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AI-Based Materials Knowledge Systems (MKS)
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• Specifically designed to support accelerated 
discovery, development, and deployment of 
new/improved materials in advanced technologies

• Main Functions: Diagnose, Predict, Recommend

• Expressed as a library of Process-Structure-Property 
(PSP) linkages covering all materials classes and all 
relevant material structure length scales (and 
relevant time scales)

• Formulated on a rigorous Bayesian statistical 
framework that accounts for the uncertainty of the 
curated knowledge 

• Continuously ingests a variety of information from 
disparate sources and dynamically evolves

• Highly efficient both in front-end (user-facing) and 
in the back-end (knowledge update) computations



Process

• Thermo-
mechanical (T(t), 
L(t), σ(t), 𝑐̇𝑐(t), … )

• Placement of 
Specific Defects 
(e.g., grain/phase 
boundaries, 
𝑔𝑔,∆𝑔𝑔,𝑛𝑛)

• Placement of 
chemical species 
(𝑐𝑐𝑖𝑖 ,𝑉𝑉,𝑝𝑝,𝒙𝒙𝑛𝑛, … )

Structure

• Microstructure
• Dislocation/defect 

structure
• Interface atomic 

structure
• Atomic structure 

with defects, 
disorder, etc.

• Electron density 
field

Property

• Young’s Modulus
• Yield Strength
• Fatigue Strength
• Conductivity
• Permeability
• Critical Resolved 

Shear Strength
• Grain Boundary 

Energy
• Vacancy Formation 

Energy

PSP Linkages Over a Hierarchy of Material Structure Scales

• Process and Property variables have rigorous mathematical definitions
• Critical Need: A framework for high-value low-dimensional representations of the 

material structure (minimal information loss with maximum recoverability) that is 
broadly applicable to various material classes at different length scales.



AI-Based Materials Knowledge Systems
(knowledge integration as opposed to tool integration)

www.comsol.com

DESIGN & 
MANUFACTURING

P-S-P

P-S-P

P-S-P

Major Classes of 
Information Sources
• Experiments
• Simulations 



Stochastic Framework for MKS
• Property: 𝑃𝑃 ∈ ℛ; 𝑝𝑝 𝑃𝑃 = 𝒩𝒩 𝑃𝑃 �𝑃𝑃,𝜎𝜎𝑝𝑝2

• Material (Hierarchical) Structure: 𝝁𝝁 ∈ 𝓜𝓜; 𝑝𝑝 𝝁𝝁 = 𝒩𝒩 𝝁𝝁 �𝝁𝝁,𝜮𝜮𝝁𝝁

• Process: 𝓟𝓟 ∈ ℛ𝑛𝑛; 𝑝𝑝 𝓟𝓟 = 𝒩𝒩 𝓟𝓟 �𝓟𝓟,𝜮𝜮𝓟𝓟

• Governing Physics: expressed as field (differential) equations and material
constitutive laws or equivalently as Green’s functions

𝝋𝝋 ∈ 𝚽𝚽; 𝑝𝑝 𝝋𝝋 = 𝒩𝒩 𝝋𝝋 �𝝋𝝋,𝜮𝜮𝝋𝝋

• Physics-Based Simulations: 𝑝𝑝 𝑃𝑃 𝝁𝝁,𝝋𝝋,𝜮𝜮𝝁𝝁 ,𝜮𝜮𝝋𝝋 and 𝑝𝑝 𝝁𝝁 𝓟𝓟,𝝋𝝋,𝜮𝜮𝓟𝓟 ,𝜮𝜮𝝋𝝋 -
machine learning has opened new avenues for sampling these distributions
within practical computational budgets

• Physical Experiments (typically small datasets): 𝑝𝑝 𝑃𝑃 𝝁𝝁,𝜮𝜮𝝁𝝁 ,𝝋𝝋∗ and

𝑝𝑝 𝝁𝝁 𝓟𝓟,𝜮𝜮𝓟𝓟 ,𝝋𝝋∗ ; 𝝋𝝋∗= undetermined governing physics



Bayesian Update of Governing Physics
(a formal framework for uncovering new physics)

𝑝𝑝 𝝋𝝋 𝑬𝑬,𝜮𝜮𝑬𝑬 ∝ 𝑝𝑝 𝑬𝑬 𝝋𝝋,𝜮𝜮𝑬𝑬 𝑝𝑝 𝝋𝝋

Physics-Based Models
Build Gaussian Process models trained
to simulation datasets produced by
executing physics-based models by
adaptive sampling of input domain for
maximizing fidelity of extracted GP.
Process-Structure: 𝑝𝑝 𝝁𝝁 𝓟𝓟,𝝋𝝋,𝜮𝜮𝓟𝓟 ,𝜮𝜮𝝋𝝋
Structure-Property: 𝑝𝑝 𝑃𝑃 𝝁𝝁,𝝋𝝋,𝜮𝜮𝝁𝝁 ,𝜮𝜮𝝋𝝋

Sequential Design of Physical 
Experiments

Decide on the next experiment
that is likely to produce the
largest information gain in
updating the governing physics.

Foundational framework for Materials Knowledge  Systems: Diagnose, Predict, Recommend



Structure Quantification: n-Point Spatial Correlations
• Spatial correlations capture all of the salient measures of the microstructure

• Allow efficient computations using discrete Fourier transforms (DFTs)
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S. R. Kalidindi, “Hierarchical Materials Informatics”, Butterworth Heinemann, 2015.



Polycrystal Microstructures

𝑚𝑚 𝑔𝑔,𝒙𝒙 ≈�
𝐿𝐿

�𝐿𝐿

�
𝒔𝒔

𝑺𝑺

𝑀𝑀𝒔𝒔
𝐿𝐿𝑇𝑇𝐿𝐿 𝑔𝑔 𝜒𝜒𝒔𝒔 𝒙𝒙

𝑓𝑓 𝑔𝑔,𝑔𝑔𝑔 𝒓𝒓 ≈�
𝐿𝐿

�𝐿𝐿

�
𝐾𝐾

�𝐿𝐿

�
𝒕𝒕

𝑺𝑺

𝐹𝐹𝒕𝒕𝐿𝐿𝐿𝐿𝑇𝑇𝐿𝐿 𝑔𝑔 𝑇𝑇𝐾𝐾 𝑔𝑔𝑔 𝜒𝜒𝒕𝒕 𝒓𝒓

𝑓𝑓 𝑔𝑔,𝑔𝑔𝑔 𝒓𝒓 =
1

𝑉𝑉𝑉𝑉𝑉𝑉(Ω𝒓𝒓)
�
Ω𝒓𝒓

𝑚𝑚 𝑔𝑔,𝒙𝒙 𝑚𝑚 𝑔𝑔′,𝒙𝒙 + 𝒓𝒓 𝑑𝑑𝒙𝒙

𝐹𝐹𝒕𝒕𝐿𝐿𝐿𝐿 =
1
𝑺𝑺𝒕𝒕

�
𝒔𝒔

𝑺𝑺𝒕𝒕

𝑴𝑴𝒔𝒔
𝐿𝐿𝑴𝑴𝒔𝒔+𝒕𝒕

𝐾𝐾



Angularly Resolved Chord-Length Distirbution

chord length

chord length

chord length

0°

45°
90°Microstructure

AR-CLD

90°
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0°

1.0

1.0

1.0

0.0 1.0

AR-CLD: Captures the probability of a 
randomly selected pixel belonging to a 
chord of specified length in a specified 
direction. 



a c db

Input: 
atomic coordinates
Lattice Dimensions

(From atomistic file 
formats)

Generate grid 
representation of the 
Molecular Structure

Compute the pore 
region that can be 

accessed by a probe 
molecule

Compute pore 
characteristics: 

Accessible Volume, 
PLD, LCD, 

Accessible Paths, 
Tortuosity

Quantification of Atomic Structures

Define features of interest in a rigorous statistical framework → Feature Engineering



Low-Dimensional Representations of material structure 
distributions Using PCA
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S. R. Kalidindi, “Hierarchical Materials Informatics”, Butterworth Heinemann, 2015.
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Templated Workflows for Extracting PSP Linkages

PyMKS (www.pymks.org)  ~ 4000 downloads in last 12 months
https://github.com/ahmetcecen/MATLAB-Spatial-Correlation-Toolbox

http://www.pymks.org/
https://anaconda.org/conda-forge/pymks
https://github.com/ahmetcecen/MATLAB-Spatial-Correlation-Toolbox


Image Analyses Workflow
Raw image

Segmentation 
correction

Segmentation 
visualization

Satisfactory 
segmentation?

Final 
segmented 

image

YesPreliminary 
segmentation

No

Step 2 Step 3
Process acquired images 
for improved 
segmentation

Segment image features 
into local states of 
interest

Global noise correction
Random noise 

correction

Sharpening/edge 
enhancement

Contrast 
enhancement

Image intensity 
adjustment

Adaptive thresholding
Grayscale co-occurrence
Template matching
Edge detection

Otsu’s method
Fuzzy C-means
Gaussian mixture 

model

Global thresholding

Local thresholding

Binary morphology 
operations

Other methods

Denoising methods

Enhancement 
methods

Segmentation 
Repository & 

Recommendation 
System

Material system
Image source
Image parameters

Automation



MKS Homogenization for Multiphase Plasticity

• MKS Homogenization Framework

• Effective Yield Strength

• Partitioning of the imposed strains among 
the microscale constituents

• Single database for a broad range of 
contrasts

Isotropic perfectly-plastic
YS2:YS1 = 2:1 … 10:1

Latypov and Kalidindi, Journal of Computational Physics, 346, pp. 242–261, 2017
Latypov et al., Computer Methods in Applied Mechanics and Engineering, 346, pp. 180-196, 2019



Prediction of Composite Stress-Strain Responses

FEM

MKS

User-specified 
hardening laws 
for each phase

̇𝑔𝑔𝛼𝛼 = ℎ𝛼𝛼 𝑔𝑔 ̇𝜖𝜖𝛼𝛼
̇𝑔𝑔𝛽𝛽 = ℎ𝛽𝛽(𝑔𝑔) ̇𝜖𝜖𝛽𝛽

3-D Microstructure

Inputs

CPU Time MKS: 0.5 s
FEM: up to ~24 hrs

Outputs



Process-Structure Linkages in Superalloys

Sample index Temperature (C) Time (scaled)
1 700 0.40
2 700 0.52
3 700 0.72
4 700 0.95
5 750 0.70
6 750 1.00
7 800 0.25
8 800 0.49
9 800 0.70

10 800 0.89
11 800 0.97
12 850 0.24
13 850 0.39
14 850 0.59
15 850 0.90
16 900 0.22
17 900 0.23
18 900 0.45
19 900 0.69
20 900 0.91
21 900 0.97
22 950 0.00
23 950 0.47
24 950 0.73
25 1000 0.36
26 1000 0.48
27 1000 0.70
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Process-Structure Linkages in Superalloys: Inverse Solutions 
Using MCMC Sampling

Unknown 
Sample



Correlation of Images to Properties
Optical Images of Steel Samples
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 2.5%
Image Segmentation Reduced-Order Microstructure 

Representation
Reduced-Order Model



Grain 1

Material: Ni (FCC)
Properties of Interest:

● Grain Boundary 
Energy

● Mobility

41 types of sigma-3 
Grain Boundaries and 
associated property 
values provided.

Grain boundary atoms 
identified using Common 
Neighbour Analysis. Atoms 
other than FCC constitute grain 
boundary.

atomMKS: Application to Grain Boundary Structures

Collaboration with Prof. Fadi Abdeljawad, Clemson University



RMS  Error: 0.037 J/m2 RMS error: 96.39 m/(s GPa)

Grain Boundary MobilityGrain Boundary Energy

Training Data: Red
Test Data: Green

atomMKS: Reduced-order Models Using Ridge-
Regression on PC Scores 



• 45 x 45 x 45 Microstructure. Each color 
represents a distinct crystal lattice orientation 
randomly selected from cubic FZ.

• FEM prediction: 3 minutes with 16 
processors on a supercomputer

• MKS prediction: 30 seconds with only 1 
processor on a standard desktop computer

Stress Fields in Polycrystals
Yabansu and Kalidindi, Acta Materialia, 94, pp. 26–35, 2015



For a 43X43X43 RVE 
the FEM analysis 
required 15 hours on 
a one 2.4 GHz AMD 
processor node in the 
Georgia Tech super 
computer cluster, 
while the MKS 
predictions were 
obtained in 306.5 
seconds on the same 
resource.

Plastic Strain Rates in Two-Phase Composites
Montes De Oca Zapiain et al., Acta Materialia, 2017



Ranking for Fatigue Performance

𝜺𝜺𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎 →
0.5% applied strain 
amplitude

MKS + Explicit Integration CPFEM

Predict 𝜺𝜺𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎
using MKS 
localization 

Estimate 𝜺𝜺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 − 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚)

Construct distribution of 
extreme fatigue indicator 
parameters (FIPs)

New protocol is 40X 
faster than traditional 
protocols for ranking 
new microstructures for 
fatigue resistance

𝑭𝑭𝑭𝑭𝑭𝑭 𝑭𝑭𝑭𝑭 =
∆𝜸𝜸𝒎𝒎𝒎𝒎𝒎𝒎

𝒑𝒑

𝟐𝟐 𝟏𝟏 + 𝒌𝒌
𝝈𝝈𝒎𝒎𝒎𝒎𝒎𝒎𝒏𝒏

𝝈𝝈𝒚𝒚

Paulson, Priddy, McDowell, Kalidindi, Materials and Design, 154, 2018



High-Throughput “Autonomous” Experiments
Macroscale
• Current protocols for materials testing need significant amounts of

material produced with a consistent processing history.
• Standardized testing (e.g., tension tests) require significant effort in

making samples.
• Current protocols are not suitable for rapid screening of the

extremely large materials design space (this is the product space that
includes all chemical compositions and process histories of interest).

Microscale
• A extremely large amount of experimental data is needed to

calibrate multiscale materials constitutive models.
• Current protocols require sophisticated equipment, incur significant

time and cost, and produce only limited amount of data.
Critically need high throughput, cost-effective, protocols for
multiresolution mechanical measurements at different material
structure/length scales.



Spherical nanoindentation stress-strain curves

S.R. Kalidindi and S. Pathak. Acta Mat., 2008.

Indentation strain
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𝑆𝑆: elastic unloading stiffness
𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖: indentation stress
ε𝑖𝑖𝑖𝑖𝑖𝑖: indentation strain



Applications to Rapid Screening of Process Space
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Orientation Dependence of 
Indentation Properties of primary α

in Ti alloys
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Estimation of Intrinsic Single Crystal 
Properties from Indentation Measurements

Step 1. Step 2. 



s (MPa)

Literature 146.12 to 161

Model 
Prediction 155.4 ± 3.5

As-cast Fe3%Si

Orientation 
(ϕ 1, Φ, ϕ2 )

Experimental#

Yind (GPa)

339.8, 54.4, 46.1 1.13 ± 0.04

103.7, 121.6, 49.9 1.12 ± 0.02

232.5, 53.1, 324.0 1.12 ± 0.16

83.2, 125.4, 30.4 1.10 ± 0.02

3.0, 41.3, 76.4 1.09 ± 0.04

194.7, 79.7, 317 1.07 ± 0.01

50.0, 38.1, 250.1 1.06 ± 0.02

114.2, 85, 173.5 0.85 ± 0.04

170.0, 102.6, 357.9 0.91 ± 0.06

163.6, 78.8, 168 0.93 ± 0.04

259.9, 238.0, 145.8 1.0 ± 0.06

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠 ,Φ,𝜑𝜑2 = 𝑠𝑠 �
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𝐴𝐴𝑙𝑙𝑚𝑚 ̇𝐾̇𝐾𝑙𝑙𝑚𝑚 (Φ,𝜑𝜑2)

Estimation of CRSS Values in BCC Polycrystal Samples



𝑝𝑝 𝐸𝐸 𝑪𝑪,𝑔𝑔

Sequential Design of Experiments

Autonomous building of 
a Gaussian Process 

model for indentation 
trained on FE model 

Selection of new experiments 
based on maximizing information 

gain (e.g., Shannon)



1
• Design of an 

experimental Small 
Punch Test setup 

2

• Calibration of a 
numerical (FE) model 
with experimental 
measurements on a 
variety of different 
metals 

3

• Generation of SPT data 
over a wide range of 
hypothetical material 
property sets using the 
numerical model

4

• Building correlations 
between Tensile 
properties (𝜎𝜎0,𝐾𝐾, 𝜖𝜖0, 𝑛𝑛)
and SPT curves 
parameters (a,b,c,d)

• Develop inverse solution 
methodology for 
estimating (𝜎𝜎0,𝐾𝐾, 𝜖𝜖0,𝑛𝑛)
from measured (a,b,c,d)

5

• Development of an 
optimized apparatus for 
high speed testing: 
automation and 
parallelization

𝐸𝐸, 𝑅𝑅𝑒𝑒0.2
𝜎𝜎
=𝜎𝜎0+𝐾𝐾∗ 𝜖𝜖0+𝜖𝜖𝑝𝑝

𝑛𝑛

Conventional 
tensile test 1Small Punch Test

ExperimentsSimulations

4 mm
2.5 mm

0.5 m
m

𝜎𝜎=𝜎𝜎0 +𝐾𝐾∗ 𝜖𝜖0+𝜖𝜖𝑝𝑝
𝑛𝑛

𝑃𝑃=𝑓𝑓(𝑎𝑎,𝑏𝑏,𝑐𝑐,𝑑𝑑)
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4

HT Ductility Screening Using Small Punch Tests



• A physics-centered Bayesian framework can
serve as a foundational element in the design
and build of AI-based materials knowledge
systems that can provide objective decision
support in all aspects of materials innovation.

• High-throughput experimental and
computational protocols are critically needed
to generate the data needed to feed the
envisioned knowledge systems.

Summary Statements
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