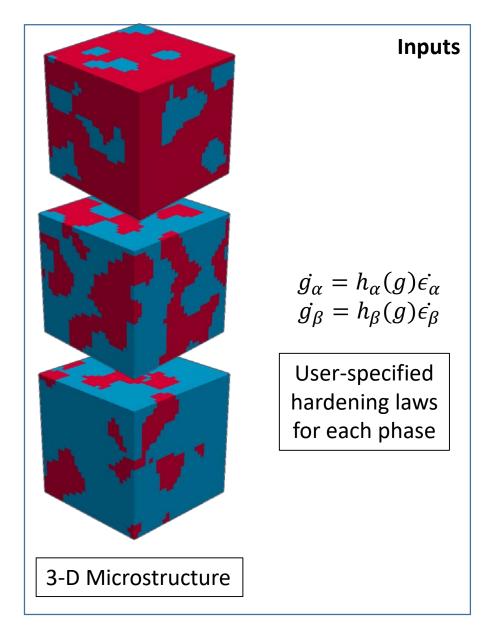
Latypov and Kalidindi, *Journal of Computational Physics*, **346**, pp. 242–261, 2017 Latypov et al., *Computer Methods in Applied Mechanics and Engineering*, **346**, pp. 180-196, 2019

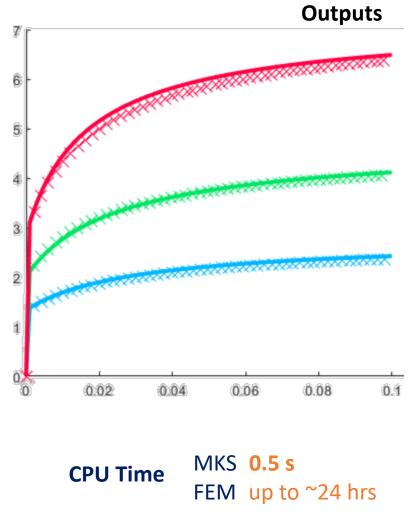
- MKS Homogenization Framework
- Effective Yield Strength
- Partitioning of the imposed strains among the microscale constituents
- Single database for a broad range of contrasts

$$\begin{pmatrix} L_{11} & 0.0 & 0.0 \\ 0.0 & -L_{11}/2 & 0.0 \\ 0.0 & 0.0 & -L_{11}/2 \end{pmatrix}$$

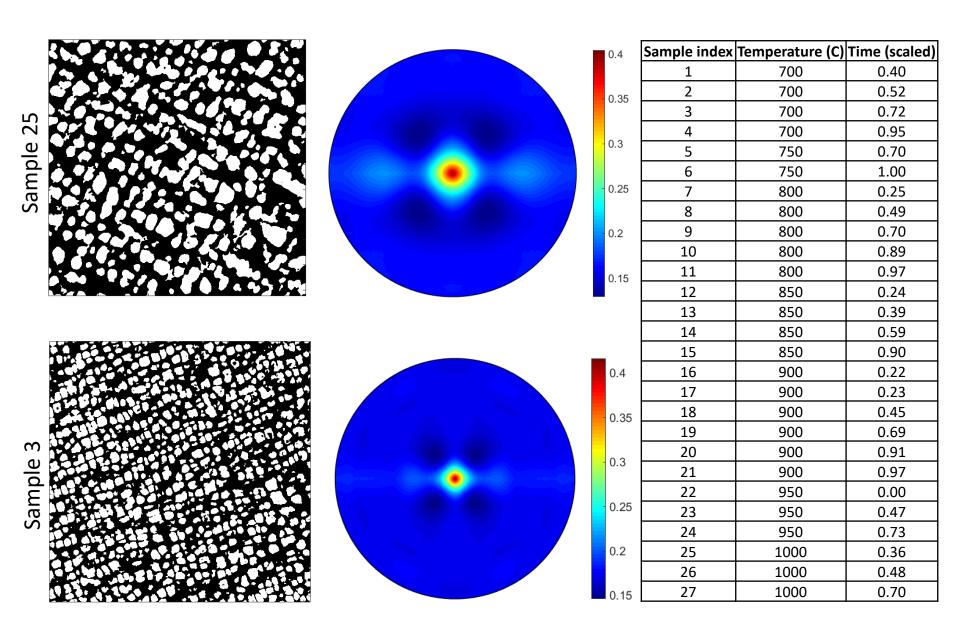
Isotropic perfectly-plastic YS2:YS1 = 2:1 ... 10:1

Prediction of Composite Stress-Strain Responses



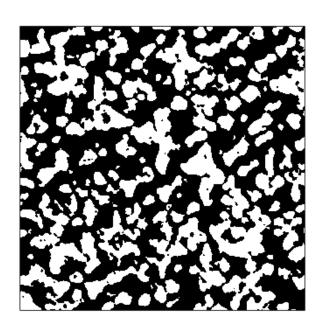


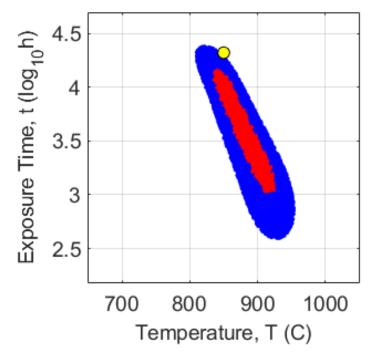
Process-Structure Linkages in Superalloys

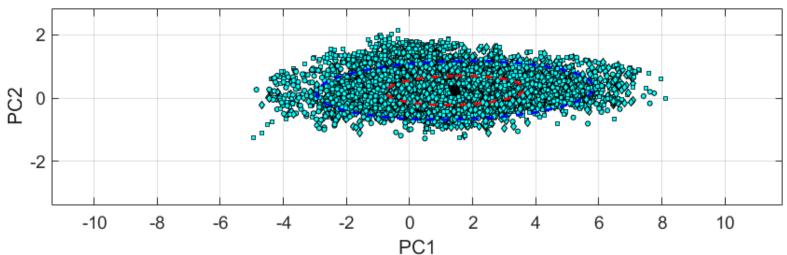


Process-Structure Linkages in Superalloys: Inverse Solutions Using MCMC Sampling

<u>Unknown</u> <u>Sample</u>

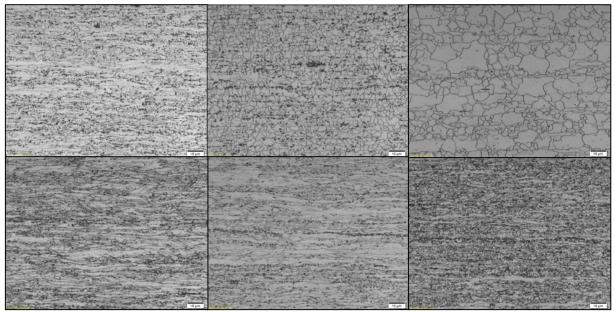






Correlation of Images to Properties

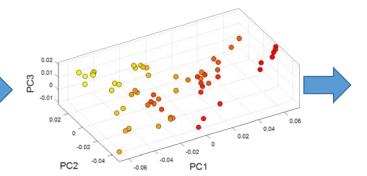
Optical Images of Steel Samples



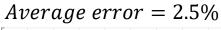
#	ID	Average Rp0.2/ Mpa	Average Rm/ Mpa
1	T414	641.7575	696.31
2	T415	586.542	660.74
3	T416	602.3725	674.29
4	T417	536.0675	612.84
5	T418	511.0605	602.14
6	T419	766.784	796.88
7	T420	700.0695	744.43
8	T421	684.925	734.82
9	T422	649.955	705.84
10	T423	648.257	705.37
11	T424	601.227	666.12
12	T433	606.2115	672.81
13	T425	594.326	661.46
14	T426	583.0125	658.73
15	T427	574.538	656.16
16	T428	862.9575	877.12
17	T429	676.478	720.55
18	T430	669.9825	731.06
19	T431	646.828	726.19
20	T432	933.7515	944.85

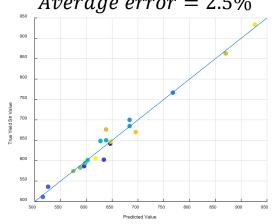
Image Segmentation

Reduced-Order Microstructure Representation

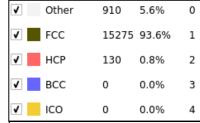


Reduced-Order Model





atomMKS: Application to Grain Boundary Structures



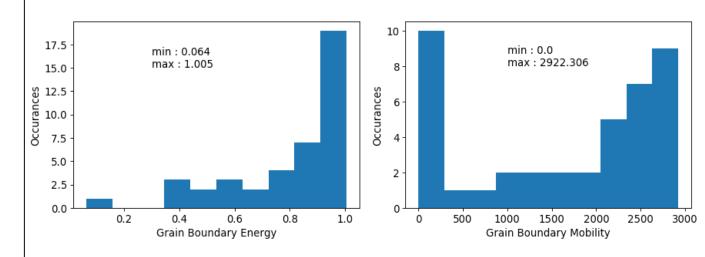
Grain boundary atoms identified using Common Neighbour Analysis. Atoms other than FCC constitute grain boundary.

Material: Ni (FCC)

Properties of Interest:

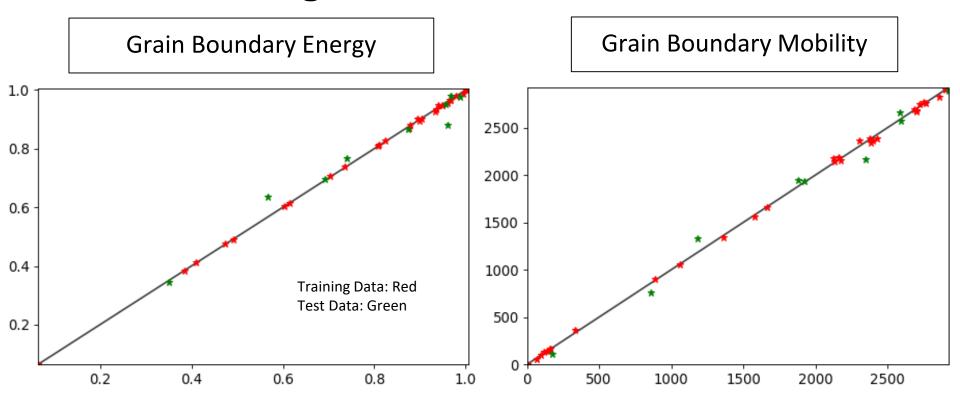
- Grain Boundary Energy
- Mobility

41 types of sigma-3 Grain Boundaries and associated property values provided.



Collaboration with Prof. Fadi Abdeljawad, Clemson University

atomMKS: Reduced-order Models Using Ridge-Regression on PC Scores

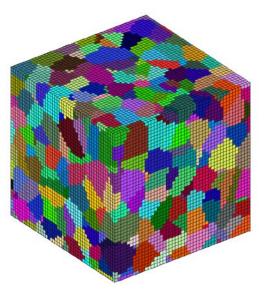


RMS Error: 0.037 J/m²

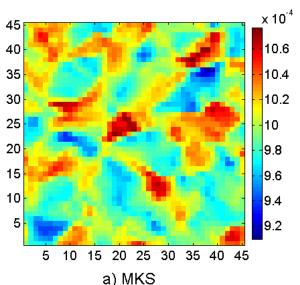
RMS error: 96.39 m/(s GPa)

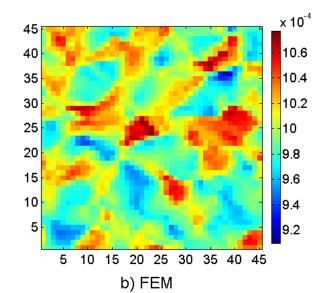
Stress Fields in Polycrystals

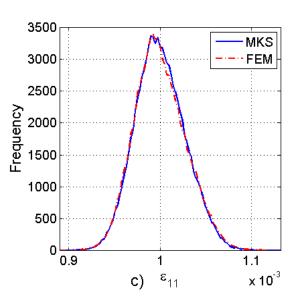
Yabansu and Kalidindi, Acta Materialia, 94, pp. 26-35, 2015



- 45 x 45 x 45 Microstructure. Each color represents a distinct crystal lattice orientation randomly selected from cubic FZ.
- FEM prediction: 3 minutes with 16 processors on a supercomputer
- MKS prediction: 30 seconds with only 1 processor on a standard desktop computer

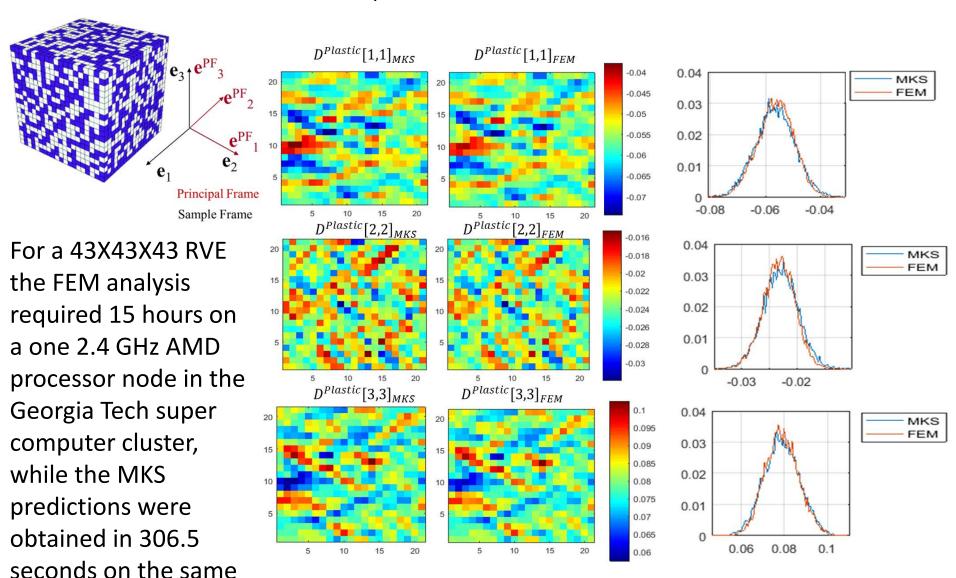






Plastic Strain Rates in Two-Phase Composites

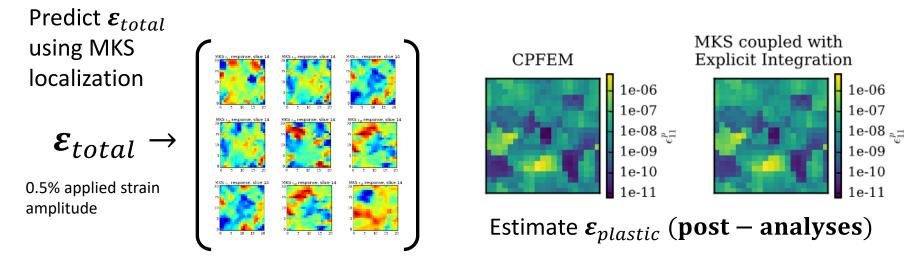
Montes De Oca Zapiain et al., Acta Materialia, 2017



resource.

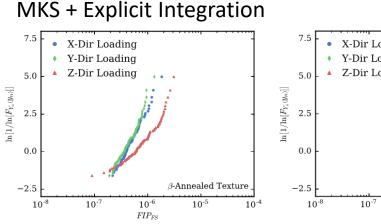
Ranking for Fatigue Performance

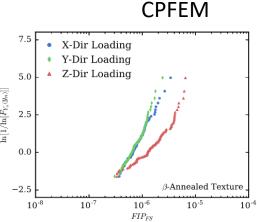
Paulson, Priddy, McDowell, Kalidindi, Materials and Design, 154, 2018



Construct distribution of extreme fatigue indicator parameters (FIPs)

$$FIP_{FS} = \frac{\Delta \gamma_{max}^{p}}{2} \left(1 + k \frac{\sigma_{max}^{n}}{\sigma_{y}} \right)$$





New protocol is 40X
faster than traditional
protocols for ranking
new microstructures for
fatigue resistance

High-Throughput "Autonomous" Experiments

Macroscale

- Current protocols for materials testing need significant amounts of material produced with a consistent processing history.
- Standardized testing (e.g., tension tests) require significant effort in making samples.
- Current protocols are not suitable for rapid screening of the extremely large materials design space (this is the product space that includes all chemical compositions and process histories of interest).

Microscale

- A extremely large amount of experimental data is needed to calibrate multiscale materials constitutive models.
- Current protocols require sophisticated equipment, incur significant time and cost, and produce only limited amount of data.

Critically need high throughput, cost-effective, protocols for multiresolution mechanical measurements at different material structure/length scales.

Spherical nanoindentation stress-strain curves

$$P = \frac{4}{3} E_{eff} R_{eff}^{\frac{1}{2}} h_e^{\frac{3}{2}}$$

$$S = \frac{dP}{dh_e} = 2aE_{eff}$$

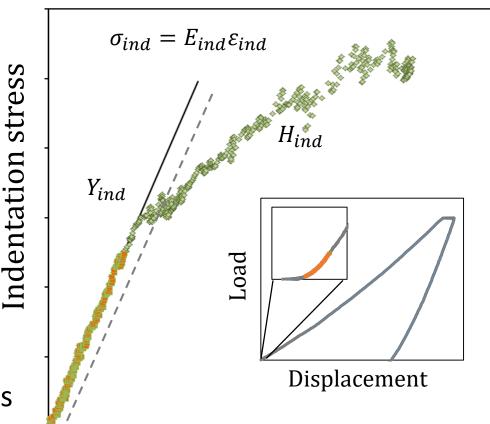
$$\sigma_{ind} = \frac{P}{\pi a^2}$$

$$\varepsilon_{ind} = \frac{4}{3\pi} \frac{h}{a}$$

S: elastic unloading stiffness

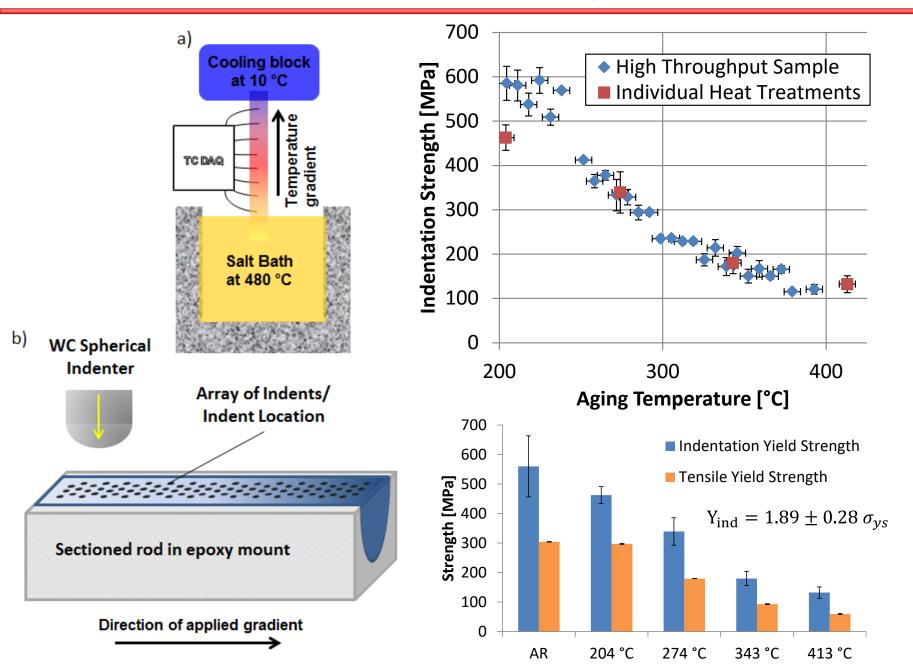
 σ_{ind} : indentation stress

 ε_{ind} : indentation strain

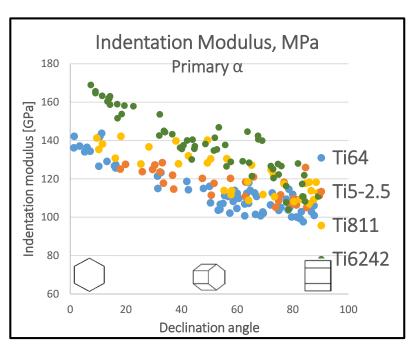


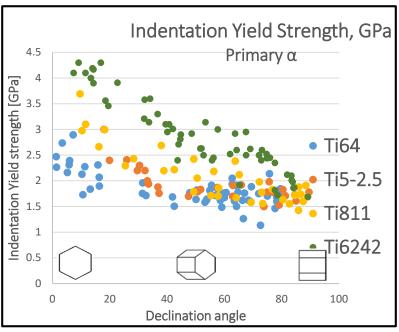
Indentation strain

Applications to Rapid Screening of Process Space

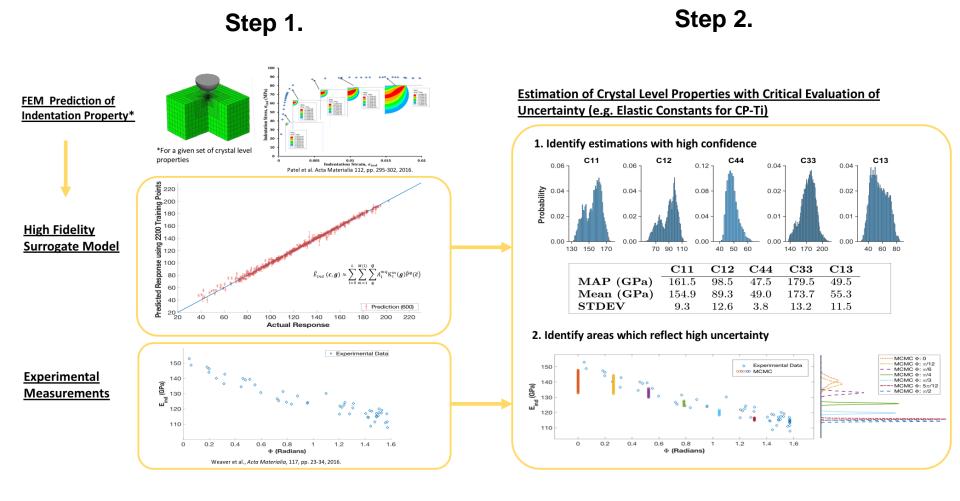


Orientation Dependence of Indentation Properties of primary α in Ti alloys





Estimation of Intrinsic Single Crystal Properties from Indentation Measurements



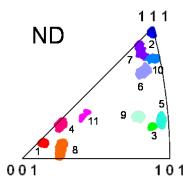
Estimation of CRSS Values in BCC Polycrystal Samples

As-cast Fe3%Si

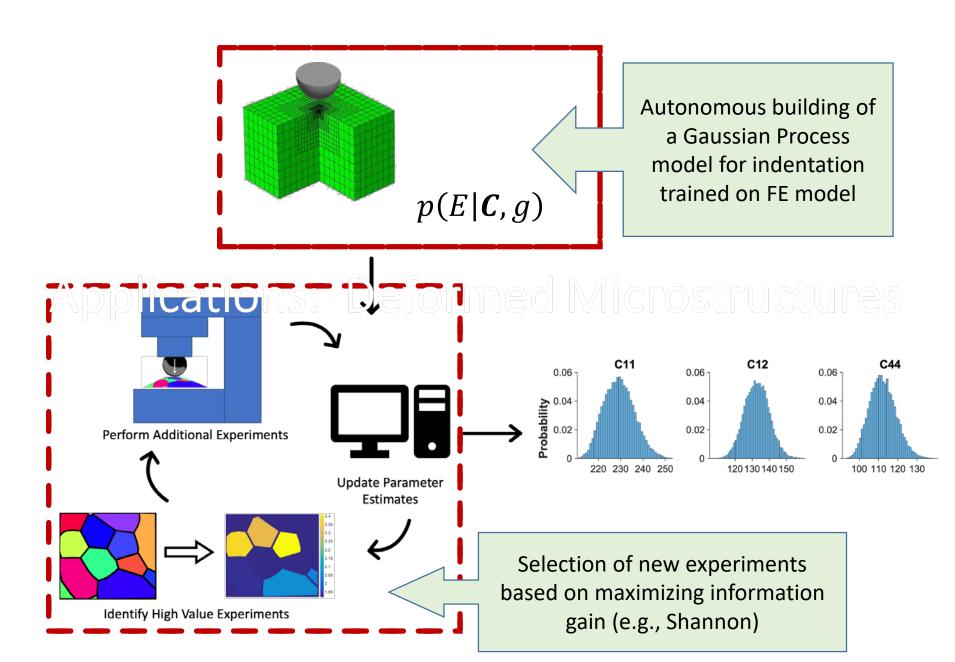
Orientation (ϕ_1, Φ, ϕ_2)	Experimental [#] Y_{ind} (GPa)
339.8, 54.4, 46.1	1.13 ± 0.04
103.7, 121.6, 49.9	1.12 ± 0.02
232.5, 53.1, 324.0	1.12 ± 0.16
83.2, 125.4, 30.4	1.10 ± 0.02
3.0, 41.3, 76.4	1.09 ± 0.04
194.7, 79.7, 317	1.07 ± 0.01
50.0, 38.1, 250.1	1.06 ± 0.02
114.2, 85, 173.5	0.85 ± 0.04
170.0, 102.6, 357.9	0.91 ± 0.06
163.6, 78.8, 168	0.93 ± 0.04
259.9, 238.0, 145.8	1.0 ± 0.06

$$Y_{ind}(s, \Phi, \varphi_2) = s \sum_{l=0}^{\infty} \sum_{m=1}^{M(l)} A_l^m \dot{K}_l^m (\Phi, \varphi_2)$$

	s (MPa)
Literature	146.12 to 161
Model Prediction	155.4 ± 3.5

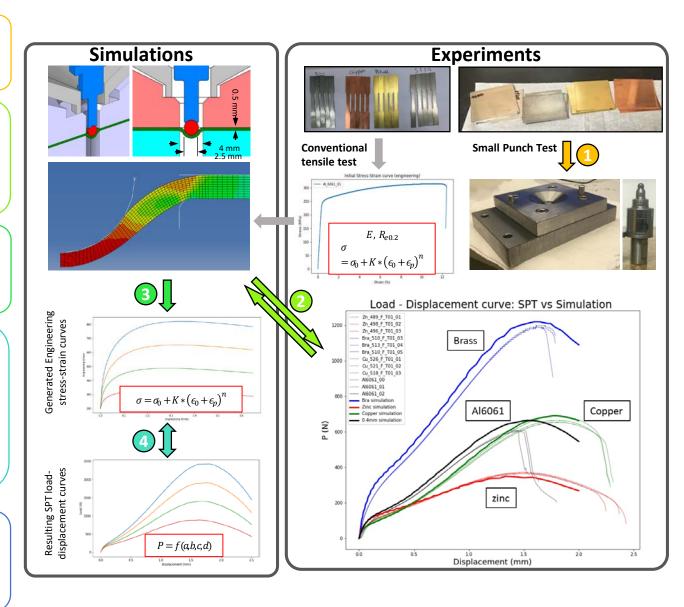


Sequential Design of Experiments



HT Ductility Screening Using Small Punch Tests

- Design of an experimental Small Punch Test setup
- Calibration of a numerical (FE) model with experimental measurements on a variety of different metals
- Generation of SPT data over a wide range of hypothetical material property sets using the numerical model
- Building correlations between Tensile properties $(\sigma_0, K, \epsilon_0, n)$ and SPT curves parameters (a,b,c,d)
- Develop inverse solution methodology for estimating $(\sigma_0, K, \epsilon_0, n)$ from measured (a,b,c,d)
- Development of an optimized apparatus for high speed testing: automation and parallelization



_

3

Δ

Summary Statements

- A physics-centered Bayesian framework can serve as a foundational element in the design and build of AI-based materials knowledge systems that can provide objective decision support in all aspects of materials innovation.
- High-throughput experimental and computational protocols are critically needed to generate the data needed to feed the envisioned knowledge systems.