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Intel is Leveraging Transistors for Spin 
Qubits, but there are 3 Key Challenges: 
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• New 300mm process innovations specific for qubits 
• High volume electrical characterization 
• Interconnects and array scalability 



The Promise of Quantum Computing 
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Potential to provide an exponential speedup in 
compute for certain applications

“Quantum Will 
Change Everything”



Quantum Computing at Intel 
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More interested in a scalable system, rather than a 
brute force 50 qubit milestone 



Building Better Qubits 
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Intel is investigating superconducting (interconnect 
like) and spin (transistor like) qubits 



Intel Transistor Leadership 
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Leverage 300mm high volume fabrication + characterization 
expertise in transistors towards spin qubits



From Transistors to Quantum Dots 
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Quantum dots are very similar to transistors and 
face many of the same process challenges 

Transistor Quantum Dot Device 



Challenges moving to a 300mm Qubit Flow
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• Lift-off based academic devices never see standard plasma etches and polish steps used in 
300mm

• Academic devices are fully electrostatically defined (no silicon etch) and use thick thermal SiO2 ; 
current state-of-art 300mm transistor process uses etched STR Fins and scaled high-k gate oxide  

Academic Device Intel 300mm Device 



Trigate Transistor R+D Timeline 
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Nine years from initial 300mm research to manufacturing

2011 - present



Customized Testchip for Spin Qubits 
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Enables 300mm device integration line for spin qubits, 
with each wafer having over 10,000 qubit testrows

Full 300mm Wafer Full Reticle Individually diced 55, 23, 15, 
and 7 gate arrays

7 gate array



Transistors   Quantum Dots  Qubits 
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28Si 300mm Substrate Development 
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Created ecosystem for high quality / high volume 
substrates for Quantum Computing research 

Hall mobility of 10,000 is highest 
reported for this oxide thickness 
(17nm)



28Si and Natural Si Transistor Data Matched
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28Si and NatSi process identically though the fab

Typical Devices Cross Wafer Distributions



Quantum Dot Gate Yield is virtually 100% 
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Compared to coupon line this enables statistical 
data collection and scaling up to larger arrays 
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Gate leakage from individual barrier, plunger and 
accumulation gates across the wafer 



Transistor Metrics to Characterize Gate Interface
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Ganging up multiple plunger and barrier gates can allow 
us to infer the gate dielectric interface quality 



Quantum Dot Characterization at T=1.5K
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Intel substrate + thermal oxide give very clean data on the academic flow 
but show augmented noise on the full 300mm integrated flow 

Large charging energy

Intel 300mm Substrate + Thermal 
Oxide + Academic Line process

Full 300mm Flow utilizing etched fins + 
scaled hi-k metal gate electrodes 



Unique Process Challenges for Qubits 
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Barrier Gate Interface: 

o Sees multiple etches 
(poly, spacer, etc…)

o Making a transistor in 
what is normally the 
S/D Contact 

Thermal SiO2 Oxide 

o Done upfront post Fin etch

o Targeted on a narrow fin

o Gate oxide sees STI polish

New innovations from etch/cleans, thin films and 
polish required to enable qubit manufacturing 



Quantum needs an Exponential 
Improvement in Low Temperature E-Test 

Throughput
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Room temperature
1 hour/wafer

Huge volume (1000 
devices)

T = 1.5 K 
12 hours/device
+ several days for 
dicing & bonding

T = 10 mK
Days/device

+ several days for 
dicing & bonding

Feedback cycle bottlenecked and too slow for Industry R+D
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Enables screening and correlating data at RT, 1.5K and 10 mK

High Throughput e-test at 1.5K is Needed

Transistor metrics 
on Dot Devices 

FAB

Transistor and 
Quantum Dot 

Metrics

High volume testing at 
room temperature

Intermediate volume 
testing at T =1.5K

Quantum Dot and 
Qubit Metrics

Single device 
testing at T = 10 mK
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Driving Development of a First of Kind Tool 
for Cryogenic e-test Automation at T = 1.5K 



Intel Cryoprober Proof of Concept Data 
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Statistical correlation of room temp to low temperature nested 
gate VT, with no variation increase at cryogenic temps

Prober camera on 7-gate testrowNested Gate VT 



First Integrated Circuit (1958)

22

Brute force interconnection works for a few devices – but NOT millions



Rent’s Rule and Scaling: T=t*gp
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Most overlooked discussion in the QC community!

Processor
• 109 transistors
• 103 pins

3D NAND Memory
• 1012 bytes
• 102 pins

55 Gate Linear Dot Array
• Up to 26 Qubits
• 122 pins



Quantum Rent’s Rule: T=t*gp
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How to optimize “p” for 
quantum computing:

• Reduce wires out of the 
fridge (Pfridge)

• Reduces number of I/O 
off of chip (PI/O)

• Reduces number of 
wires per gate (Pgate)

D. Franke et al.  https://doi.org/10.1016/j.micpro.2019.02.006



Reduce Wires out of the Fridge:  Cryo Control
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Custom Control Chip: Developed in Intel 22nm FFL FinFET
technology with custom cryogenic analog/RF models

Frequency multiplexing to reduce connectivity and crosstalk 
mitigation to improve gate fidelity   In test at QuTech/DELFT



Reducing I/O per Chip and # of Gate Lines 
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On-Chip Multiplexing: reduces I/O per 
chip, but can heat sample requiring 

higher temp qubit operation
Gate Selector Schemes: Orthogonal gates act 
as device selectors ; requires high uniformity 

R. Li et al. 10.1126/sciadv.aar3960L. Petit et al.  10.1103/PhysRevLett.121.076801



Intel is Leveraging Transistors for Spin 
Qubits, but there are 3 Key Challenges: 
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• New 300mm process innovations specific for qubits 
• High volume electrical characterization 
• Interconnects and array scalability 

Intel is actively working on all of these!
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