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Intel Is Leveraging Transistors for Spin
Qubits, but there are 3 Key Challenges:

« New 300mm process innovations specific for qubits
 High volume electrical characterization

* Interconnects and array scalability



The Promise of Quantum Computing

OERITI Rl
Change Everything™

TIME

Traditional

Algorithm Travel and Logistics Image Processing Pharmacology

Quantum
Algorithm

)
O
o
e
S
O
v
)
oc
v
-
-
o
£
0
&
a0
o]
—

“yv =

Problem Size Improved "F;J_r_écasting ~ Improved Stock ROI Cryptography

Potential to provide an exponential speedup In
compute for certain applications



Quantum Computing at Intel

Quantum Algorithms
Quantum Software
Quantum Architecture

CMOS/CRYO - Control logic

Interconnects / package

Devices / Qubits

More interested Iin a scalable system, rather than a
brute force 50 qubit milestone



Building Better Qubits

Superconducting Qubits Spin Qubits in Silicon
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Intel Is Investigating superconducting (interconnect
like) and spin (transistor like) qubits



Intel Transistor Leadership
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Invented 2nd Gen. Invented 2" Gen. First to
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Strained Silicon

Fli_gﬁ k Metal gate

Leverage 300mm high volume fabrication + characterization
expertise in transistors towards spin qubits



From Transistors to Quantum Dots

Transistor Quantum Dot Device
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Quantum dots are very similar to transistors and
face many of the same process challenges



Challenges moving to a 300mm Qubit Flow

Academic Device Intel 300mm Device
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Lift-off based academic devices never see standard plasma etches and polish steps used In
300mm

Academic devices are fully electrostatically defined (no silicon etch) and use thick thermal SiO2 ;
current state-of-art 300mm transistor process uses etched STR Fins and scaled high-k gate oxide 8



Trigate Transistor R+D Timeline
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Nine years from initial 300mm research to manufacturing



Customized Testchip for Spin Qubits

Full 300mm Wafer Full Reticle Individually diced 55, 23, 15,
i and 7 gate arrays
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Enables 300mm device integration line for spin qubits,
with each wafer having over 10,000 qubit testrows
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Transistors = Quantum Dots =2 Qubits
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28S) 300mm Substrate Development
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Created ecosystem for high quality / high volume
substrates for Quantum Computing research



28S| and Natural Si Transistor Data Matched

Typical Devices Cross Wafer Distributions
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28S) and N&Sj process identically though the fab
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Quantum Dot Gate Yield is virtually 100%

Gate leakage from individual barrier, plunger and
accumulation gates across the wafer
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Compared to coupon line this enables statistical
data collection and scaling up to larger arrays



Transistor Metrics to Characterize Gate Interface
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Ganging up multiple plunger and barrier gates can allow
us to infer the gate dielectric interface quality y



Quantum Dot Characterization at T=1.5K

Intel 300mm Substrate + Thermal Full 300mm Flow utilizing etched fins +
Oxide + Academic Line process scaled hi-k metal gate electrodes
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Intel substrate + thermal oxide give very clean data on the academic flow
but show augmented noise on the full 300mm integrated flow
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Unigue Process Challenges for Qubits

Thermal SiO2 Oxide

Barrier Gate Interface:

b Sees multiple etches Done upfront post Fin etch

(poly, spacer, etc...) Targeted on a narrow fin

o Making a transistor in

_ Gate oxide sees STI polish
what is normally the

S/D Contact

New innovations from etch/cleans, thin films and
polish required to enable qubit manufacturing
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Improvement in Low Temperature E-Test
Throughput
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Increasing measurement time

Decreasing amount of data

Feedback cycle bottlenecked and too slow for Industry R+D
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High Throughput e-test at 1.5K is Needed

High volume testing at

\ room temperature

FAB

Intermediate volume
testing at T =1.5K

Transistor metrics  [CY SINg o0,
: testing at T = 10 mK
on Dot Devices Transistor and
Quantum Dot Quantum Dot and
Metrics Nbit Metrics
(

Enables screening and correlating data at RT, 1.5K and 10 mK 1
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Driving Development of a First of Kind Tool
for Cryogenic e-test Automation at T = 1.5K
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Intel Cryoprober Proof of Concept Data

Nested Gate VT Prober camera on 7-gate testrow
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Statistical correlation of room temp to low temperature nested
gate VT, with no variation increase at cryogenic temps
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First Integrated Circuit (1958)
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Brute force interconnection works for a few devices — but NOT millions
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Rent's Rule and Scaling: T=t*gP
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Processor 3D NAND Memory 55 Gate Linear Dot Array
109 transistors « 102 bytes « Up to 26 Qubits
« 108 pins * 107 pins « 122 pins

Most overlooked discussion in the QC community!
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Q\\/V

Few qubit experiments

Direct i‘
control ;5
(individual)

lengthscale
3
3

D. Franke et al. https://doi.org/10.1016/j.micpro.2019.02.006

1%’ Rule: T=t*gP

How to optimize “p” for
guantum computing:

Reduce wires out of the
fridge (Pfridge)

Reduces number of I/O
off of chip (P,,c)

Reduces number of
wires per gate (Pgate)

24



Reduce Wires out of the Fridge: Cryo Control

Main Controller Custom Control Chip: Developed in Intel 22nm FFL FInFET

(firmware/software)

technology with custom cryogenic analog/RF models

(~ 10 lines or =« log,(N)
worst case)

L
controlchip  ontrol
board/ chip

package

Frequency multiplexing to reduce connectivity and crosstalk
mitigation to improve gate fidelity = In test at QuTech/DELFT ..



Reducing /O per Chip and # of Gate Lines

On-Chip Multiplexing: reduces I/O per
chip, but can heat sample requiring
higher temp qubit operation

Gate Selector Schemes: Orthogonal gates act
as device selectors ; requires high uniformity

Full- stack crossbar layout
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R. Li et al. 10.1126/sciadv.aar3960

L. Petit et al. 10.1103/PhysRevLett.121.076801



Intel Is Leveraging Transistors for Spin
Qubits, but there are 3 Key Challenges:

« New 300mm process innovations specific for qubits
 High volume electrical characterization

* Interconnects and array scalability

Intel 1s actively working on all of these!
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